|
[1].“Wearable Communications in 5G: Challenges and Enabling Technologies”, https://www.researchgate.net/profile/Haijian_Sun5/publication/319186303_Wearable_Communications_in_5G_Challenges_and_Enabling_Technologies/links/5be09726299bf1124fbe082f/Wearable-Communications-in-5G-Challenges-and-Enabling-Technologies.pdf [2]. “因應物聯網與穿戴式設備需求 美信電源IC強化整合設計”, https://www.digitimes.com.tw/tech/dt/n/shwnws.asp?cnlid=13&id=0000565124_GIQ0ALUP3KDWQF3GYVBZW [3].“全球 B4G/5G、IoT 需求情境、應用與技術發展趨勢”, https://www.ncc.gov.tw/chinese/files/18102/5056_40607_181023_1.pdf [4].“智慧手錶/智慧手環產品市場與技術趨勢”,https://www.digitimes.com.tw/iot/article.asp?cat=130&id=0000381068_26H1GV115MD4FP9PMOUIF [5].“(Texas Instruments)Smartwatch system integrated circuits and reference designs”,http://www.ti.com/solution/smartwatch?variantid=34352&subsystemid=27277 [6].“有效縮小穿戴式裝置電源電路”, https://www.ctimes.com.tw/DispArt/tw/Intel/PMIC/%E9%AB%98%E9%80%9A/%E8%8B%B1%E4%BB%A3%E7%88%BE/%E9%9B%BB%E6%BA%90%E7%AE%A1%E7%90%86IC/1609210949U3.shtml [7].“電源晶片尺寸更小/效率更高 通訊電源功率密度攀升”, https://www.2cm.com.tw/2cm/zh-tw/magazine/-CoverStory/B2A90AA23D23458B8365A500FEFE3A37 [8].“英特矽爾 (Intersil)低壓降線性穩壓器提供75mV低壓降”, http://www.mem.com.tw/article_content.asp?sn=1208030013 [9].“凌力爾特新款LDO適用於可攜式電池供電系統”, http://www.mem.com.tw/article_content.asp?sn=1408250001 [10].“交大307實驗室 > Power Management ICs”, http://www.alab.ee.nctu.edu.tw/wpmu/ed307/about/power-management-ics/ [11].“兼顧低功耗/小尺寸設計 醫療穿戴裝置電源管理再進化”, https://www.2cm.com.tw/2cm/zh-tw/tech/40870914A4E04A8CAA7FC17D8BD2E6A8 [12].“便攜式設備中的電源效率”, http://218.14.151.180:82/www.eetrend.com/technology/100054500 [13].“亞德諾電源管理IC整合兩顆LDO更具彈性”, http://www.mem.com.tw/article_content.asp?sn=1107280006 [14].“選擇適當的超低靜態電流LDO穩壓器將電子系統能耗降至最低”, http://wenews.nownews.com/news/69/news_69758.htm [15].“新興ULP無線應用推動電源管理IC成長”, http://www.eettaiwan.com/ART_8800470009_675763_NT_9036996d.HTM?jumpto=view_welcomead_1418269648997 [16].“便攜式應用處理器設計中的電源管理”, http://www.autooo.net/utf8-classid85-id39216.html [17].“如何將CMOS LDO應用於便攜式產品中”, http://www.autooo.net/utf8-classid164-id91240.html [18].L. M. Lawrence and J. K. Antony, "Design and performance analysis of RF to DC converter for wireless sensors," 2017 2nd IEEE International Conference on Recent Trends in Electronics, Information & Communication Technology (RTEICT), Bangalore, 2017, pp. 1660-1665. [19].S. Orguc, H. S. Khurana, H. Lee and A. P. Chandrakasan, "0.3 V ultra-low power sensor interface for EMG," ESSCIRC 2017 - 43rd IEEE European Solid State Circuits Conference, Leuven, 2017, pp. 219-222. [20].S. Orguc, H. S. Khurana, K. M. Stankovic, H. S. Leel and A. P. Chandrakasan, "EMG-based Real Time Facial Gesture Recognition for Stress Monitoring," 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Honolulu, HI, 2018. [21].M. S. M. Siddiqui, S. K. Sharma, S. Porwal, K. B. Pannalal and S. Kumar, "A 10T SRAM Cell with Enhanced Read Sensing Margin and Weak NMOS Keeper for Large Signal Sensing to Improve VDDMIN," 2019 IEEE International Symposium on Circuits and Systems (ISCAS), Sapporo, Japan, 2019, pp. 1-5. [22].H. Tseng et al., "28nm 0.3V 1W2R Sub-Threshold FIFO Memory for Multi-Sensor IoT Applications," 2019 32nd IEEE International System-on-Chip Conference (SOCC), Singapore, 2019, pp. 248-253. [23].M. AL-Fayyad and K. Abugharbieh, "A 0.3V 15.6MHz 7T SRAM with Boosted Write and Read Worldlines," 2020 IEEE Canadian Conference on Electrical and Computer Engineering (CCECE), London, ON, Canada, 2020, pp. 1-4. [24].J. Du, Y. Hu, T. Siriburanon and R. B. Staszewski, "A 0.3V, 35% Tuning-Range, 60kHz 1/f3-Corner Digitally Controlled Oscillator with Vertically Integrated Switched Capacitor Banks Achieving FoMT of -199dB in 28-nm CMOS," 2019 IEEE Custom Integrated Circuits Conference (CICC), Austin, TX, USA, 2019, pp. 1-4. [25].T. Kulej, F. Khateb and M. Kumngern, "0.3-V Nanopower Biopotential Low-Pass Filter," in IEEE Access, vol. 8, pp. 119586-119593, 2020. [26].S. -H. Wang and C. -C. Hung, "A 0.3V 10b 3MS/s SAR ADC With Comparator Calibration and Kickback Noise Reduction for Biomedical Applications," in IEEE Transactions on Biomedical Circuits and Systems, vol. 14, no. 3, pp. 558-569, June 2020. [27].H. You, J. Yuan, W. Tang, S. Qiao and Y. Hei, "An Energy-Efficient Level Shifter for Ultra Low-Voltage Digital LSIs," in IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 67, no. 12, pp. 3357-3361, Dec. 2020. [28].W. B. Yang, Y. Y. Lin, Y. L. Lo, “Design of Fast-Locked Digitally Controlled Low-Dropout Regulator for Ultra-Low Voltage Input,” Circuits System Signal Process (2017), Vol. 36, Issue 12, pp. 5041-5061, Dec. 2017. [29].Y. H. Lee, S. Y. Peng, C. C. Chiu, A. C. H. Wu, K. H. Chen, Y. H. Lin, S. W. Wang, T. Y. Tsai, C. C. Huang and C. C. Lee, “A Low Quiescent Current Asynchronous Digital-LDO With PLL-Modulated Fast-DVS Power Management in 40 nm SoC for MIPS Performance Improvement,” IEEE Journal of Solid-State Circuits, vol. 48, pp. 1018-1030, Apr. 2013. [30].S. B. Nasir, S. Sen and A. Raychowdhury, "Switched-Mode-Control Based Hybrid LDO for Fine-Grain Power Management of Digital Load Circuits," in IEEE Journal of Solid-State Circuits, vol. 53, no. 2, pp. 569-581, Feb. 2018, doi: 10.1109/JSSC.2017.2767183. [31].K. Woo, T. Kim, S. Hwang, M. Kim and B. Yang, "A fast-transient digital LDO using a double edge-triggered comparator with a completion signal," 2018 International Conference on Electronics, Information, and Communication (ICEIC), Honolulu, HI, 2018, pp. 1-4. [32].Y. Huang, Y. Lu, F. Maloberti and R. P. Martins, "A Dual-Loop Digital LDO Regulator with Asynchronous-Flash Binary Coarse Tuning," 2018 IEEE International Symposium on Circuits and Systems (ISCAS), Florence, 2018, pp. 1-5, doi: 10.1109/ISCAS.2018.G8351669. [33].J. -H. Jung, S. -K. Hong and O. -K. Kwon, "A Fast Transient Response Hybrid LDO With Highly Accurate DC Voltage Using Countable Bidirectional Binary Search and Soft Swap Switching," in IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 67, no. 12, pp. 3272-3276, Dec. 2020, doi: 10.1109/TCSII.2020.2992056. [34].Y. Okuma, K. Ishida, Y. Ryu, X. Zhang, P. Chen, K. Watanabe, M. Takamiya and T. Sakurai, “0.5-V Input Digital Low-Dropout Regulator LDO with 98.7% Current Efficiency and 2.7-μA Quiescent Current in 65 nm CMOS,” IEICE Transactions, vol. E94-C, no. 6, pp. 938-944, Jun. 2011. [35].M. Onouchi et al., “A 1.39-V input fast-transient-response digital LDO composed of low-voltage MOS transistors in 40-nm CMOS process,” IEEE Asian Solid-State Circuits Conference 2011, pp. 37-40, Jun, 2011. [36].Y. L. Lo and W. Jen, “A 0.7V Input Output-Capacitor-Free Digitally Controlled Low-Dropout Regulator with High Current Efficiency in 0.35um CMOS Technology,” Microelectronics Journal (MEJ), pp, 756-765, Aug. 2012. [37].Mo Huang, Yan Lu, Sai-Weng Sin, Seng-Pan U and Rui P. Martins, “A Fully Integrated Digital LDO with Coarse-Fine-Tuning and Burst-Mode Operation,” IEEE Transactions on Circuits and Systems II, pp, 683-687, July. 2016. [38].F. Yang and P. K. T. Mok, "A Nanosecond-Transient Fine-Grained Digital LDO With Multi-Step Switching Scheme and Asynchronous Adaptive Pipeline Control," in IEEE Journal of Solid-State Circuits, vol. 52, no. 9, pp. 2463-2474, Sept. 2017, doi: 10.1109/JSSC.2017.2709311. [39].M. Rafiee and P. Amiri, “Digital LDO regulator with a current efficiency of 99.9% and low chip area ” 2017 IEEE 4th International Conference on Knowledge-Based Engineering and Innovation (KBEI), Tehran , pp. 0565-0569, 2017. [40].Y. Lee et al., “A 200-mA Digital Low Drop-Out Regulator With Coarse-Fine Dual Loop in Mobile Application Processor,” in IEEE Journal of Solid-State Circuits, vol. 52, no. 1, pp. 64-76, Jan. 2017. [41].M. A. Akram, W. Hong and I. Hwang, "Capacitorless Self-Clocked All-Digital Low-Dropout Regulator," in IEEE Journal of Solid-State Circuits, vol. 54, no. 1, pp. 266-276, Jan. 2019. [42].X. Liu et al., "14.7 A Modular Hybrid LDO with Fast Load-Transient Response and Programmable PSRR in 14nm CMOS Featuring Dynamic Clamp Tuning and Time-Constant Compensation," 2019 IEEE International Solid- State Circuits Conference - (ISSCC), San Francisco, CA, USA, 2019, pp. 234-236. [43].S. Kundu, M. Liu, S. Wen, R. Wong and C. H. Kim, "A Fully Integrated Digital LDO With Built-In Adaptive Sampling and Active Voltage Positioning Using a Beat-Frequency Quantizer," in IEEE Journal of Solid-State Circuits, vol. 54, no. 1, pp. 109-120, Jan. 2019. [44].Z. Yuan, S. Fan and L. Geng, "A 225-mA Binary Searching Digital LDO with Transient Enhancement," 2019 IEEE International Conference on Electron Devices and Solid-State Circuits (EDSSC), Xi'an, China, 2019, pp. 1-2. [45].J. Lee et al., "A Fast-Transient and High-Accuracy, Adaptive-Sampling Digital LDO Using a Single VCO-Based Edge-Racing Time Quantizer," in IEEE Solid-State Circuits Letters. [46].J. Liu and Nima Maghari, “A Fully-Synthesizable 0.6V Digital LDO with Dual-Loop Control using Digital Standard Cells,” 2016 14th IEEE international New Circuits and Systems Conference (NEWCAS), Oct. 2016. [47].A. De Marcellis, M. Faccio and E. Palange, "A 0.35μm CMOS 200kHz–2GHz Fully-Analogue Closed-Loop Circuit for Continuous-Time Clock Duty-Cycle Correction in Integrated Digital Systems," 2018 IEEE International Symposium on Circuits and Systems (ISCAS), Florence, 2018, pp. 1-5. [48].M. A. Akram, I. -C. Hwang and S. Ha, "Architectural Advancement of Digital Low-Dropout Regulators," in IEEE Access, vol. 8, pp. 137838-137855, 2020, doi: 10.1109/ACCESS.2020.3012467. [49].X. Wang and P. P. Mercier, "A Dynamically High-Impedance Charge-Pump-Based LDO With Digital-LDO-Like Properties Achieving a Sub-4-fs FoM," in IEEE Journal of Solid-State Circuits, vol. 55, no. 3, pp. 719-730, March 2020, doi: 10.1109/JSSC.2019.2960004. [50].J. Park, J. Hwang, J. Oh and D. Jeong, "32.4 A 0.4-to-1.2V 0.0057mm2 55fs-Transient-FoM Ring-Amplifier-Based Low-Dropout Regulator with Replica-Based PSR Enhancement," 2020 IEEE International Solid- State Circuits Conference - (ISSCC), San Francisco, CA, USA, 2020, pp. 492-494, doi: 10.1109/ISSCC19947.2020.9063147. [51].L. G. Salem, J. Warchall and P. P. Mercier, "A Successive Approximation Recursive Digital Low-Dropout Voltage Regulator With PD Compensation and Sub-LSB Duty Control," in IEEE Journal of Solid-State Circuits, vol. 53, no. 1, pp. 35-49, Jan. 2018. [52].J. Liu, T. Bryant, N. Maghari and J. Morroni, "A 90nA quiescent current 1.5V–5V 50mA asynchronous folding LDO using dual loop control," 2016 IEEE Asian Solid-State Circuits Conference (A-SSCC), Toyama, 2016, pp. 221-224. [53].W. Yang, Y. Lin and Y. Lo, “Analysis and design considerations of static CMOS logics under process, voltage and temperature variation in 90nm CMOS process,” 2014 International Conference on Information Science, Electronics and Electrical Engineering, Sapporo, pp. 1653-1656, 2014.
|