|
References
Abdel-Aty, Y. (2017). Exact likelihood inference for two populations from two-parameter exponential distributions under joint Type-II censoring. Communications in Statistics –Theory and Methods 46, 9026–9041.
Ahmad, K. E., Fakhry, M. E. and Jaheen, Z. F. (1997). Empirical Bayes estimation of P(Y < X) and characterizations of Burr-type X model. Journal of Statistical Planning and Inference 64, 297–308.
Ashour, S. K. and Abo-Kasem, O. E. (2014). Parameter estimation for two Weibull populations under joint Type II censored scheme. International Journal of Engineering 5, 31–36.
Balakrishnan, N. and Rasouli, A. (2008). Exact likelihood inference for two exponential populations under joint Type-II censoring. Computational Statistics & Data Analysis 52, 2725–2738.
Brownlee, J. (2021). Dual annealing optimization with Python. Machine Learning Mastery. https://machinelearningmastery.com/dual-annealing-optimization-with-python.
Celeux, G. and Diebolt, J. (1985). The SEM algorithm: a probabilistic teacher algorithm derived from the EM algorithm for the mixture problem. Computational Statistics Quarterly 2, 73–82.
Cariou, C. and Chehdi, K. (2008). Unsupervised texture segmentation/classification using 2-D autoregressive modeling and the stochastic expectation maximization algorithm. Pattern Recognition Letters 29, 905–917.
Constantine, K. and Karson, M. (1986). Estimation of P(Y < X) in the gamma case. Communications in Statistics – Simulation and Computation 15, 365–388.
Delignon, Y., Marzouki, A. and Pieczynski, W. (1997). Estimation of generalized mixtures and its application in image segmentation. IEEE Transactions on Image Processing 6, 1364–1375.
Diebolt, J. and Celeux, G. (1993). Asymptotic properties of a stochastic EM algorithm for estimating mixing proportions. Stochastic Models 9, 599– 613.
Diebolt, J. and Ip, E. H. S. (1996). Stochastic EM: Method and application. In Markov chain Monte Carlo in practice, pp. 259–273. London: Chapman & Hall/CRC.
Efron, B. and Tibshirani, R. J. (1994). An Introduction to the Bootstrap. New York: Chapman & Hall/CRC Press.
Kirkpatrick, S., Gelatt, Jr. C. D. and Vecchi, M.P. (1983). Optimization by simulated annealing. Science 220, 671–680.
Kundu, D. and Gupta, R. D. (2005). Estimation of P[Y < X] for generalized exponential distribution. Metrika 61, 291–308.
Kundu, D. and Gupta, R. D. (2006). Estimation of P[Y < X] for Weibull distributions. IEEE Transactions on Reliability 55, 270–280.
Lawless, J. F. (2003). Statistical Models and Methods for Lifetime Data. Second edition. New York: John Wiley.
Lin, C. T. and Ke, S. C. (2013). Estimation of P(Y < X) for location-scale distributions under joint progressively Type-II right censoring. Quality Technology & Quantitative Management, 10, 339–352.
Mondal, S. and Kundu, D. (2019a). Point and interval estimation of Weibull parameters based on joint progressively censored data. Sankhya B 81, 1–25.
Mondal, S. and Kundu, D. (2019b). A new two sample type-II progressive censoring scheme. Communications in Statistics – Theory and Methods, 48, 2602–2618.
Mondal, S. and Kundu, D. (2020) On the joint Type-II progressive censoring scheme. Communications in Statistics – Theory and Methods, 49, 958–976.
Nadar, M., Kizilaslan, F. and Papadopoulos, A. (2014). Classical and Bayesian estimation of P(Y < X) for Kumaraswamy’s distribution. Journal of Statistical Computation and Simulation, 84, 1505–1529.
Nelson, W. B. (1970). Statistical methods for accelerated lifetest data–the inverse power law model. General Electric Co. Technical Report 71-C-011, Schenectady, New York.
Nielsen, F. S. (2000). The stochastic EM algorithm: estimation and asymptotic results. Bernoulli 6, 457–489.
Parsi, S. and Bairamov, I. (2009). Expected values of the number of failures for two populations under joint Type-II progressive censoring. Computational Statistics & Data Analysis 53, 3560–3570.
Parsi, S., Ganjali, M. and Farsipour. N. S. (2011). Conditional maximum likelihood and interval estimation for two Weibull populations under joint Type-II progressive censoring. Communications in Statistics – Theory and Methods 40, 2117–2135.
Raqab, M. Z. and Kundu, D. (2005). Comparison of different estimators of P[Y < X] for a scaled Burr type X distribution. Communications in Statistics – Simulation and Computation 34, 465–483.
Rasouli, A. and Balakrishnan, N. (2010). Exact likelihood inference for two exponential populations under joint progressive Type-II censoring. Communications in Statistics – Theory and Methods 39, 2172–2191.
Shafay, A. R., Balakrishnan, N. and Aty, A. (2014). Bayesian inference based on a jointly type-II censored sample from two exponential populations. Journal of Statistical Computation and Simulation 84, 2427–2440.
Shao, J. (2003). Mathematical Statistics. Second edition. New York: Springer.
Surles, J. G. and Padgett, W. J. (2001). Inference for reliability and stress-strength for a scaled Burr type X distribution. Lifetime Data Analysis 7, 187–200.
Svensson, I. and Sjöstedt-de Luna, S. (2010). Asymptotic properties of a stochastic EM algorithm for mixtures with censored data. Journal of Statistical Planning and Inference 140, 111–127.
Szu, H. and Hartley, R. (1987). Fast simulated annealing. Physics Letters A 122, 157–162.
Tong, H. (1974). A note on the estimation of Pr{Y < X} in the exponential case. Technometrics 16, 625.
Tong, H. (1975). Errata. Technometrics 17, 395.
Tong, H. (1977). On the estimation of Pr{Y 6 X} for exponential families. IEEE Transactions on Reliability 26, 54–56.
Tregouet, D. A., Escolano, S., Tiret, L., Mallet, A. and Golmard, J. L. (2004). A new algorithm for haplotype-based association analysis: the stochastic-EM algorithm. Annals of Human Genetics 68, 165–177.
Xiang, Y., Gubian, S., Suomela, B. and Hoeng, J. (2013). Generalized simulated annealing for global optimization: the GenSA package. The R Journal 5, 13–28.
Xiang, Y., Sun, D. Y., Fan, W. and Gong, X. G. (1997). Generalized simulated annealing algorithm and its application to the Thomson model. Physics Letters A 233, 216–220.
Zhang, M., Ye, Z. and Xie, M. (2014). A stochastic EM algorithm for progressively censored data analysis. Quality Reliability Engineering International, 30, 711–722.
|