跳到主要內容

臺灣博碩士論文加值系統

(100.28.227.63) 您好!臺灣時間:2024/06/16 19:03
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:戴培如
研究生(外文):TAI, PEI-JU
論文名稱:孩童住家落塵中重金屬暴露、環境特徵與體內濃度之相關性研究
論文名稱(外文):Associations Of Heavy Metals Concentrations In Indoor Dust With Housing Environmental Characteristics And Biomarkers Among Children
指導教授:簡伶朱簡伶朱引用關係
指導教授(外文):CHIEN , LING-CHU
口試委員:趙馨席行正簡伶朱
口試委員(外文):CHAO, HSINGHIS, HSING-CHENGCHIEN , LING-CHU
口試日期:2021-07-13
學位類別:碩士
校院名稱:臺北醫學大學
系所名稱:公共衛生學系碩士班
學門:醫藥衛生學門
學類:公共衛生學類
論文種類:學術論文
論文出版年:2021
畢業學年度:109
語文別:中文
論文頁數:71
中文關鍵詞:室內落塵重金屬環境特徵體內濃度
外文關鍵詞:Indoor dustHeavy metalsEnvironmental characteristicsBiomarkers
相關次數:
  • 被引用被引用:1
  • 點閱點閱:266
  • 評分評分:
  • 下載下載:40
  • 收藏至我的研究室書目清單書目收藏:0
兒童處在發育階段,特別容易受到重金屬的毒性影響,待在室內的時間較長加上兒童的手口行為,更容易暴露到室內落塵中的重金屬。臺灣過去較多調查土壤和街道落塵的重金屬分布情形,而較少評估室內落塵中重金屬與孩童體內重金屬濃度的相關性。本研究目的在於探討室內外落塵、孩童體內重金屬暴露與家戶環境特徵之關聯性。收集臺灣北部六歲以下孩童家戶環境問卷、室內外落塵及母親與孩童的手指甲和頭髮,樣品經過微波消化,由冷蒸氣原子吸收光譜儀、火焰式原子吸收光譜儀和四極棒式感應耦合電漿質譜儀進行砷、鎘、汞、鉛和錳的全量分析,以富集因子評估家戶室外落塵的污染程度,並進行孩童健康風險評估。
本研究測得最高的室內外落塵濃度分別為鉛(103.2±131.4, 247.6±222.3 mg/kg),依序是砷(1.91±1.40, 4.48±1.23 mg/kg)、鎘(1.11±0.86, 0.87±0.50 mg/kg)、汞(0.81±1.84, 0.27±0.39 mg/kg )。而室內外落塵的重金屬之間呈顯著的正相關,表示它們之間可能有相似的暴露源,在室外落塵的富集因子中鉛、鎘最高,顯示有重度的人為污染程度,此外,結果顯示家戶樓層較低、屋齡較大、清掃頻率低、開窗戶通風之家戶的室內落塵重金濃度偏高。在手指甲和頭髮中,母親最高濃度是汞,孩童最高濃度則為鉛,且孩童的砷、鎘及鉛濃度高於母親。母親測得最高的手指甲和頭髮濃度為汞(0.29±0.24, 1.19±0.97 mg/kg),依序是鉛(0.26±0.15, 0.55±0.40 mg/kg )、砷(0.08±0.03, 0.02±0.01 mg/kg)、鎘(0.02±0.02, 0.02±0.01 mg/kg),孩童測得最高的手指甲和頭髮濃度為鉛(0.90±0.65, 1.40±1.35 mg/kg ),依序是汞(0.33±0.26, 1.18±0.89 mg/kg)、砷(0.14±0.06, 0.04±0.03 mg/kg)、鎘(0.06±0.05, 0.03±0.04 mg/kg)。< 250 μm的室內落塵重金屬濃度與孩童手指甲的重金屬濃度間具有顯著的相關性,孩童健康風險評估部分,暴露於室內落塵重金屬的總危害指數皆低於1,預期將不會對孩童造成顯著的危害,致癌風險則是砷最大,且超過致癌的風險,建議經常使用吸塵器或濕拖把來打掃家中,進門前將鞋子放置在門口,並保持室內環境衛生,將是減少6歲以下孩童經由攝入室內落塵導致重金屬暴露的有效方法。

Children in the early developmental stage are particularly susceptible to the harmful effects of heavy metals. Children staying indoors for long periods and their hand-to-mouth behavior are more likely to be exposed to heavy metals in indoor dust. In previous studies, concentrations of heavy metals in soil and street dust were investigated in Taiwan. There were few studies assessed the correlation of metals concentration of children with indoor dust. The purpose of this study is to explore the relationship between heavy metals exposure from indoor dust and housing environmental characteristics. This study recruited children under six years old in northern Taiwan during August 2019 to April 2021. A housing environmental characteristics questionnaires, indoor and outdoor dust, and mother’s and children’s fingernails and hair were collected during home visited. The outdoor, indoor dust, and biospecimen were digested before analysis. The total concentrations of arsenic (As), cadmium Cd), mercury (Hg), lead (Pb), and manganese (Mn) were analyzed by cold-vapor atomic absorption spectroscopy, flame atomic absorption spectrometer, and inductively coupled plasma mass spectrometry, respectively. To evaluate the outdoor dust contamination rate based on the enrichment factor (EF).
The highest indoor and outdoor dust concentrations was found in Pb (103.2±131.4, 247.6±222.3 mg/kg), followed by As (1.91±1.4, 4.48±1.23 mg/kg), Cd (1.11±0.86, 0.87±0.50 mg/kg), and Hg (0.81±1.84, 0.27±0.39 mg/kg), respectively. There was a significant positive correlation between the concentration of heavy metals in indoor and outdoor dust indicated which heavy metals were with similar exposure sources. The highest enrichment factors were observed in Pb and Cd in outdoor dust, which indicated that there was anthropogenic pollution. Our results demonstrated that households with lower floors (1-5th floors), older house age (> 40 years), low cleaning frequency (over 3 days/week), and ventilation with open windows have a higher concentration of heavy metal in indoor dust. The highest concentration of mother in fingernail and hair was Hg, the highest concentration of children was Pb. The concentration of As, Cd, and Pb in children were higher than those in mother. Hg (0.29±0.24, 1.19±0.97 mg/kg) showed the highest concentration in maternal fingernail and hair followed by, Pb (0.26±0.15, 0.55±0.40 mg/kg), As (0.08±0.03, 0.02±0.01 mg/kg), and Cd (0.02±0.02, 0.02±0.01 mg/kg). The highest concentration of fingernail and hair in children was Pb (0.90±0.65, 1.40±1.35 mg/kg), followed by Hg (0.33±0.26, 1.18±0.89 mg/kg), As (0.14±0.06, 0.04±0.03 mg/kg), and Cd (0.06±0.05, 0.03±0.04 mg/kg). There was a significant correlation between the concentration of heavy metals in indoor dust (< 250 μm) and children’s fingernail. The calculated hazard index (HI) value was lower than the acceptable HI value of 1, indicating non-cancer risk can be acceptable for most children exposure to indoor dust. The cancer risk of As exceeded the acceptable values and should be concern.
Hence, the findings of this study reveal regular clean house by the vacuum cleaner or wet mop and take off shoes before entering house to improve environmental hygiene in indoor. Also prevent the children under six years old exposure to heavy metals through indoor dust ingestion.
目錄
學位考試委員審定書 i
致謝 ii
摘要 iii
Abstract iv
目錄 vi
表目錄 ix
圖目錄 x
第一章 緒論 1
1.1研究背景與動機 1
1.2研究目的 2
第二章 文獻探討 3
2.1名詞定義 3
2.2待測元素之特性與其對人體的影響及危害 3
2.2.1砷 3
2.2.2鎘 5
2.2.3汞 5
2.2.4鉛 6
2.3元素的可能來源 7
2.4室內落塵與體內重金屬之相關性 9
2.5家庭特徵對室內落塵的影響及相關性 9
2.6落塵粒徑大小之相關研究 11
2.7生物樣本之選擇 11
2.8樣本之選擇 12
2.8.1街道落塵 12
2.8.2 室內落塵 12
第三章 研究方法與材料 13
3.1研究設計與流程 13
3.2研究地區與家戶選定 14
3.2.1研究地區介紹 14
3.2.2家戶選定 14
3.3問卷收集內容與樣本收集 14
3.3.1問卷內容 14
3.3.2街道落塵樣本地點選擇 15
3.3.3家戶室內落塵樣本地點選擇及採集 15
3.3.4家戶生物樣本之採集 15
3.4生物樣本、街道落塵及室內落塵之砷、鎘、汞、鉛與錳之重金屬分析 16
3.4.1樣本分析試劑與儀器設備 16
3.4.2生物樣本處理步驟與測定 17
3.4.3生物樣本分析步驟 17
3.4.4街道落塵及室內落塵樣本前步驟處理與測定 18
3.4.5落塵樣本分析步驟 20
3.5品質管制QA/QC 20
3.6室內外關係 25
3.7街道落塵之污染程度指標:富集因子 25
3.8風險評估 26
3.8.1非致癌風險:危害商數(HQ)及危害指數(HI) 27
3.8.2致癌風險 28
3.9統計方法 29
第四章 結果 31
4.1基本人口學變項 31
4.2家戶室內落塵影響之因子 34
4.3室內落塵與街道落塵中金屬濃度之分布情形 38
4.4室內外關係 38
4.5街道落塵之污染程度 39
4.6母親和孩童之檢體金屬濃度分布 40
4.7生物樣本和室內落塵中金屬濃度分布之相關性 44
4.8風險評估 47
4.8.1非致癌風險 47
4.8.2致癌風險 47
第五章 討論 49
5.1室內落塵與街道落塵中金屬濃度之分布情形 49
5.1.1家戶室內落塵濃度 49
5.1.2家戶室外落塵濃度 52
5.2街道落塵之污染程度探討 54
5.3家戶室內落塵影響之因子探討 54
5.4母親和孩童之檢體重金屬濃度分布 56
5.5生物樣本和室內落塵中重金屬濃度分布 57
5.6風險評估 58
5.6.1非致癌風險 58
5.6.2致癌風險 58
5.7研究限制 59
第六章 結論與建議 60
第七章 參考文獻 61

表目錄
表3- 1生物樣本之方法偵測極限、參考標準品濃度、變異係數及回收率 21
表3- 2落塵之方法偵測極限、變異係數、標準品濃度、實測濃度及回收率 23
表3- 3臺灣土壤參考背景值 26
表3- 4透過攝入途徑食入室內落塵之參數值 27
表3- 5攝入途徑的金屬致癌斜率(SF)及參考劑量(RfD) 29
表4- 1孩童基本人口學資料 31
表4- 2父母親基本人口學資料 32
表4- 3住家環境資料 33
表4- 4家戶室內落塵中重金屬與環境變項之間的差異 36
表4- 5家戶室內落塵中重金屬與房屋建造年限、屋齡、樓層高低、清理頻率之間的相關性 37
表4- 6家戶室內落塵中重金屬砷、鎘、汞及鉛與室外落塵之間的相關性 38
表4- 7室內外關係值 39
表4- 8各國富集因子的比較 39
表4- 9母親和孩童之頭髮重金屬濃度分布 41
表4- 10母親和孩童之指甲重金屬濃度分布 42
表4- 11母親與孩童體內重金屬砷(As)、鎘(Cd)、汞(Hg)、鉛(Pb)之間的相關性 43
表4- 12 60 mesh (<250 μm)室內落塵與孩童體內重金屬砷、鎘、汞、鉛之間的相關性 45
表4- 13 100 mesh (<150 μm)之室內落塵與孩童體內重金屬砷、鎘、汞、鉛之間的相關性 46
表4- 14通過攝入途徑對孩童的每日暴露劑量、危害商數(HQ)及危害指數(HI) 47
表4- 15透過攝入途徑對孩童的致癌風險 48
表5- 1室內落塵與各國研究之比較(mg/kg) 50
表5- 2室外落塵與各國研究之比較(mg/kg) 53

圖目錄
圖3- 1研究之架構圖 13
圖3- 2生物樣本處理步驟 18
圖3- 3落塵樣本前步驟處理 19
圖3- 4手指甲、頭髮之砷檢量線 21
圖3- 5手指甲、頭髮之鎘檢量線 22
圖3- 6手指甲、頭髮之汞檢量線 22
圖3- 7手指甲、頭髮之鉛檢量線 22
圖3- 8落塵之砷檢量線 23
圖3- 9落塵之鎘檢量線 23
圖3- 10落塵之汞檢量線 24
圖3- 11落塵之鉛檢量線 24
圖3- 12落塵之錳檢量線 24
圖4- 1母親和孩童的頭髮重金屬濃度分布 41
圖4- 2母親和孩童之指甲重金屬濃度分布 42

Al-Khashman, O. A. (2007). The investigation of metal concentrations in street dust samples in Aqaba city, Jordan. Environmental Geochemistry and Health, 29, 197-207.
Alahmr, F. O. M., Othman, M., Wahid, N. B. A., Halim, A. A., and Latif, M. T. (2012). Compositions of dust fall around semi-urban areas in Malaysia. Aerosol and Air Quality Research, 12, 629-642.
Albara, H., Ali, N., Eqani, S., Alhakamy, N., Nazar, E., Rashid, M., Shahzadb, K., and Ismail, I. (2020). Trace metals in different socioeconomic indoor residential settings, implications for human health via dust exposure. Ecotoxicology and Environmental Safety, 189, 109927.
Almeida, S. M., Pio, C. A., Freitas, M. C., Reis, M. A., and Trancoso, M. A. (2006). Source apportionment of atmospheric urban aerosol based on weekdays/weekend variability: evaluation of road re-suspended dust contribution. Atmospheric Environment, 40, 2058-2067.
Apostoli, P. (2002). Elements in environmental and occupational medicine. Journal of Chromatography B, 778, 63-97.
Arar, S., Al-Hunaiti, A., Masad, M. H., Maragkidou, A., Wraith, D., and Hussein, T. (2019). Elemental contamination in indoor floor dust and its correlation with pahs, fungi, and gram+/- bacteria. International Journal of Environmental Research and Public Health, 16, 3552.
ATSDR. (1999). Mercury - ToxFAQs™. Agency for Toxic Substances and Disease Registry.
ATSDR. (2007). Arsenic - ToxFAQs™. Agency for Toxic Substances and Disease Registry.
ATSDR. (2012). Cadmium - ToxFAQs™. Agency for Toxic Substances and Disease Registry.
ATSDR. (2020). Lead - ToxFAQs™. Agency for Toxic Substances and Disease Registry.
Bao, L., Wang, S., Sun, H., Huang, W., Wang, G., and Nan, Z. (2019). Assessment of source and health risk of metal(loid)s in indoor/outdoor dust of university dormitory in Lanzhou City, China. Environmental Science and Pollution Research, 26, 32333-32344.
Barbieri, E., Fontúrbel, F. E., Herbas, C., Barbieri, F. L., and Gardon, J. (2014). Indoor metallic pollution and children exposure in a mining city. Science of the Total Environment, 487, 13-19.
Bocca, B., Pino, A., Alimonti, A., and Forte, G. (2014). Toxic metals contained in cosmetics: a status report. Regulatory Toxicology and Pharmacology, 68, 447-467.
Braun, J. M., Kahn, R. S., Froehlich, T., Auinger, P., and Lanphear, B. P. (2006). Exposures to environmental toxicants and attention deficit hyperactivity disorder in U.S. children. Environmental Health Perspectives, 114, 1904-1909.
Cai, L. M., Wang, Q. S., Wen, H. H., Luo, J., and Wang, S. (2019). Heavy metals in agricultural soils from a typical township in Guangdong Province, China: occurrences and spatial distribution. Ecotoxicology and Environmental Safety, 168, 184-191.
Cai, L., Xu, Z., Bao, P., He, M., Dou, L., Chen, L., Zhou, Y., and Zhu, Y. G. (2015). Multivariate and geostatistical analyses of the spatial distribution and source of arsenic and heavy metals in the agricultural soils in Shunde, Southeast China. Journal of Geochemical Exploration, 148, 189-195.
Calabrese, E. J., and Stanek, E. J. (1991). A guide to interpreting soil ingestion studies. 2. qualitative and quantitative evidence of soil ingestion. Chemical Speciation and Bioavailability, 3, 55-63.
Carneiro, M. F. H, Grotto, D., Batista, B. L., Rhoden, C. R., and Barbosa, F. (2011). Background values for essential and toxic elements in children's nails and correlation with hair levels. Biological Trace Element Research, 144, 339-350.
Carpi, A., and Chen, Y. F. (2001). Gaseous elemental mercury as an indoor air pollutant. Environmental Science and Technology, 35, 4170-4173.
Chang, X., and Li, Y. X. (2020). Lead distribution in urban street dust and the relationship with mining, gross domestic product GDP and transportation and health risk assessment. Environmental Pollution, 262, 114307.
Charlesworth, S., Everett, M., McCarthy, R., Ordóñez, A., and de Miguel, E. (2003). A comparative study of heavy metal concentration and distribution in deposited street dusts in a large and a small urban area: Birmingham and Coventry, West Midlands, UK. Environment International, 29, 563-573.
Chattopadhyay, G., Lin, K. C. P., and Feitz, A. J. (2003). Household dust metal levels in the Sydney metropolitan area. Environmental Research, 93, 301-307.
Chen, H., Lu, X., and Li, L. Y. (2014). Spatial distribution and risk assessment of metals in dust based on samples from nursery and primary schools of Xi'an, China. Atmospheric Environment, 88, 172-182.
Chen, T., Liu, X., Zhu, M., Zhao, K., Wu, J., Xu, J., and Huang, P. (2008). Identification of trace element sources and associated risk assessment in vegetable soils of the urban–rural transitional area of Hangzhou, China. Environmental Pollution, 151, 67-78.
Cheng, H., Li, M., Zhao, C., Li, K., Peng, M., Qin, A., and Cheng, X. (2014). Overview of trace metals in the urban soil of 31 metropolises in China. Journal of Geochemical Exploration, 139, 31-52.
Cheng, Z., Chen, L. J., Li, H. H., Lin, J. Q., Yang, Z. B., Yang, Y. X., Xu, X. X., Xian, J. R., Shao, J. R., and Zhu, X. M. (2018). Characteristics and health risk assessment of heavy metals exposure via household dust from urban area in Chengdu, China. Science of the Total Environment, 619-620, 621-629.
Chien, L. C., Tsou, M. C., Hsi, H. C., Beamer, P., Bradham, K., Hseu, Z. Y., Jien, S. H., Jiang, C. B., Dang, W., and Özkaynak, H. (2017). Soil ingestion rates for children under 3 years old in Taiwan. Journal of Exposure Science and Environmental Epidemiology, 27, 33-40.
Chojnacka, K., Górecka, H., Chojnacki, A., and Górecki, H. (2005). Inter-element interactions in human hair. Environmental Toxicology and Pharmacology, 20, 368-374.
Ciesielski, T., Bellinger, D. C., Schwartz, J., Hauser, R., and Wright, R. O. (2013). Associations between cadmium exposure and neurocognitive test scores in a cross-sectional study of US adults. Environmental Health: A Global Access Science Source, 12, 13-13.
Darus, F. M., Nasir, R. A., Sumari, S. M., Ismail, Z. S., and Omar, N. A. (2012). Heavy metals composition of indoor dust in nursery schools building. Procedia - Social and Behavioral Sciences, 38, 169-175.
Dixon, S. L., Gaitens, J. M., Jacobs, D. E., Strauss, W., Nagaraja, J., Pivetz, T., Wilson, J.W., and Ashley, P. J. (2009). Exposure of U.S. children to residential dust lead, 1999–2004: ii. the contribution of lead-contaminated dust to children’s blood lead levels. Environmental Health Perspectives, 117, 468-474.
Doyi, I. N. Y., Isley, C. F., Soltani, N. S., and Taylor, M. P. (2019). Human exposure and risk associated with trace element concentrations in indoor dust from Australian homes. Environment International, 133, 105125.
Duong, T. T. T., and Lee, B. K. (2011). Determining contamination level of heavy metals in road dust from busy traffic areas with different characteristics. Journal of Environmental Management, 92, 554-562.
Fitzgerald, W. F., Engstrom, D. R., Mason, R. P., and Nater, E. A. (1998). The case for atmospheric mercury contamination in remote areas. Environmental Science and Technology, 32, 1-7.
Glorennec, P., Lucas, J. P., Mandin, C., and Le Bot, B. (2012). French children's exposure to metals via ingestion of indoor dust, outdoor playground dust and soil: contamination data. Environment International, 45, 129-134.
Gobeille, A. K., Morland, K. B., Bopp, R. F., Godbold, J. H., and Landrigan, P. J. (2006). Body burdens of mercury in lower Hudson River area anglers. Environmental Research, 101, 205-212.
Gohain, M., and Deka, P. (2020). Trace metals in indoor dust from a university campus in Northeast India: implication for health risk. Environmental Monitoring and Assessment, 192, 741.
Guney, M., and Zagury, G. J. (2013). Contamination by ten harmful elements in toys and children’s jewelry bought on the north american market. Environmental Science and Technology, 47, 5921-5930.
Harb, M. K., Ebqa’ai, M., Al-rashidi, A., Alaziqi, B. H., Al Rashdi, M. S., and Ibrahim, B. (2015). Investigation of selected heavy metals in street and house dust from Al-Qunfudah, Kingdom of Saudi Arabia. Environmental Earth Sciences, 74, 1755-1763.
Hassan, S. K. M. (2012). Metal concentrations and distribution in the household, stairs and entryway dust of some Egyptian homes. Atmospheric Environment, 54, 207-215.
Hejami, A. A., Davis, M., Prete, D., Lu, J., and Wang, S. (2020). Heavy metals in indoor settled dusts in Toronto, Canada. Science of the Total Environment, 703, 134895.
Horowitz, H. M., Jacob, D. J., Amos, H. M., Streets, D. G., and Sunderland, E. M. (2014). Historical mercury releases from commercial products: global environmental implications. Environmental Science and Technology, 48, 10242-10250.
Hu, X., Zhang, Y., Luo, J., Wang, T., Lian, H., and Ding, Z. (2011). Bioaccessibility and health risk of arsenic, mercury and other metals in urban street dusts from a mega-city, Nanjing, China. Environmental Pollution, 159, 1215-1221.
Huang, M., Wang, W., Chan, C. Y., Cheung, K. C., Man, Y. B., Wang, X., and Wong, M. H. (2014). Contamination and risk assessment (based on bioaccessibility via ingestion and inhalation) of metal(loid)s in outdoor and indoor particles from urban centers of Guangzhou, China. Science of the Total Environment, 479-480, 117-124.
Huo, X., Peng, L., Xu, X., Zheng, L., Qiu, B., Qi, Z., Zhang, B., Han, D., and Piao, Z. (2007). Elevated blood lead levels of children in Guiyu, an electronic waste recycling town in China. Environmental Health Perspectives, 115, 1113-1117.
Were, F. H., Njue, W., Murungi, J., and Wanjau, R. (2008). Use of human nails as bio-indicators of heavy metals environmental exposure among school age children in Kenya. Science of the Total Environment, 393, 376-384.
Hwang, Y. H., Lin, Y. S., Lin, C. Y., and Wang, I. J. (2014). Incense burning at home and the blood lead level of preschoolers in Taiwan. Environmental Science and Pollution Research, 21, 13480-13487.
Ishak, I., Rosli, F. D., Mohamed, J., and Mohd Ismail, M. F. (2015). Comparison of digestion methods for the determination of trace elements and heavy metals in human hair and nails. The Malaysian Journal of Medical Sciences, 22, 11-20.
Iwegbue, C. M. A., Bassey, F. I., Tesi, G. O., Onyeloni, S. O., Obi, G., and Martincigh, B. S. (2015). Safety evaluation of metal exposure from commonly used moisturizing and skin-lightening creams in Nigeria. Regulatory Toxicology and Pharmacology, 71, 484-490.
Jadoon, W. A., Abdel-Dayem, S. M. M. A., Saqib, Z., Takeda, K., Sakugawa, H., Hussain, M., Shah, G. M., Rehman, W., and Syed, J. H. (2021). Heavy metals in urban dusts from Alexandria and Kafr El-Sheikh, Egypt: implications for human health. Environmental Science and Pollution Research, 28, 2007-2018.
Jaffar, S. T. A., Luo, F., Ye, R., Younas, H., Hu, X. F., and Chen, L. Z. (2017). The extent of heavy metal pollution and their potential health risk in topsoils of the massively urbanized district of Shanghai. Archives of Environmental Contamination and Toxicology, 73, 362-376.
Karagas, M. R., Stukel, T. A., Morris, J. S., Tosteson, T. D., Weiss, J. E., Spencer, S. K., and Greenberg, E. R. (2001). Skin cancer risk in relation to toenail arsenic concentrations in a US population-based case-control study. American Journal of Epidemiology, 153, 559-565.
Kasumba, J., Hettick, B., French, A., Wickliffe, J. K., Lichtveld, M. Y., Hawkins, W. B., Alies, V. S. M., and Klein, D. (2016). Analysis of pesticides and toxic heavy metals contained in mosquito coils. Bulletin of Environmental Contamination and Toxicology, 97, 614-618.
Khademi, H., Gabarrón, M., Abbaspour, A., Martínez-Martínez, S., Faz, A., and Acosta, J. A. (2019). Environmental impact assessment of industrial activities on heavy metals distribution in street dust and soil. Chemosphere, 217, 695-705.
Kim, K. W., Myung, J. H., Ahn, J. S., and Chon, H. T. (1998). Heavy metal contamination in dusts and stream sediments in the Taejon area, Korea. Journal of Geochemical Exploration, 64, 409-419.
Kolakkandi, V., Sharma, B., Rana, A., Dey, S., Rawat, P., and Sarkar, S. (2020). Spatially resolved distribution, sources and health risks of heavy metals in size-fractionated road dust from 57 sites across megacity Kolkata, India. Science of the Total Environment, 705, 135805.
Korfali, S. I., Sabra, R., Jurdi, M., and Taleb, R. I. (2013). Assessment of toxic metals and phthalates in children’s toys and clays. Archives of Environmental Contamination and Toxicology, 65, 368-381.
Kurt-Karakus, P. B. (2012). Determination of heavy metals in indoor dust from Istanbul, Turkey: estimation of the health risk. Environment International, 50, 47-55.
Lanphear, B. P., Hornung, R., Khoury, J., Yolton, K., Baghurst, P., Bellinger, D. C., Canfield,R. L., Dietrich, K. N., and Roberts, R. (2005). Low-level environmental lead exposure and children’s intellectual function: an international pooled analysis. Environmental Health Perspectives, 113, 894-899.
Lanzerstorfer, C. (2018). Heavy metals in the finest size fractions of road-deposited sediments. Environmental Pollution, 239, 522-531.
Lau, W. K. Y., Liang, P., Man, Y. B., Chung, S. S., and Wong, M. H. (2014). Human health risk assessment based on trace metals in suspended air particulates, surface dust, and floor dust from e-waste recycling workshops in Hong Kong, China. Environmental Science and Pollution Research, 21, 3813-3825.
Lekouch, N., Sedki, A., Bouhouch, S., Nejmeddine, A., Pineau, A., and Pihan, J. C. (1999). Trace elements in children's hair, as related exposure in wastewater spreading field of Marrakesh (Morocco). Science of the Total Environment, 243-244, 323-328.
Levallois, P., St-Laurent, J., Gauvin, D., Courteau, M., Prévost, M., Campagna, C., Lemieux, F., Nour, S., D'Amour, M., and Rasmussen, P. E. (2014). The impact of drinking water, indoor dust and paint on blood lead levels of children aged 1–5 years in Montréal (Québec, Canada). Journal of Exposure Science and Environmental Epidemiology, 24, 185-191.
Li, P., Feng, X., and Qiu, G. (2010). Methylmercury exposure and health effects from rice and fish consumption: a review. International Journal of Environmental Research and Public Health, 7, 2666-2691.
Li, Y., Pi, L., Hu, W., Chen, M., Luo, Y., Li, Z., Su, S., Gan, Z., and Ding, S. (2016). Concentrations and health risk assessment of metal(loid)s in indoor dust from two typical cities of China. Environmental Science and Pollution Research, 23, 9082-9092.
Lin, T. C., Yang, C. R., and Chang, F. H. (2007). Burning characteristics and emission products related to metallic content in incense. Journal of Hazardous Materials, 140, 165-172.
Liu, S., Hammond, S. K., and Rojas-Cheatham, A. (2013). Concentrations and potential health risks of metals in lip products. Environmental Health Perspectives, 121, 705-710.
Lu, X., Zhang, X., Li, L. Y., and Chen, H. (2014). Assessment of metals pollution and health risk in dust from nursery schools in Xi’an, China. Environmental Research, 128, 27-34.
Luo, R., Zhuo, X., and Ma, D. (2014). Determination of 33 elements in scalp hair samples from inhabitants of a mountain village of Tonglu city, China. Ecotoxicology and Environmental Safety, 104, 215-219.
McBride, M. B., and Spiers, G. (2001). Trace element content of selected fertilizers and dairy manures as determined by ICP–MS. Communications in Soil Science and Plant Analysis, 32, 139-156.
Melymuk, L., Demirtepe, H., and Jílková, S. R. (2020). Indoor dust and associated chemical exposures. Current Opinion in Environmental Science and Health, 15, 1-6.
Menezes-Filho, J. A., Paes, C. R., Pontes, A. N. M. D. C., Moreira, J. C., Sarcinelli, P. N., and Mergler, D. (2009). High levels of hair manganese in children living in the vicinity of a ferro-manganese alloy production plant. NeuroToxicology, 30, 1207-1213.
Meza-Figueroa, D., De la O-Villanueva, M., and De la Parra, M. L. (2007). Heavy metal distribution in dust from elementary schools in Hermosillo, Sonora, México. Atmospheric Environment, 41, 276-288.
Miekeley, N., Dias Carneiro, M. T. W., and Porto da Silveira, C. L. (1998). How reliable are human hair reference intervals for trace elements? Science of the Total Environment, 218, 9-17.
Mielke, H. W., Gonzales, C. R., Powell, E., Jartun, M., and Mielke, P. W. (2007). Nonlinear association between soil lead and blood lead of children in metropolitan New Orleans, Louisiana: 2000–2005. Science of the Total Environment, 388, 43-53.
Ngo, H. T. T., Watchalayann, P., Nguyen, D. B., Doan, H. N., and Liang, L. (2021). Environmental health risk assessment of heavy metal exposure among children living in an informal e-waste processing village in Viet Nam. Science of the Total Environment, 763, 142982.
Ohno, T., Sakamoto, M., Kurosawa, T., Dakeishi, M., Iwata, T., and Murata, K. (2007). Total mercury levels in hair, toenail, and urine among women free from occupational exposure and their relations to renal tubular function. Environmental Research, 103, 191-197.
Özden, T. A., Gökçay, G., Ertem, H. V., Süoğlu, Ö. D., Kılıç, A., Sökücü, S., and Saner, G. (2007). Elevated hair levels of cadmium and lead in school children exposed to smoking and in highways near schools. Clinical Biochemistry, 40, 52-56.
Pan, L., Ma, J., Hu, Y., Su, B., Fang, G., Wang, Y., Wang, Z., Wang, L., and Xiang, B. (2016). Assessments of levels, potential ecological risk, and human health risk of heavy metals in the soils from a typical county in Shanxi Province, China. Environmental Science and Pollution Research, 23, 19330-19340.
Pan, Y., and Li, H. (2015). Trace elements in scalp hair from potentially exposed individuals in the vicinity of the Bayan Obo mine in Baotou, China. Environmental Toxicology and Pharmacology, 40, 678-685.
Pereira, R., Ribeiro, R., and Gonçalves, F. (2004). Scalp hair analysis as a tool in assessing human exposure to heavy metals (S. Domingos mine, Portugal). Science of the Total Environment, 327, 81-92.
Qu, C. S., Ma, Z. W., Yang, J., Liu, Y., Bi, J., and Huang, L. (2012). Human exposure pathways of heavy metals in a lead-zinc mining area, Jiangsu Province, China. PloS one, 7, e46793-e46793.
Rafiee, A., Delgado-Saborit, J. M., Sly, P. D., Quémerais, B., Hashemi, F., Akbari, S., and Hoseini, M. (2020). Environmental chronic exposure to metals and effects on attention and executive function in the general population. Science of the Total Environment, 705, 135911.
Rashed, M. N. (2008). Total and extractable heavy metals in indoor, outdoor and street dust from Aswan City, Egypt. CLEAN – Soil, Air, Water, 36, 850-857.
Rasmussen, P. E., Levesque, C., Chénier, M., and Gardner, H. D. (2018). Contribution of metals in resuspended dust to indoor and personal inhalation exposures: relationships between PM10 and settled dust. Building and Environment, 143, 513-522.
Rasmussen, P. E., Levesque, C., Chénier, M., Gardner, H. D., Jones-Otazo, H., and Petrovic, S. (2013). Canadian house dust study: population-based concentrations, loads and loading rates of arsenic, cadmium, chromium, copper, nickel, lead, and zinc inside urban homes. Science of the Total Environment, 443, 520-529.
Rasmussen, P. E., Subramanian, K. S., and Jessiman, B. J. (2001). A multi-element profile of house dust in relation to exterior dust and soils in the city of Ottawa, Canada. Science of the Total Environment, 267, 125-140.
Riaz, A., Khan, S., Shah, M. T., Li, G., Gul, N., and Shamshad, I. (2016). Mercury contamination in the blood, urine, hair and nails of the gold washers and its human health risk during extraction of placer gold along Gilgit, Hunza and Indus rivers in Gilgit-Baltistan, Pakistan. Environmental Technology and Innovation, 5, 22-29.
Roberts, J., Wallace, L., Camann, D., Dickey, P., Gilbert, S., Lewis, R., and Takaro, T. (2009). Monitoring and Reducing Exposure of Infants to Pollutants in House Dust. Reviews of Environmental Contamination and Toxicology, 201, 1-39.
Salama, A. K. (2016). Assessment of metals in cosmetics commonly used in Saudi Arabia. Environmental Monitoring and Assessment, 188, 553.
Shi, T., and Wang, Y. (2021). Heavy metals in indoor dust: spatial distribution, influencing factors, and potential health risks. Science of the Total Environment, 755, 142367.
Smolders, R., Schramm, K. W., Nickmilder, M., and Schoeters, G. (2009). Applicability of non-invasively collected matrices for human biomonitoring. Environmental Health, 8, 8.
Soetrisno, F. N., and Delgado-Saborit, J. M. (2020). Chronic exposure to heavy metals from informal e-waste recycling plants and children's attention, executive function and academic performance. Science of the Total Environment, 717, 137099.
Streets, D. G., Horowitz, H. M., Jacob, D. J., Lu, Z., Levin, L., Ter Schure, A. F. H., and Sunderland, E. M. (2017). Total mercury released to the environment by human activities. Environmental Science and Technology, 51, 5969-5977.
Sun, G., Feng, X., Yang, C., Zhang, L., Yin, R., Li, Z., Bi, X., and Wu, Y. (2020). Levels, sources, isotope signatures, and health risks of mercury in street dust across China. Journal of Hazardous Materials, 392, 122276.
Tanner, P. A., Ma, H. L., and Yu, P. K. N. (2008). Fingerprinting metals in urban street dust of Beijing, Shanghai, and Hong Kong. Environmental Science and Technology, 42, 7111-7117.
Thornton, I., Davies, D. J., Watt, J. M., and Quinn, M. J. (1990). Lead exposure in young children from dust and soil in the United Kingdom. Environmental Health Perspectives, 89, 55-60.
Tong, S. T. Y., and Lam, K. C. (2000). Home sweet home? A case study of household dust contamination in Hong Kong. Science of the Total Environment, 256, 115-123.
Turner, A. (2011). Oral bioaccessibility of trace metals in household dust: a review. Environmental Geochemistry and Health, 33, 331-341.
Turner, A., and Lewis, M. (2018). Lead and other heavy metals in soils impacted by exterior legacy paint in residential areas of south west England. Science of the Total Environment, 619-620, 1206-1213.
Turner, A., and Simmonds, L. (2006). Elemental concentrations and metal bioaccessibility in UK household dust. Science of the Total Environment, 371, 74-81.
US EPA. (1997). Exposure Factors Handbook. United States Environmental Protection Agency.
US EPA. (2004). Users’ guide and background technical document for USEPA region 9’s preliminary remediation goals (PRG) table. United States Environmental Protection Agency.
US EPA. (2021). IRIS Assessments. United States Environmental Protection Agency. https://iris.epa.gov/AtoZ/?list_type=alpha
Viaene, M. K., Masschelein, R., Leenders, J., De Groof, M., Swerts, L. J. V. C., and Roels, H. A. (2000). Neurobehavioural effects of occupational exposure to cadmium: a cross sectional epidemiological study. Occupational and Environmental Medicine, 57, 19.
Wang, J., Li, S., Cui, X., Li, H., Qian, X., Wang, C., and Sun, Y. (2016). Bioaccessibility, sources and health risk assessment of trace metals in urban park dust in Nanjing, Southeast China. Ecotoxicology and Environmental Safety, 128, 161-170.
Wang, T., Fu, J., Wang, Y., Liao, C., Tao, Y., and Jiang, G. (2009). Use of scalp hair as indicator of human exposure to heavy metals in an electronic waste recycling area. Environmental Pollution, 157, 2445-2451.
Wang, W., Wu, F., Zheng, J., and Wong, M. H. (2013). Risk assessments of PAHs and Hg exposure via settled house dust and street dust, linking with their correlations in human hair. Journal of Hazardous Materials, 263, 627-637.
Wei, B., Jiang, F., Li, X., and Mu, S. (2008). Heavy metal induced ecological risk in the city of Urumqi, NW China. Environmental Monitoring and Assessment, 160, 33.
Weidenhamer, J. D., Miller, J., Guinn, D., and Pearson, J. (2011). Bioavailability of cadmium in inexpensive jewelry. Environmental Health Perspectives, 119, 1029-1033.
WHO. (2020). Agents Classified by the IARC Monographs. World Health Organization. https://monographs.iarc.fr/agents-classified-by-the-iarc/
Wiwanitkit, V., Suwansaksri, J., and Soogarun, S. (2008). High blood lead level among the Mahayana Buddhist monk: a note for environmental implication. Stochastic Environmental Research and Risk Assessment, 22, 805-807.
Yongming, H., Peixuan, D., Junji, C., and Posmentier, E. S. (2006). Multivariate analysis of heavy metal contamination in urban dusts of Xi'an, Central China. Science of the Total Environment, 355, 176-186.
Yu, W., Liu, R., Xu, F., Men, C., and Shen, Z. (2016). Identifications and seasonal variations of sources of polycyclic aromatic hydrocarbons (PAHs) in the Yangtze River Estuary, China. Marine Pollution Bulletin, 104, 347-354.
Zhang, D., Lee, D. J., and Pan, X. (2014). Potentially harmful metals and metalloids in urban street dusts of Urumqi City: comparison with Taipei City. Journal of the Taiwan Institute of Chemical Engineers, 45, 2447-2450.
Zhao, X., Li, Z., Tao, Y., Wang, D., Huang, J., Qiao, F., Lei, L., and Xing, Q. (2020). Distribution characteristics, source appointment, and health risk assessment of Cd exposure via household dust in six cities of China. Building and Environment, 172, 106728.
Zheng, L., Tang, Q., Fan, J., Huang, X., Jiang, C., and Cheng, H. (2015). Distribution and health risk assessment of mercury in urban street dust from coal energy dominant Huainan City, China. Environmental Science and Pollution Research, 22, 9316-9322.
Zhou, L., Liu, G., Shen, M., Hu, R., Sun, M., and Liu, Y. (2019). Characteristics and health risk assessment of heavy metals in indoor dust from different functional areas in Hefei, China. Environmental Pollution, 251, 839-849.
Zhu, Y., Wang, Y., Meng, F., Li, L., Wu, S., Mei, X., Li, H., Zhang, G., and Wu, D. (2018). Distribution of metal and metalloid elements in human scalp hair in Taiyuan, China. Ecotoxicology and Environmental Safety, 148, 538-545.
中華民國內政部(2021)。縣市人口性比例及人口密度。https://www.ris.gov.tw/app/portal/346
中華民國統計資訊網(2019)。我國家庭所得分配情形。https://www.stat.gov.tw/ct.asp?xItem=968&ctNode=513&mp=4
行政院環境保護署(2000)。土壤污染評估技術規範之研究計畫報告。 計畫編號:EPA-89-UIE1-03-101 .衛適密廢物減量科技公司編著。
行政院環境保護署(2005)。我國首次大規模居民頭髮中汞含量調查。https://enews.epa.gov.tw/Page/3B3C62C78849F32F/f6c9e5c7-eefb-4862-a9fa-d3fdbec52d8c
行政院環境保護署(2006)。土壤及地下水污染場址健康風險評估評析方法及撰寫指引。
行政院環境保護署(2015) 。土壤及地下水重金屬汙染調查作業參考指引。計畫編號:EPA-25-III-05B-2015-003。
行政院環境保護署(2017)。完備幼童風險暴露參數及驗證工作專案計畫。計畫編號:EPA-104-GA01-03-A138。行政院環境保護署委託研究。
行政院環境保護署(2020)。全國土壤品質及背景特性調查與管理計畫期末報告。計畫編號:EPA034108029。行政院環境保護署委託研究。
莊弘毅(1999)。鉛對兒童健康的危害。http://www.kmuh.org.tw/www/kmcj/data/8812/4368.htm
國家環境毒物研究中心(2013a)。汞 Mercury。http://nehrc.nhri.org.tw/toxic/toxfaq_detail_mobile.php?id=69
國家環境毒物研究中心(2013b)。砷 Arsenic。 http://nehrc.nhri.org.tw/toxic/toxfaq_detail_mobile.php?id=24
國家環境毒物研究中心(2013c)。鎘 Cadmium。http://nehrc.nhri.org.tw/toxic/toxfaq_detail_mobile.php?id=37
國家環境毒物研究中心(2019)。鉛 Lead。http://nehrc.nhri.org.tw/toxic/toxfaq_detail_mobile.php?id=65
臺北市統計資料庫(2020)。每千人汽車與機車車輛. https://statdb.dbas.gov.taipei/pxweb2007-tp/Dialog/varval.asp?ma=TP00077YA&ti=%BE%F7%B0%CA%A8%AE%BD%F8&path=/PXfile-target/CountyStatistics&lang=9&strList=L
羅錦泉(2016a)。職業性汞中毒認定參考指引。勞動部職業安全衛生署委託。
羅錦泉(2016b)。職業性砷中毒認定參考指引。勞動部職業安全衛生署委託。

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊