跳到主要內容

臺灣博碩士論文加值系統

(44.201.92.114) 您好!臺灣時間:2023/03/31 10:29
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:邱昱太
研究生(外文):CHIOU, YU-TAI
論文名稱:通過新型無機奈米團簇再生琺瑯質
論文名稱(外文):Regeneration of Tooth Enamel by Novel Inorganic Nanoclusters
指導教授:郭聰榮陳志華陳志華引用關係
指導教授(外文):KUO, TSUNG-RONGCHEN, CHIH-HWA
口試委員:陳志華楊正昌郭聰榮王迪彥鄭財木
口試委員(外文):CHEN, CHIH-HWAYANG, JEN-CHANGKUO, TSUNG-RONGWANG,DI-YANCHENG,TSAI-MU
口試日期:2021-06-18
學位類別:碩士
校院名稱:臺北醫學大學
系所名稱:奈米醫學工程研究所碩士班
學門:生命科學學門
學類:生物訊息學類
論文種類:學術論文
論文出版年:2021
畢業學年度:109
語文別:中文
論文頁數:50
中文關鍵詞:琺瑯質無機團簇
外文關鍵詞:Enamelinorganic cluster
相關次數:
  • 被引用被引用:0
  • 點閱點閱:86
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
琺瑯質的再生是一個非常難的挑戰,因為它具有複雜的結構而且還沒被人為複製出來。在本研究中,我們使用了一種由鈣磷酸離子簇所組成的新型無機材料,他可以創建前體層來誘導琺瑯質的生長來達到修復琺瑯質的表面。所以我們的目的是使用這種可以去除小有機物來穩定的材料無機團簇來修復琺瑯質。在這項研究中,我們使用維式硬度來檢查我們蝕刻琺瑯質後的硬度,我們發現硬度值低於未蝕刻的硬度值。所以,我們證明了我們可以模擬自然界中琺瑯質的損壞情況。所以我們會一半的琺瑯質表面塗上指甲油來保護表面不被收蝕刻,剩下的區域用無機團簇進行修復。我們發現硬度值已增加到我們蝕刻琺瑯之前的值,此結果表明我們的材料可以再生琺瑯質的機械性能。最後,結果也證明我們的材料凝膠狀的無機團簇水溶液可以成功修復琺瑯質表面,並且新修復區域的特徵具有與天然琺瑯質幾乎相同的硬度特性。


The regeneration of enamel is a very difficult challenge because its complex structure has not been artificially copied. In this research we used a new designed material consisting of calcium phosphate ion clusters (CPIC) which can be used to create a precursor layer to induce the growth of enamel to repaired the enamel surface. So the aim is to us the material CPICs inorganic cluster that can stabilize by removable small organic substance to repaired the enamel, which can repair enamel with the original structural complexity.In this research we used the micro-hardness to check the hardness of the enamel after we etched the enamel we discovered that the value of the hardness was lower than without etched. So, we proved that we can simulation the damaged for the enamel in the nature. For comparison, half of the enamel surface was covered with the nail varnish, and the remaining area was used for repair by using CPICs. We than discover the value had increased to the value before we etching the enamel. The hardness result shows that our cluster can regenerated the mechanical property of enamel. Finally, the result proved that our material gel-like CPICs solution can successfully repaired the enamel surface and the feature of the new repair region have almost the same hardness property that the nature enamel.
Table of content
致謝 2
Abstract 3
摘要 4
1.Abbreviations and Chemicals 5
1-1Abbreviation of Chemicals 5
1-2Chemicals 5
2.Introduction 6
2.1 Application of Biomineralization 6
2.2 The characteristics and the structure of human enamel 7
2.3 Demineralization and remineralization in the mouth 9
2.4 Introduction of CPICs (Calcium Phosphate Ion Cluster) and application 10
2.4-1 The discovered of Biomineralization for the hard tissue 10
2.4-2 The characteristic of ACP (Amorphous Calcium Phosphate) 10
2.4-3 Biogenic ACP (Amorphous Calcium Phosphate) 11
2.4-4 Posner’s clusters 11
2.4-5 ACP (Amorphous Calcium Phosphate) using in the dental treatment 11
2.4-6 The reason of choosing CPICs 12
2.4-7 The mechanism how CPIC works 13
2.5 Common detection methods 14
2.5-1 Transmission electron microscope (TEM) 14
2.5-2 Scanning electron microscopy (SEM) 15
2.5-3 Micro-hardness test 17
2.5-4 Fourier-transform infrared spectroscopy (FTIR) 18
2.5-6 Ultraviolet–visible spectroscopy (UV-Vis) 20
3.Materials and Methods 21
3.1 Synthesis of CPICs 21
3.2 Teeth sample preparation 22
3.2-1 Fix and cut the teeth 22
3.2-2 Grill and polish the teeth to create the enamel window 23
3.2-3 Etching the enamel window of tooth sample 24
3.2-4 Tooth sample preparation and treatment 25
4.Current results 26
4.1 Characterization of Calcium Phosphate Ion Cluster (CPICs) 26
4.1-1 UV-vis spectra of CPICs 26
4.1-2 TEM image of CPICs 27
4.1-3 EDX (Energy-dispersive X-ray spectroscopy) of CPICs 29
4.1-4 FTIR spectroscopy of CPICs 30
4.2 Tooth sample test result 33
4.2-1 Micro-hardness test result 33
4.2-2 SEM image after etching the enamel window 36
4.2-3 SEM image of repairing the enamel by CPIC material 39
Discussion 44
Conclusion 45
List of references 45





1. Miller, N. "Ten Cate's oral histology." British Dental Journal 213.4 (2012): 194-194.
2. Bowes, Joane Hylton, and Margaret Mary Murray. "The chemical composition of teeth: The composition of human enamel and dentine." Biochemical Journal 29.12 (1935): 2721.
3. Olszta, Matthew J., et al. "Bone structure and formation: A new perspective." Materials Science and Engineering: R: Reports 58.3-5 (2007): 77-116.
4. Sun, Shengtong, Denis Gebauer, and Helmut Cölfen. "A general strategy for colloidal stable ultrasmall amorphous mineral clusters in organic solvents." Chemical science 8.2 (2017): 1400-1405.
5. White, S. N., et al. "Biological organization of hydroxyapatite crystallites into a fibrous continuum toughens and controls anisotropy in human enamel." Journal of dental research 80.1 (2001): 321-326.
6. Shao, Changyu, et al. "Repair of tooth enamel by a biomimetic mineralization frontier ensuring epitaxial growth." Science advances 5.8 (2019): eaaw9569.
7. Jones, Robert S., et al. "Remineralization of in vitro dental caries assessed with polarization-sensitive optical coherence tomography." Journal of biomedical optics 11.1 (2006): 014016.
8. Al-Obaidi, Rand. In vitro enamel subsurface lesions: characterization and treatment. Diss. Université Montpellier, 2018.
9. Cao, Ying, et al. "Agarose hydrogel biomimetic mineralization model for the regeneration of enamel prismlike tissue." ACS applied materials & interfaces 6.1 (2014): 410-420.
10. Mahamid, Julia, et al. "Amorphous calcium phosphate is a major component of the forming fin bones of zebrafish: Indications for an amorphous precursor phase." Proceedings of the National Academy of Sciences 105.35 (2008): 12748-12753.
11. Nassif, Nadine, et al. "Amorphous layer around aragonite platelets in nacre." Proceedings of the National Academy of Sciences 102.36 (2005): 12653-12655.
12. DeVol, Ross T., et al. "Nanoscale transforming mineral phases in fresh nacre." Journal of the American Chemical Society 137.41 (2015): 13325-13333.
13. Mass, Tali, et al. "Amorphous calcium carbonate particles form coral skeletons." Proceedings of the National Academy of Sciences 114.37 (2017): E7670-E7678.
14. Weiner, Stephen, and H. A. Lowenstam. "Organization of extracellularly mineralized tissues: A comparative study of biological crystal growt." Critical Reviews in Biochemistry 20.4 (1986): 365-408.
15. Beniash, Elia, et al. "Transient amorphous calcium phosphate in forming enamel." Journal of structural biology 166.2 (2009): 133-143.
16. Habraken, Wouter JEM, et al. "Ion-association complexes unite classical and non-classical theories for the biomimetic nucleation of calcium phosphate." Nature communications 4.1 (2013): 1-12.
17. Li, Li, et al. "Repair of enamel by using hydroxyapatite nanoparticles as the building blocks." Journal of Materials Chemistry 18.34 (2008): 4079-4084.
18. Nancollas, G. H., and M. S. Mohan. "The growth of hydroxyapatite crystals." Archives of oral biology 15.8 (1970): 731-745.
19. Li, Li, et al. "Bio‐inspired enamel repair via Glu‐directed assembly of apatite nanoparticles: An approach to biomaterials with optimal characteristics." Advanced Materials 23.40 (2011): 4695-4701.
20. Perez, A., et al. "Cluster assembled materials: a novel class of nanostructured solids with original structures and properties." Journal of Physics D: Applied Physics 30.5 (1997): 709.
21. Du, Lin-Wei, et al. "Structure of clusters and formation of amorphous calcium phosphate and hydroxyapatite: from the perspective of coordination chemistry." Crystal growth & design 13.7 (2013): 3103-3109.
22. Kanzaki, Noriko, et al. "Calcium phosphate clusters." Biomaterials 22.21 (2001): 2921-2929.
23. Roohani, Iman, Soshan Cheong, and Anna Wang. "How to Build a Bone?-Hydroxyapatite or Posners Clusters as Bone Minerals." Open Ceramics (2021): 100092.
24. Yin, Xilin, and Malcolm J. Stott. "Biological calcium phosphates and Posner’s cluster." The Journal of Chemical Physics 118.8 (2003): 3717-3723.
25. Frederick, Robert. "The Hardest Tissue: New imaging reveals the hidden structure that makes enamel in human teeth so tough." American Scientist 108.1 (2020): 14-16.
26. Lacruz, Rodrigo S., et al. "Dental enamel formation and implications for oral health and disease." Physiological reviews 97.3 (2017): 939-993.
27. Simmer, J. P., and A. G. Fincham. "Molecular mechanisms of dental enamel formation." Critical Reviews in Oral Biology & Medicine 6.2 (1995): 84-108.
28. Beniash, Elia, et al. "The hidden structure of human enamel." Nature communications 10.1 (2019): 1-13.
29. Weiner, Steve, et al. "Overview of the amorphous precursor phase strategy in biomineralization." Frontiers of Materials Science in China 3.2 (2009): 104.
30. Xie, Baoquan, et al. "Tracking amorphous precursor formation and transformation during induction stages of nucleation." Crystal growth & design 14.4 (2014): 1659-1665.
31. Zhang, Tian Hui, and Xiang Yang Liu. "How does a transient amorphous precursor template crystallization." Journal of the American Chemical Society 129.44 (2007): 13520-13526.
32. Uskoković, Vuk. "Biomineralization and biomimicry of tooth enamel." Non-metallic biomaterials for tooth repair and replacement (2013): 20-44.
33. Shin, Nah-Young, et al. "Amelogenin phosphorylation regulates tooth enamel formation by stabilizing a transient amorphous mineral precursor." Journal of Biological Chemistry 295.7 (2020): 1943-1959.
34. Sekine, Yurina, et al. "Calcium-deficient hydroxyapatite as a potential sorbent for strontium." Scientific reports 7.1 (2017): 1-8.



電子全文 電子全文(網際網路公開日期:20260706)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top