跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.175) 您好!臺灣時間:2024/12/10 16:17
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:廖怡婷
研究生(外文):LIAO, YI-TING
論文名稱:利用結構生物學探討DNA擬態蛋白SAUGI之潛在生物醫學和生化應用研究
論文名稱(外文):A structure-based investigation on the potential biomedical and biochemical applications of the DNA mimic protein SAUGI
指導教授:王皓青張雯張雯引用關係
指導教授(外文):WANG, HAO-CHINGCHANG, WEN
口試委員:詹迺立徐駿森蕭育源王皓青張哲菖
口試委員(外文):CHAN, NEI-LIHSU, CHUN-HUAHSIAO, YU-YUANWANG, HAO-CHINGCHANG, CHE-CHANG
口試日期:2020-12-11
學位類別:博士
校院名稱:臺北醫學大學
系所名稱:轉譯醫學博士學位學程
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2021
畢業學年度:109
語文別:英文
論文頁數:93
中文關鍵詞:DNA 擬態蛋白質尿嘧啶-DNA 糖基化酵素金黃色葡萄球菌尿嘧啶-DNA 糖基化酵素抑制劑人類皰疹病毒
外文關鍵詞:DNA mimic proteinUracil-DNA glycosylaseStaphylococcus aureus Uracil glycosylase inhibitorHuman herpesvirus
相關次數:
  • 被引用被引用:0
  • 點閱點閱:172
  • 評分評分:
  • 下載下載:1
  • 收藏至我的研究室書目清單書目收藏:0
Uracil-DNA glycosylase (UDG) 為一種保守DNA修復蛋白,對於皰疹病毒 DNA
之複製非常重要; 因此,它被認為是一個良好抗病毒標的。在先前的研究中,SAUGI(Staphylococcus aureus uracil-DNA glycosylase inhibitor) 已被發現為一具有抑制四個不同物種之 UDG 活性的 DNA 擬態蛋白質,並且對於兩種人類皰疹病毒(人類皰疹病毒第四型; EBV 和單純皰疹病毒; HSV ) 之 UDG 活性,表現出很好的抑制效果。本篇論文中我們發現 SAUGI 對於三種人類皰疹病毒之 UDG 表現出截然不同的結合強度和抑制能力。特別的是,雖然 γ 皰疹病毒 UDG( EBVUDG 和 KSHVUDG ) 胺基酸序列相似度高達 60%,但 SAUGI 對於此兩種 UDG 的結合能力和抑制效果有很大差異。我們進而利用 X-ray crystallography 方式解析 SAUGI/EBVUDG NΔ24 和 SAUGI/KSHVUDG NΔ18 之複合體結構。結構分析中顯示,與 SAUGI/EBVUDG NΔ24 複合體相比, SAUGI 與 KSHVUDG 之亮胺酸環延伸區域 (leucine loop extension)中參與 KSHVUDG 活性之部分重要胺基酸沒有交互作用; 此外,我們也發現 KSHVUDG 與SAUGI β sheet 1之結合區域 (binding interface) 相較於 EBVUDG帶有較多之負電荷。其可以解釋為何 SAUGI 對於 KSHVUDG 表現出較低之結合和抑制能力。而在 SAUGI/EBVUDG NΔ24 複合體結構中, 相較於其他 SAUGI/UDG 複合體之結構,我們也發現 SAUGI 與 EBVUDG 之亮胺酸環 (leucine loop) 上胺基酸有額外之交互作用,其可以解釋為何 SAUGI 對 EBVUDG 有較好之結合親和力(binding affinity)。藉由這些結構資訊,我們進一步利用蛋白質工程調整 SAUGI 活性,使其對人類 UDG 無抑制效果但仍同時保有對 EBVUDG 活性之抑制能力。在這篇研究中,我們的結果不僅以分子基礎解析 SAUGI 為何對於兩種皰疹病毒 UDG 具有不同之交互作用,同時也為開發可用作生物醫學應用之人類皰疹病毒 UDG 抑制劑衍生物提供了框架。

Uracil-DNA glycosylases (UDGs) are conserved DNA-repair proteins that play critical roles in viral DNA efficient replication and epigenetic maintenance in herpesviruses. They have been implicated as good antiviral targets. Previously, Staphylococcus aureus SAUGI was identified as a DNA mimic protein that targets UDG from four different species, and that represents the greatest inhibitory activity on the UDGs from two human herpesviruses (Epstein–Barr virus; EBV and Herpes simplex virus; HSV). In this study, we show that SAUGI displays strikingly differential effects on two γ-herpesvirus UDGs (EBVUDG and KSHVUDG) catalytic activity. We further performed two complex structures of SAUGI/EBVUDG NΔ24 and SAUGI/KSHVUDG NΔ18. Analysis of the structures reveals that SAUGI only partially interacts with the critical residues that are responsible for the catalytic activity of KSHVUDG as compared to SAUGI/EBVUDG NΔ24 complex. In addition, we found that the leucine loop extension of EBVUDG provides an additional contact region with SAUGI not seen in other SAUGI/UDG complexes could explain the strong binding capacity of SAUGI to EBVUDG. Furthermore, we also modulate the inhibitory effect of SAUGI on human UDG and EBVUDG based on this structural information. Thus, our results not only provide the molecular basis showing that the differential interactions of SAUGI on two γ-herpesvirus UDGs but also a framework for the development of derivatives that could serve as human herpesvirus UDGs inhibitors for biomedical applications.
Verification letter from oral examination committee
List of Tables VI
List of Figures VII
Abbreviations X
Chinese abstract 1
Abstract 3

Chapter 1 Introduction 5
1.1 DNA mimic protein 5
1.2 Recent studies of DNA mimic protein S. aureus SAUGI 6
1.3 Herpesvirus UDGs and their importance in viral replication 7
1.4 The potential application of SAUGI in anti EBV-related diseases 9
1.5 Specific aim 10

Chapter 2 Experimental Procedures 12
2.1 SAUGI and the UDGs preparation and expression 12
2.2 Gel filtration analysis 13
2.3 Inhibitory effect analysis 13
2.4 His-pulldown assay 15
2.5 Microscale thermophoresis (MST) analysis 15
2.6 Crystallization and structure determination 17

Chapter 3 Results and discussion 19
3.1 Investigation of the interactions between SAUGI and herpesvirus UDGs 19
3.2 The differential inhibition effects of SAUGI on human herpesvirus UDGs 20
3.3 Differential binding affinity between SAUGI and herpesvirus UDGs 21
3.4 Overall crystal structures 22
3.5 The binding interface between SAUGI and EBV and KSHV UDGs 24
3.6 Structural difference between SAUGI in complex with EBVUDG NΔ24 and KSHVUDG NΔ18 26
3.7 Other differential interactions between SAUGI/EBVUDG NΔ24 and SAUGI/KSHVUDG NΔ18 complexes 28
3.8 Protein engineering to modify the differential inhibition effects of SAUGI on EBV and human UDGs 29
3.9 In silico approach and inhibitory effect assay of SAUGI Q52K to EBVUDG and human UDG 30

Chapter 4 Conclusion 32

References 34
Tables 44
Table 1. The 22 previously known DNA mimic proteins 45
Table 2. Binding affinity of SAUGI to SAUDG, human UDG, HSVUDG and EBVUDG determined by BIACORE 47
Table 3. Human herpesviruses and associated disease 48
Table 4. MST analysis of the binding affinity between SAUGI and three herpesvirus UDGs 49
Table 5. X-ray data collection and refinement statistics for SAUGI/KSHVUDG NΔ18 and SAUGI/EBVUDG NΔ24 complexes 50
Table 6. The hydrogen bonding and van der Waals (VDW) interactions between SAUGI and conserved EBVUDG motifs 51
Table 7. The hydrogen bonding and van der Waals (VDW) interactions between SAUGI and conserved KSHVUDG motifs 52
Table 8. Design of interface mutants on SAUGI 54

Figures 55
Figure 1. An example of a DNA mimic protein blocks its target DNA binding protein from DNA by direct competition 56
Figure 2. Multiple sequence alignment of HSVUDG, Human UDG, HCMVUDG, EBVUDG and KSHVUDG 57
Figure 3. Purification of SAUGI/EBVUDG NΔ24 and SAUGI/KSHVUDG NΔ18 protein complexes 58
Figure 4. Photography of SAUGI/EBVUDG NΔ24 and SAUGI/KSHVUDG NΔ18 crystals and X-ray diffraction pattern 60
Figure 5. Characterizes the interactions between SAUGI and three human herpesvirus UDGs by His pull-down assay 62
Figure 6. The gel filtration analysis demonstrating the interactions of SAUGI to HSV, EBV, HCMV and KSHV UDGs 64
Figure 7. The inhibitory effect analysis of SAUGI on EBVUDG NΔ24 66
Figure 8. The inhibitory effect analysis of SAUGI on KSHVUDG NΔ18 67
Figure 9. The inhibitory effect analysis of SAUGI on HCMVUDG 68
Figure 10. Sequence and structural comparison of herpesvirus and human UDGs 69
Figure 11. Determination of the binding constants between SAUGI and three human herpesvirus UDGs using microscale thermophoresis (MST) 72
Figure 12. Crystal complex structures of SAUGI/KSHVUDG NΔ18 and SAUGI/EBVUDG NΔ24 73
Figure 13. Structural comparison of complex structures of SAUGI/EBVUDG NΔ24, SAUGI/Human UDG, SAUGI/HSVUDG and SAUGI/KSHVUDG NΔ18 75
Figure 14. Comparison of shape and charge distribution of SAUGI in complex with KSHVUDG NΔ18 and EBVUDG NΔ24 complexes 77
Figure 15. Structural details of the interaction between SAUGI β sheet 1 and both UDGs 79
Figure 16. Structure comparison of the leucine loop in SAUGI/EBVUDG NΔ24 and SAUGI/KSHVUDG NΔ18 80
Figure 17. Sequence alignment and structure comparison of leucine loop in SAUGI/EBVUDG NΔ24 and SAUGI/KSHVUDG NΔ18 81
Figure 18. SAUGI targets the Gln212 residue of EBVUDG, but not the Gln209 of KSHVUDG 83
Figure 19. Structure details of leucine loop extension in SAUGI/EBVUDG NΔ24 and SAUGI/KSHVUDG NΔ18 84
Figure 20. Other differential interactions between SAUGI and the leucine loop extensions on EBVUDG and KSHVUDG 85
Figure 21. Differential interactions between SAUGI and the leucine loop extensions on EBVUDG and KSHVUDG 87
Figure 22. The conserved interaction regions between SAUGI/EBVUDG NΔ24 and SAUGI/Human UDG 88
Figure 23. Comparison of the SAUGI/SAUDG (PDB entry 3WDG), SAUGI/Human UDG (PDB entry 5AYR), SAUGI/HSVUDG (PDB entry 5AYS) and SAUGI/EBVUDG NΔ24 structures 89
Figure 24. Differential interaction region between SAUGI/EBVUDG NΔ24 and SAUGI/Human UDG 90
Figure 25. Investigation of the inhibitory effects of SAUGI Q52K on human UDG and EBVUDG by UDG activity assay 91

Appendices 92

1.Asensio, J. L., Perez-Lago, L., Lazaro, J. M., Gonzalez, C., Serrano-Heras, G., & Salas, M. (2011). Novel dimeric structure of phage ϕ29-encoded protein p56: insights into uracil-DNA glycosylase inhibition. Nucleic Acids Research, 39(22), 9779-9788.
2.Banos-Sanz, J. I., Mojardín, L., Sanz-Aparicio, J., Lazaro, J. M., Villar, L., Serrano-Heras, G., ... & Salas, M. (2013). Crystal structure and functional insights into uracil-DNA glycosylase inhibition by phage ϕ29 DNA mimic protein p56. Nucleic Acids Research, 41(13), 6761-6773.
3.Bellamy, S. R., Krusong, K., & Baldwin, G. S. (2007). A rapid reaction analysis of uracil DNA glycosylase indicates an active mechanism of base flipping. Nucleic Acids Research, 35(5), 1478-1487.
4.Bochkareva, E., Kaustov, L., Ayed, A., Yi, G. S., Lu, Y., Pineda-Lucena, A., ... & Bochkarev, A. (2005). Single-stranded DNA mimicry in the p53 transactivation domain interaction with replication protein A. Proceedings of the National Academy of Sciences, 102(43), 15412-15417.
5.Bogani, F., Corredeira, I., Fernandez, V., Sattler, U., Rutvisuttinunt, W., Defais, M., & Boehmer, P. E. (2010). Association between the herpes simplex virus-1 DNA polymerase and uracil DNA glycosylase. Journal of Biological Chemistry, 285(36), 27664-27672.
6.Courcelle, C. T., Courcelle, J., Prichard, M. N., & Mocarski, E. S. (2001). Requirement for uracil-DNA glycosylase during the transition to late-phase cytomegalovirus DNA replication. Journal of Virology, 75(16), 7592-7601.
7.Cowtan, K. (2006). The Buccaneer software for automated model building. 1. Tracing protein chains. Acta Crystallographica Section D: Biological Crystallography, 62(9), 1002-1011.
8.Dryden, D. T. (2006). DNA mimicry by proteins and the control of enzymatic activity on DNA. Trends in Biotechnology, 24(8), 378-382.
9.Earl, C., Bagnéris, C., Zeman, K., Cole, A., Barrett, T., & Savva, R. (2018). A structurally conserved motif in γ-herpesvirus uracil-DNA glycosylases elicits duplex nucleotide-flipping. Nucleic Acids Research, 46(8), 4286-4300.
10.Emsley, P., Lohkamp, B., Scott, W. G., & Cowtan, K. (2010). Features and development of Coot. Acta Crystallographica Section D: Biological Crystallography, 66(4), 486-501.
11.Géoui, T., Buisson, M., Tarbouriech, N., & Burmeister, W. P. (2007). New insights on the role of the γ-herpesvirus uracil-DNA glycosylase leucine loop revealed by the structure of the Epstein-Barr virus enzyme in complex with an inhibitor protein. Journal of Molecular Biology, 366(1), 117-131
12.Guenzel, C. A., Hérate, C., Le Rouzic, E., Maidou-Peindara, P., Sadler, H. A., Rouyez, M. C., & Benichou, S. (2012). Recruitment of the nuclear form of uracil DNA glycosylase into virus particles participates in the full infectivity of HIV-1. Journal of Virology, 86(5), 2533-2544.
13.Guo, T. W., Bartesaghi, A., Yang, H., Falconieri, V., Rao, P., Merk, A., ... & Patel, D. J. (2017). Cryo-EM structures reveal mechanism and inhibition of DNA targeting by a CRISPR-Cas surveillance complex. Cell, 171(2), 414-426.
14.Ho, C. H., Wang, H. C., Ko, T. P., Chang, Y. C., & Wang, A. H. J. (2014). The T4 phage DNA mimic protein Arn inhibits the DNA binding activity of the bacterial histone-like protein H-NS. Journal of Biological Chemistry, 289(39), 27046-27054.
15.Hong, S., Ka, D., Yoon, S. J., Suh, N., Jeong, M., Suh, J. Y., & Bae, E. (2018). CRISPR RNA and anti-CRISPR protein binding to the Xanthomonas albilineans Csy1-Csy2 heterodimer in the type IF CRISPR-Cas system. Journal of Biological Chemistry, 293(8), 2744-2754.
16.Jacobs, A. L., & Schär, P. (2012). DNA glycosylases: in DNA repair and beyond. Chromosoma, 121(1), 1-20.
17.Karu, A. E., Sakaki, Y., Echols, H., & Linn, S. (1975). The gamma protein specified by bacteriophage gamma. Structure and inhibitory activity for the recBC enzyme of Escherichia coli. Journal of Biological Chemistry, 250(18), 7377-7387.
18.Khrapunov, S., Cheng, H., Hegde, S., Blanchard, J., & Brenowitz, M. (2008). Solution structure and refolding of the Mycobacterium tuberculosis pentapeptide repeat protein MfpA. Journal of Biological Chemistry, 283(52), 36290-36299.
19.Lee, C. H., Shih, Y. P., Ho, M. R., & Wang, A. H. (2018). The C-terminal D/E-rich domain of MBD3 is a putative Z-DNA mimic that competes for Zα DNA-binding activity. Nucleic Acids Research, 46(22), 11806-11821.
20.Liebschner, D., Afonine, P. V., Baker, M. L., Bunkóczi, G., Chen, V. B., Croll, T. I., & Moriarty, N. W. (2019). Macromolecular structure determination using X-rays, neutrons and electrons: recent developments in Phenix. Acta Crystallographica Section D: Structural Biology, 75(10), 861-877.
21.Liu, D., Ishima, R., Tong, K. I., Bagby, S., Kokubo, T., Muhandiram, D. R., ... & Ikura, M. (1998). Solution structure of a TBP–TAFII230 complex: protein mimicry of the minor groove surface of the TATA box unwound by TBP. Cell, 94(5), 573-583.
22.McMahon, S. A., Roberts, G. A., Johnson, K. A., Cooper, L. P., Liu, H., White, J. H., ... & Blakely, G. W. (2009). Extensive DNA mimicry by the ArdA anti-restriction protein and its role in the spread of antibiotic resistance. Nucleic Acids Research, 37(15), 4887-4897.
23.Muro-Pastor, A. M., Herrero, A., & Flores, E. (1997). The nuiA gene from Anabaena sp. encoding an inhibitor of the NucA sugar-non-specific nuclease. Journal of Molecular Biology, 268(3), 589-598.
24.Moe, E., Assefa, N. G., Leiros, I., Torseth, K., Smalås, A. O., & Willassen, N. P. (2015). Reduced hydrophobicity of the minor groove intercalation loop is critical for efficient catalysis by cold adapted uracil-DNA N-glycosylase from Atlantic cod. Journal of Thermodynamics & Catalysis, 6(3), 1.
25.Nishiyama, Y. U. K. I. H. I. R. O. (1996). Herpesvirus genes: molecular basis of viral replication and pathogenicity. Nagoya journal of medical science, 59, 107-120.
26.N. Schormann, R. Ricciardi, D. Chattopadhyay, Uracil‐DNA glycosylases—Structural and functional perspectives on an essential family of DNA repair enzymes, Protein Sci 23(12) (2014) 1667-1685.
27.Otwinowski, Z., & Minor, W. (1997). [20] Processing of X-ray diffraction data collected in oscillation mode. In Methods in Enzymology (Vol. 276, pp. 307-326). Academic press.
28.Parikh, S. S., Mol, C. D., Slupphaug, G., Bharati, S., Krokan, H. E., & Tainer, J. A. (1998). Base excision repair initiation revealed by crystal structures and binding kinetics of human uracil‐DNA glycosylase with DNA. The EMBO Journal, 17(17), 5214-5226.
29.Parikh, S. S., Putnam, C. D., & Tainer, J. A. (2000). Lessons learned from structural results on uracil-DNA glycosylase. Mutation Research / DNA Repair, 460(3-4), 183-199.
30.Parsons, L. M., Yeh, D. C., & Orban, J. (2004). Solution structure of the highly acidic protein HI1450 from Haemophilus influenzae, a putative double‐stranded DNA mimic. Proteins: Structure, Function, and Bioinformatics, 54(3), 375-383.
31.Paulose-Murphy, M., Ha, N. K., Xiang, C., Chen, Y., Gillim, L., Yarchoan, R., ... & Zeichner, S. (2001). Transcription program of human herpesvirus 8 (Kaposi's sarcoma-associated herpesvirus). Journal of Virology, 75(10), 4843-4853.
32.Putnam, C. D., Shroyer, M. J. N., Lundquist, A. J., Mol, C. D., Arvai, A. S., Mosbaugh, D. W., & Tainer, J. A. (1999). Protein mimicry of DNA from crystal structures of the uracil-DNA glycosylase inhibitor protein and its complex with Escherichia coli uracil-DNA glycosylase. Journal of Molecular Biology, 287(2), 331-346.
33.Putnam, C. D., & Tainer, J. A. (2005). Protein mimicry of DNA and pathway regulation. DNA Repair, 4(12), 1410-1420.
34.Pyles, R. B., & Thompson, R. L. (1994). Evidence that the herpes simplex virus type 1 uracil DNA glycosylase is required for efficient viral replication and latency in the murine nervous system. Journal of Virology, 68(8), 4963-4972.
35.Rauch, B. J., Silvis, M. R., Hultquist, J. F., Waters, C. S., McGregor, M. J., Krogan, N. J., & Bondy-Denomy, J. (2017). Inhibition of CRISPR-Cas9 with bacteriophage proteins. Cell, 168(1-2), 150-158.
36.Saff, E. B., & Kuijlaars, A. B. (1997). Distributing many points on a sphere. The Mathematical Intelligencer, 19(1), 5-11.
37.Savva, R., & Pearl, L. H. (1995). Nucleotide mimicry in the crystal structure of the uracil-DNA glycosylase–uracil glycosylase inhibitor protein complex. Nature Structural Biology, 2(9), 752-757.
38.Schormann, N., Grigorian, A., Samal, A., Krishnan, R., DeLucas, L., & Chattopadhyay, D. (2007). Crystal structure of vaccinia virus uracil-DNA glycosylase reveals dimeric assembly. BMC Structural Biology, 7(1), 45.
39.Schormann, N., Ricciardi, R., & Chattopadhyay, D. (2014). Uracil‐DNA glycosylases—Structural and functional perspectives on an essential family of DNA repair enzymes. Protein Science, 23(12), 1667-1685.
40.Schormann, N., Banerjee, S., Ricciardi, R., & Chattopadhyay, D. (2015). Binding of undamaged double stranded DNA to vaccinia virus uracil-DNA glycosylase. BMC Structural Biology, 15(1), 10.
41.Serrano-Heras, G., Ruiz-Maso, J. A., del Solar, G., Espinosa, M., Bravo, A., & Salas, M. (2007). Protein p56 from the Bacillus subtilis phage ϕ29 inhibits DNA-binding ability of uracil-DNA glycosylase. Nucleic Acids Research, 35(16), 5393-5401.
42.Sire, J., Quérat, G., Esnault, C., & Priet, S. (2008). Uracil within DNA: an actor of antiviral immunity. Retrovirology, 5(1), 45.
43.Slupphaug, G., Mol, C. D., Kavli, B., Arvai, A. S., Krokan, H. E., & Tainer, J. A. (1996). A nucleotide-flipping mechanism from the structure of human uracil–DNA glycosylase bound to DNA. Nature, 384(6604), 87-92.
44.Stivers, J. T., Pankiewicz, K. W., & Watanabe, K. A. (1999). Kinetic mechanism of damage site recognition and uracil flipping by Escherichia coli uracil DNA glycosylase. Biochemistry, 38(3), 952-963.
45.Su, M. T., Liu, I. H., Wu, C. W., Chang, S. M., Tsai, C. H., Yang, P. W., ... & Chen, M. R. (2014). Uracil DNA glycosylase BKRF3 contributes to Epstein-Barr virus DNA replication through physical interactions with proteins in viral DNA replication complex. Journal of Virology, 88(16), 8883-8899.
46.Tucker, A. T., Bobay, B. G., Banse, A. V., Olson, A. L., Soderblom, E. J., Moseley, M. A., ... & Cavanagh, J. (2014). A DNA mimic: The structure and mechanism of action for the anti-repressor protein AbbA. Journal of Molecular Biology, 426(9), 1911-1924.
47.Vagin, A. A., Steiner, R. A., Lebedev, A. A., Potterton, L., McNicholas, S., Long, F., & Murshudov, G. N. (2004). REFMAC5 dictionary: organization of prior chemical knowledge and guidelines for its use. Acta Crystallographica Section D: Biological Crystallography, 60(12), 2184-2195.
48.Vagin, A., & Teplyakov, A. (1997). MOLREP: an automated program for molecular replacement. Journal of Applied Crystallography, 30(6), 1022-1025.
49.Walkinshaw, M. D., Taylor, P., Sturrock, S. S., Atanasiu, C., Berge, T., Henderson, R. M., ... & Dryden, D. T. F. (2002). Structure of Ocr from bacteriophage T7, a protein that mimics B-form DNA. Molecular Cell, 9(1), 187-194.
50.Wang, N., Baldi, P. F., & Gaut, B. S. (2007). Phylogenetic analysis, genome evolution and the rate of gene gain in the Herpesviridae. Molecular Phylogenetics and Evolution, 43(3), 1066-1075.
51.Wang, H. C., Wang, H. C., Ko, T. P., Lee, Y. M., Leu, J. H., Ho, C. H., ... & Wang, A. H. J. (2008). White spot syndrome virus protein ICP11: A histone-binding DNA mimic that disrupts nucleosome assembly. Proceedings of the National Academy of Sciences, 105(52), 20758-20763.
52.Wang, H. C., Ko, T. P., Wu, M. L., Ku, S. C., Wu, H. J., & Wang, A. H. J. (2012). Neisseria conserved protein DMP19 is a DNA mimic protein that prevents DNA binding to a hypothetical nitrogen-response transcription factor. Nucleic Acids Research, 40(12), 5718-5730.
53.Wang, H. C., Wu, M. L., Ko, T. P., & Wang, A. H. J. (2013). Neisseria conserved hypothetical protein DMP12 is a DNA mimic that binds to histone-like HU protein. Nucleic Acids Research, 41(9), 5127-5138.
54.Wang, H. C., Ho, C. H., Hsu, K. C., Yang, J. M., & Wang, A. H. J. (2014a). DNA mimic proteins: functions, structures, and bioinformatic analysis. Biochemistry, 53(18), 2865-2874.
55.Wang, H. C., Hsu, K. C., Yang, J. M., Wu, M. L., Ko, T. P., Lin, S. R., & Wang, A. H. J. (2014b). Staphylococcus aureus protein SAUGI acts as a uracil-DNA glycosylase inhibitor. Nucleic Acids Research, 42(2), 1354-1364.
56.Wang, H. C., Ho, C. H., Chou, C. C., Ko, T. P., Huang, M. F., Hsu, K. C., & Wang, A. H. J. (2016). Using structural-based protein engineering to modulate the differential inhibition effects of SAUGI on human and HSV uracil DNA glycosylase. Nucleic Acids Research, 44(9), 4440-4449.
57.Wang, H. C., Chou, C. C., Hsu, K. C., Lee, C. H., & Wang, A. H. J. (2019). New paradigm of functional regulation by DNA mimic proteins: recent updates. IUBMB Life, 71(5), 539-548.
58.Whitworth, D. E., & Hodgson, D. A. (2001). Light‐induced carotenogenesis in Myxococcus xanthus: evidence that CarS acts as an anti‐repressor of CarA. Molecular Microbiology, 42(3), 809-819.
59.Willetts, K. E., Rey, F., Agostini, I., Navarro, J. M., Baudat, Y., Vigne, R., & Sire, J. (1999). DNA repair enzyme uracil DNA glycosylase is specifically incorporated into human immunodeficiency virus type 1 viral particles through a Vpr-independent mechanism. Journal of Virology, 73(2), 1682-1688.
60.Wu, Y., Zhou, X., Barnes, C. O., DeLucia, M., Cohen, A. E., Gronenborn, A. M., ... & Calero, G. (2016). The DDB1–DCAF1–Vpr–UNG2 crystal structure reveals how HIV-1 Vpr steers human UNG2 toward destruction. Nature Structural & Molecular Biology, 23(10), 933-940.
61.Y., Yang, S., Xu, Y., Guo, C., & Liu, L. (2012). Removal of uracil by uracil DNA glycosylase limits pemetrexed cytotoxicity: overriding the limit with methoxyamine to inhibit base excision repair. Cell Death & Disease, 3(1), e252-e252.
62.Zarrouk, K., Piret, J., & Boivin, G. (2017). Herpesvirus DNA polymerases: structures, functions and inhibitors. Virus Research, 234, 177-192.
63.Zhen, S., & Li, X. (2019). Liposomal delivery of CRISPR/Cas9. Cancer Gene Therapy.
64.Zhu, Y., Zhang, F., & Huang, Z. (2018). Structural insights into the inactivation of CRISPR-Cas systems by diverse anti-CRISPR proteins. BMC biology, 16(1), 1-11.
65.Yasuda, T., Morimatsu, K., Horii, T., Nagata, T., & Ohmori, H. (1998). Inhibition of Escherichia coli RecA coprotease activities by DinI. The EMBO Journal, 17(11), 3207-3216.

電子全文 電子全文(網際網路公開日期:20260111)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top