|
1.Asensio, J. L., Perez-Lago, L., Lazaro, J. M., Gonzalez, C., Serrano-Heras, G., & Salas, M. (2011). Novel dimeric structure of phage ϕ29-encoded protein p56: insights into uracil-DNA glycosylase inhibition. Nucleic Acids Research, 39(22), 9779-9788. 2.Banos-Sanz, J. I., Mojardín, L., Sanz-Aparicio, J., Lazaro, J. M., Villar, L., Serrano-Heras, G., ... & Salas, M. (2013). Crystal structure and functional insights into uracil-DNA glycosylase inhibition by phage ϕ29 DNA mimic protein p56. Nucleic Acids Research, 41(13), 6761-6773. 3.Bellamy, S. R., Krusong, K., & Baldwin, G. S. (2007). A rapid reaction analysis of uracil DNA glycosylase indicates an active mechanism of base flipping. Nucleic Acids Research, 35(5), 1478-1487. 4.Bochkareva, E., Kaustov, L., Ayed, A., Yi, G. S., Lu, Y., Pineda-Lucena, A., ... & Bochkarev, A. (2005). Single-stranded DNA mimicry in the p53 transactivation domain interaction with replication protein A. Proceedings of the National Academy of Sciences, 102(43), 15412-15417. 5.Bogani, F., Corredeira, I., Fernandez, V., Sattler, U., Rutvisuttinunt, W., Defais, M., & Boehmer, P. E. (2010). Association between the herpes simplex virus-1 DNA polymerase and uracil DNA glycosylase. Journal of Biological Chemistry, 285(36), 27664-27672. 6.Courcelle, C. T., Courcelle, J., Prichard, M. N., & Mocarski, E. S. (2001). Requirement for uracil-DNA glycosylase during the transition to late-phase cytomegalovirus DNA replication. Journal of Virology, 75(16), 7592-7601. 7.Cowtan, K. (2006). The Buccaneer software for automated model building. 1. Tracing protein chains. Acta Crystallographica Section D: Biological Crystallography, 62(9), 1002-1011. 8.Dryden, D. T. (2006). DNA mimicry by proteins and the control of enzymatic activity on DNA. Trends in Biotechnology, 24(8), 378-382. 9.Earl, C., Bagnéris, C., Zeman, K., Cole, A., Barrett, T., & Savva, R. (2018). A structurally conserved motif in γ-herpesvirus uracil-DNA glycosylases elicits duplex nucleotide-flipping. Nucleic Acids Research, 46(8), 4286-4300. 10.Emsley, P., Lohkamp, B., Scott, W. G., & Cowtan, K. (2010). Features and development of Coot. Acta Crystallographica Section D: Biological Crystallography, 66(4), 486-501. 11.Géoui, T., Buisson, M., Tarbouriech, N., & Burmeister, W. P. (2007). New insights on the role of the γ-herpesvirus uracil-DNA glycosylase leucine loop revealed by the structure of the Epstein-Barr virus enzyme in complex with an inhibitor protein. Journal of Molecular Biology, 366(1), 117-131 12.Guenzel, C. A., Hérate, C., Le Rouzic, E., Maidou-Peindara, P., Sadler, H. A., Rouyez, M. C., & Benichou, S. (2012). Recruitment of the nuclear form of uracil DNA glycosylase into virus particles participates in the full infectivity of HIV-1. Journal of Virology, 86(5), 2533-2544. 13.Guo, T. W., Bartesaghi, A., Yang, H., Falconieri, V., Rao, P., Merk, A., ... & Patel, D. J. (2017). Cryo-EM structures reveal mechanism and inhibition of DNA targeting by a CRISPR-Cas surveillance complex. Cell, 171(2), 414-426. 14.Ho, C. H., Wang, H. C., Ko, T. P., Chang, Y. C., & Wang, A. H. J. (2014). The T4 phage DNA mimic protein Arn inhibits the DNA binding activity of the bacterial histone-like protein H-NS. Journal of Biological Chemistry, 289(39), 27046-27054. 15.Hong, S., Ka, D., Yoon, S. J., Suh, N., Jeong, M., Suh, J. Y., & Bae, E. (2018). CRISPR RNA and anti-CRISPR protein binding to the Xanthomonas albilineans Csy1-Csy2 heterodimer in the type IF CRISPR-Cas system. Journal of Biological Chemistry, 293(8), 2744-2754. 16.Jacobs, A. L., & Schär, P. (2012). DNA glycosylases: in DNA repair and beyond. Chromosoma, 121(1), 1-20. 17.Karu, A. E., Sakaki, Y., Echols, H., & Linn, S. (1975). The gamma protein specified by bacteriophage gamma. Structure and inhibitory activity for the recBC enzyme of Escherichia coli. Journal of Biological Chemistry, 250(18), 7377-7387. 18.Khrapunov, S., Cheng, H., Hegde, S., Blanchard, J., & Brenowitz, M. (2008). Solution structure and refolding of the Mycobacterium tuberculosis pentapeptide repeat protein MfpA. Journal of Biological Chemistry, 283(52), 36290-36299. 19.Lee, C. H., Shih, Y. P., Ho, M. R., & Wang, A. H. (2018). The C-terminal D/E-rich domain of MBD3 is a putative Z-DNA mimic that competes for Zα DNA-binding activity. Nucleic Acids Research, 46(22), 11806-11821. 20.Liebschner, D., Afonine, P. V., Baker, M. L., Bunkóczi, G., Chen, V. B., Croll, T. I., & Moriarty, N. W. (2019). Macromolecular structure determination using X-rays, neutrons and electrons: recent developments in Phenix. Acta Crystallographica Section D: Structural Biology, 75(10), 861-877. 21.Liu, D., Ishima, R., Tong, K. I., Bagby, S., Kokubo, T., Muhandiram, D. R., ... & Ikura, M. (1998). Solution structure of a TBP–TAFII230 complex: protein mimicry of the minor groove surface of the TATA box unwound by TBP. Cell, 94(5), 573-583. 22.McMahon, S. A., Roberts, G. A., Johnson, K. A., Cooper, L. P., Liu, H., White, J. H., ... & Blakely, G. W. (2009). Extensive DNA mimicry by the ArdA anti-restriction protein and its role in the spread of antibiotic resistance. Nucleic Acids Research, 37(15), 4887-4897. 23.Muro-Pastor, A. M., Herrero, A., & Flores, E. (1997). The nuiA gene from Anabaena sp. encoding an inhibitor of the NucA sugar-non-specific nuclease. Journal of Molecular Biology, 268(3), 589-598. 24.Moe, E., Assefa, N. G., Leiros, I., Torseth, K., Smalås, A. O., & Willassen, N. P. (2015). Reduced hydrophobicity of the minor groove intercalation loop is critical for efficient catalysis by cold adapted uracil-DNA N-glycosylase from Atlantic cod. Journal of Thermodynamics & Catalysis, 6(3), 1. 25.Nishiyama, Y. U. K. I. H. I. R. O. (1996). Herpesvirus genes: molecular basis of viral replication and pathogenicity. Nagoya journal of medical science, 59, 107-120. 26.N. Schormann, R. Ricciardi, D. Chattopadhyay, Uracil‐DNA glycosylases—Structural and functional perspectives on an essential family of DNA repair enzymes, Protein Sci 23(12) (2014) 1667-1685. 27.Otwinowski, Z., & Minor, W. (1997). [20] Processing of X-ray diffraction data collected in oscillation mode. In Methods in Enzymology (Vol. 276, pp. 307-326). Academic press. 28.Parikh, S. S., Mol, C. D., Slupphaug, G., Bharati, S., Krokan, H. E., & Tainer, J. A. (1998). Base excision repair initiation revealed by crystal structures and binding kinetics of human uracil‐DNA glycosylase with DNA. The EMBO Journal, 17(17), 5214-5226. 29.Parikh, S. S., Putnam, C. D., & Tainer, J. A. (2000). Lessons learned from structural results on uracil-DNA glycosylase. Mutation Research / DNA Repair, 460(3-4), 183-199. 30.Parsons, L. M., Yeh, D. C., & Orban, J. (2004). Solution structure of the highly acidic protein HI1450 from Haemophilus influenzae, a putative double‐stranded DNA mimic. Proteins: Structure, Function, and Bioinformatics, 54(3), 375-383. 31.Paulose-Murphy, M., Ha, N. K., Xiang, C., Chen, Y., Gillim, L., Yarchoan, R., ... & Zeichner, S. (2001). Transcription program of human herpesvirus 8 (Kaposi's sarcoma-associated herpesvirus). Journal of Virology, 75(10), 4843-4853. 32.Putnam, C. D., Shroyer, M. J. N., Lundquist, A. J., Mol, C. D., Arvai, A. S., Mosbaugh, D. W., & Tainer, J. A. (1999). Protein mimicry of DNA from crystal structures of the uracil-DNA glycosylase inhibitor protein and its complex with Escherichia coli uracil-DNA glycosylase. Journal of Molecular Biology, 287(2), 331-346. 33.Putnam, C. D., & Tainer, J. A. (2005). Protein mimicry of DNA and pathway regulation. DNA Repair, 4(12), 1410-1420. 34.Pyles, R. B., & Thompson, R. L. (1994). Evidence that the herpes simplex virus type 1 uracil DNA glycosylase is required for efficient viral replication and latency in the murine nervous system. Journal of Virology, 68(8), 4963-4972. 35.Rauch, B. J., Silvis, M. R., Hultquist, J. F., Waters, C. S., McGregor, M. J., Krogan, N. J., & Bondy-Denomy, J. (2017). Inhibition of CRISPR-Cas9 with bacteriophage proteins. Cell, 168(1-2), 150-158. 36.Saff, E. B., & Kuijlaars, A. B. (1997). Distributing many points on a sphere. The Mathematical Intelligencer, 19(1), 5-11. 37.Savva, R., & Pearl, L. H. (1995). Nucleotide mimicry in the crystal structure of the uracil-DNA glycosylase–uracil glycosylase inhibitor protein complex. Nature Structural Biology, 2(9), 752-757. 38.Schormann, N., Grigorian, A., Samal, A., Krishnan, R., DeLucas, L., & Chattopadhyay, D. (2007). Crystal structure of vaccinia virus uracil-DNA glycosylase reveals dimeric assembly. BMC Structural Biology, 7(1), 45. 39.Schormann, N., Ricciardi, R., & Chattopadhyay, D. (2014). Uracil‐DNA glycosylases—Structural and functional perspectives on an essential family of DNA repair enzymes. Protein Science, 23(12), 1667-1685. 40.Schormann, N., Banerjee, S., Ricciardi, R., & Chattopadhyay, D. (2015). Binding of undamaged double stranded DNA to vaccinia virus uracil-DNA glycosylase. BMC Structural Biology, 15(1), 10. 41.Serrano-Heras, G., Ruiz-Maso, J. A., del Solar, G., Espinosa, M., Bravo, A., & Salas, M. (2007). Protein p56 from the Bacillus subtilis phage ϕ29 inhibits DNA-binding ability of uracil-DNA glycosylase. Nucleic Acids Research, 35(16), 5393-5401. 42.Sire, J., Quérat, G., Esnault, C., & Priet, S. (2008). Uracil within DNA: an actor of antiviral immunity. Retrovirology, 5(1), 45. 43.Slupphaug, G., Mol, C. D., Kavli, B., Arvai, A. S., Krokan, H. E., & Tainer, J. A. (1996). A nucleotide-flipping mechanism from the structure of human uracil–DNA glycosylase bound to DNA. Nature, 384(6604), 87-92. 44.Stivers, J. T., Pankiewicz, K. W., & Watanabe, K. A. (1999). Kinetic mechanism of damage site recognition and uracil flipping by Escherichia coli uracil DNA glycosylase. Biochemistry, 38(3), 952-963. 45.Su, M. T., Liu, I. H., Wu, C. W., Chang, S. M., Tsai, C. H., Yang, P. W., ... & Chen, M. R. (2014). Uracil DNA glycosylase BKRF3 contributes to Epstein-Barr virus DNA replication through physical interactions with proteins in viral DNA replication complex. Journal of Virology, 88(16), 8883-8899. 46.Tucker, A. T., Bobay, B. G., Banse, A. V., Olson, A. L., Soderblom, E. J., Moseley, M. A., ... & Cavanagh, J. (2014). A DNA mimic: The structure and mechanism of action for the anti-repressor protein AbbA. Journal of Molecular Biology, 426(9), 1911-1924. 47.Vagin, A. A., Steiner, R. A., Lebedev, A. A., Potterton, L., McNicholas, S., Long, F., & Murshudov, G. N. (2004). REFMAC5 dictionary: organization of prior chemical knowledge and guidelines for its use. Acta Crystallographica Section D: Biological Crystallography, 60(12), 2184-2195. 48.Vagin, A., & Teplyakov, A. (1997). MOLREP: an automated program for molecular replacement. Journal of Applied Crystallography, 30(6), 1022-1025. 49.Walkinshaw, M. D., Taylor, P., Sturrock, S. S., Atanasiu, C., Berge, T., Henderson, R. M., ... & Dryden, D. T. F. (2002). Structure of Ocr from bacteriophage T7, a protein that mimics B-form DNA. Molecular Cell, 9(1), 187-194. 50.Wang, N., Baldi, P. F., & Gaut, B. S. (2007). Phylogenetic analysis, genome evolution and the rate of gene gain in the Herpesviridae. Molecular Phylogenetics and Evolution, 43(3), 1066-1075. 51.Wang, H. C., Wang, H. C., Ko, T. P., Lee, Y. M., Leu, J. H., Ho, C. H., ... & Wang, A. H. J. (2008). White spot syndrome virus protein ICP11: A histone-binding DNA mimic that disrupts nucleosome assembly. Proceedings of the National Academy of Sciences, 105(52), 20758-20763. 52.Wang, H. C., Ko, T. P., Wu, M. L., Ku, S. C., Wu, H. J., & Wang, A. H. J. (2012). Neisseria conserved protein DMP19 is a DNA mimic protein that prevents DNA binding to a hypothetical nitrogen-response transcription factor. Nucleic Acids Research, 40(12), 5718-5730. 53.Wang, H. C., Wu, M. L., Ko, T. P., & Wang, A. H. J. (2013). Neisseria conserved hypothetical protein DMP12 is a DNA mimic that binds to histone-like HU protein. Nucleic Acids Research, 41(9), 5127-5138. 54.Wang, H. C., Ho, C. H., Hsu, K. C., Yang, J. M., & Wang, A. H. J. (2014a). DNA mimic proteins: functions, structures, and bioinformatic analysis. Biochemistry, 53(18), 2865-2874. 55.Wang, H. C., Hsu, K. C., Yang, J. M., Wu, M. L., Ko, T. P., Lin, S. R., & Wang, A. H. J. (2014b). Staphylococcus aureus protein SAUGI acts as a uracil-DNA glycosylase inhibitor. Nucleic Acids Research, 42(2), 1354-1364. 56.Wang, H. C., Ho, C. H., Chou, C. C., Ko, T. P., Huang, M. F., Hsu, K. C., & Wang, A. H. J. (2016). Using structural-based protein engineering to modulate the differential inhibition effects of SAUGI on human and HSV uracil DNA glycosylase. Nucleic Acids Research, 44(9), 4440-4449. 57.Wang, H. C., Chou, C. C., Hsu, K. C., Lee, C. H., & Wang, A. H. J. (2019). New paradigm of functional regulation by DNA mimic proteins: recent updates. IUBMB Life, 71(5), 539-548. 58.Whitworth, D. E., & Hodgson, D. A. (2001). Light‐induced carotenogenesis in Myxococcus xanthus: evidence that CarS acts as an anti‐repressor of CarA. Molecular Microbiology, 42(3), 809-819. 59.Willetts, K. E., Rey, F., Agostini, I., Navarro, J. M., Baudat, Y., Vigne, R., & Sire, J. (1999). DNA repair enzyme uracil DNA glycosylase is specifically incorporated into human immunodeficiency virus type 1 viral particles through a Vpr-independent mechanism. Journal of Virology, 73(2), 1682-1688. 60.Wu, Y., Zhou, X., Barnes, C. O., DeLucia, M., Cohen, A. E., Gronenborn, A. M., ... & Calero, G. (2016). The DDB1–DCAF1–Vpr–UNG2 crystal structure reveals how HIV-1 Vpr steers human UNG2 toward destruction. Nature Structural & Molecular Biology, 23(10), 933-940. 61.Y., Yang, S., Xu, Y., Guo, C., & Liu, L. (2012). Removal of uracil by uracil DNA glycosylase limits pemetrexed cytotoxicity: overriding the limit with methoxyamine to inhibit base excision repair. Cell Death & Disease, 3(1), e252-e252. 62.Zarrouk, K., Piret, J., & Boivin, G. (2017). Herpesvirus DNA polymerases: structures, functions and inhibitors. Virus Research, 234, 177-192. 63.Zhen, S., & Li, X. (2019). Liposomal delivery of CRISPR/Cas9. Cancer Gene Therapy. 64.Zhu, Y., Zhang, F., & Huang, Z. (2018). Structural insights into the inactivation of CRISPR-Cas systems by diverse anti-CRISPR proteins. BMC biology, 16(1), 1-11. 65.Yasuda, T., Morimatsu, K., Horii, T., Nagata, T., & Ohmori, H. (1998). Inhibition of Escherichia coli RecA coprotease activities by DinI. The EMBO Journal, 17(11), 3207-3216.
|