|
1.Masalha, M., et al., Analysis of transcription of the Staphylococcus aureus aerobic class Ib and anaerobic class III ribonucleotide reductase genes in response to oxygen. J Bacteriol, 2001. 183(24): p. 7260-72. 2.Kluytmans, J., A. van Belkum, and H. Verbrugh, Nasal carriage of Staphylococcus aureus: epidemiology, underlying mechanisms, and associated risks. Clin Microbiol Rev, 1997. 10(3): p. 505-20. 3.Tong, S.Y., et al., Staphylococcus aureus infections: epidemiology, pathophysiology, clinical manifestations, and management. Clin Microbiol Rev, 2015. 28(3): p. 603-61. 4.Matthews, K.R., et al., Identification and Differentiation of Coagulase-Negative Staphylococcus aureus by Polymerase Chain Reaction. J Food Prot, 1997. 60(6): p. 686-688. 5.Munir, M.T., et al., Experimental Parameters Influence the Observed Antimicrobial Response of Oak Wood (Quercus petraea). Antibiotics (Basel), 2020. 9(9). 6.Curran, J.P. and F.L. Al-Salihi, Neonatal staphylococcal scalded skin syndrome: massive outbreak due to an unusual phage type. Pediatrics, 1980. 66(2): p. 285-90. 7.Bath-Hextall, F.J., et al., Interventions to reduce Staphylococcus aureus in the management of atopic eczema: an updated Cochrane review. Br J Dermatol, 2011. 164(1): p. 228. 8.Wakabayashi, Y., et al., Staphylococcal food poisoning caused by Staphylococcus argenteus harboring staphylococcal enterotoxin genes. Int J Food Microbiol, 2018. 265: p. 23-29. 9.Latha, T., et al., MRSA: the leading pathogen of orthopedic infection in a tertiary care hospital, South India. Afr Health Sci, 2019. 19(1): p. 1393-1401. 10.Murray, R.J., Staphylococcus aureus infective endocarditis: diagnosis and management guidelines. Intern Med J, 2005. 35 Suppl 2: p. S25-44. 11.Silversides, J.A., E. Lappin, and A.J. Ferguson, Staphylococcal toxic shock syndrome: mechanisms and management. Curr Infect Dis Rep, 2010. 12(5): p. 392-400. 12.Olson, M.E. and A.R. Horswill, Staphylococcus aureus osteomyelitis: bad to the bone. Cell Host Microbe, 2013. 13(6): p. 629-31. 13.Rasmussen, R.V., et al., Future challenges and treatment of Staphylococcus aureus bacteremia with emphasis on MRSA. Future Microbiol, 2011. 6(1): p. 43-56. 14.Mitchell, D.H. and B.P. Howden, Diagnosis and management of Staphylococcus aureus bacteraemia. Intern Med J, 2005. 35 Suppl 2: p. S17-24. 15.Hussain, Z., et al., Evaluation of screening and commercial methods for detection of methicillin resistance in coagulase-negative staphylococci. J Clin Microbiol, 1998. 36(1): p. 273-4. 16.Ng, C.Y., et al., Risks for Staphylococcus aureus colonization in patients with psoriasis: a systematic review and meta-analysis. Br J Dermatol, 2017. 177(4): p. 967-977. 17.McDonald, L.C., et al., The status of antimicrobial resistance in Taiwan among Gram-positive pathogens: the Taiwan Surveillance of Antimicrobial Resistance (TSAR) programme, 2000. Int J Antimicrob Agents, 2004. 23(4): p. 362-70. 18.Jean, S.S., et al., Susceptibility of clinical isolates of meticillin-resistant Staphylococcus aureus and phenotypic non-extended-spectrum beta-lactamase-producing Klebsiella pneumoniae to ceftaroline in Taiwan: Results from Antimicrobial Testing Leadership and Surveillance (ATLAS) in 2012-2018 and Surveillance of Multicentre Antimicrobial Resistance in Taiwan (SMART) in 2018-2019. Int J Antimicrob Agents, 2020. 56(1): p. 106016. 19.McGuinness, W.A., N. Malachowa, and F.R. DeLeo, Vancomycin Resistance in Staphylococcus aureus. Yale J Biol Med, 2017. 90(2): p. 269-281. 20.Wold, F. and C.E. Ballou, Studies on the enzyme enolase. I. Equilibrium studies. J Biol Chem, 1957. 227(1): p. 301-12. 21.Wold, F. and C.E. Ballou, Studies on the enzyme enolase. II. Kinetic studies. J Biol Chem, 1957. 227(1): p. 313-28. 22.Clegg, N., et al., Molecular characterization of prostatic small-cell neuroendocrine carcinoma. Prostate, 2003. 55(1): p. 55-64. 23.Peshavaria, M. and I.N. Day, Molecular structure of the human muscle-specific enolase gene (ENO3). Biochem J, 1991. 275 ( Pt 2): p. 427-33. 24.Pancholi, V., Multifunctional alpha-enolase: its role in diseases. Cell Mol Life Sci, 2001. 58(7): p. 902-20. 25.Petrak, J., et al., Deja vu in proteomics. A hit parade of repeatedly identified differentially expressed proteins. Proteomics, 2008. 8(9): p. 1744-9. 26.Thu Nguyen, T.T., et al., alpha-Enolase as a novel vaccine candidate against Streptococcus dysgalactiae infection in cobia (Rachycentron canadum L.). Fish Shellfish Immunol, 2020. 98: p. 899-907. 27.Krucinska, J., et al., Structural and Functional Studies of Bacterial Enolase, a Potential Target against Gram-Negative Pathogens. Biochemistry, 2019. 58(9): p. 1188-1197. 28.Satala, D., et al., Structural Insights into the Interactions of Candidal Enolase with Human Vitronectin, Fibronectin and Plasminogen. Int J Mol Sci, 2020. 21(21). 29.Toledo, A., et al., The enolase of Borrelia burgdorferi is a plasminogen receptor released in outer membrane vesicles. Infect Immun, 2012. 80(1): p. 359-68. 30.Floden, A.M., J.A. Watt, and C.A. Brissette, Borrelia burgdorferi enolase is a surface-exposed plasminogen binding protein. PLoS One, 2011. 6(11): p. e27502. 31.Placzkiewicz, J., et al., Lactobacillus crispatus and its enolase and glutamine synthetase influence interactions between Neisseria gonorrhoeae and human epithelial cells. J Microbiol, 2020. 58(5): p. 405-414. 32.Kishimoto, N., et al., Alpha-enolase in viral target cells suppresses the human immunodeficiency virus type 1 integration. Retrovirology, 2020. 17(1): p. 31. 33.Song, Z., et al., alpha-Enolase, an adhesion-related factor of Mycoplasma bovis. PLoS One, 2012. 7(6): p. e38836. 34.Lopez-Lopez, M.J., et al., Biochemical and Biophysical Characterization of the Enolase from Helicobacter pylori. Biomed Res Int, 2018. 2018: p. 9538193. 35.Silva, R.C., et al., Extracellular enolase of Candida albicans is involved in colonization of mammalian intestinal epithelium. Front Cell Infect Microbiol, 2014. 4: p. 66. 36.Chandran, V. and B.F. Luisi, Recognition of enolase in the Escherichia coli RNA degradosome. J Mol Biol, 2006. 358(1): p. 8-15. 37.Yan, H., et al., Both Enolase and the DEAD-Box RNA Helicase CrhB Can Form Complexes with RNase E in Anabaena sp. Strain PCC 7120. Appl Environ Microbiol, 2020. 86(13). 38.Wu, Y., et al., Octameric structure of Staphylococcus aureus enolase in complex with phosphoenolpyruvate. Acta Crystallogr D Biol Crystallogr, 2015. 71(Pt 12): p. 2457-70. 39.Lopes, J.D., M. dos Reis, and R.R. Brentani, Presence of laminin receptors in Staphylococcus aureus. Science, 1985. 229(4710): p. 275-7. 40.Molkanen, T., et al., Enhanced activation of bound plasminogen on Staphylococcus aureus by staphylokinase. FEBS Lett, 2002. 517(1-3): p. 72-8. 41.Boyle, M.D. and R. Lottenberg, Plasminogen activation by invasive human pathogens. Thromb Haemost, 1997. 77(1): p. 1-10. 42.Antikainen, J., et al., Enolases from Gram-positive bacterial pathogens and commensal lactobacilli share functional similarity in virulence-associated traits. FEMS Immunol Med Microbiol, 2007. 51(3): p. 526-34. 43.Glowalla, E., et al., Proteomics-based identification of anchorless cell wall proteins as vaccine candidates against Staphylococcus aureus. Infect Immun, 2009. 77(7): p. 2719-29. 44.Artini, M., et al., A new anti-infective strategy to reduce adhesion-mediated virulence in Staphylococcus aureus affecting surface proteins. Int J Immunopathol Pharmacol, 2011. 24(3): p. 661-72. 45.Hajighahramani, N., et al., Immunoinformatics analysis and in silico designing of a novel multi-epitope peptide vaccine against Staphylococcus aureus. Infect Genet Evol, 2017. 48: p. 83-94. 46.Xu, Y., et al., Application of chicken egg yolk immunoglobulins in the control of terrestrial and aquatic animal diseases: a review. Biotechnol Adv, 2011. 29(6): p. 860-8. 47.Zhang, W.W., The use of gene-specific IgY antibodies for drug target discovery. Drug Discov Today, 2003. 8(8): p. 364-71. 48.Schade, R., et al., [Avian egg yolk antibodies. The egg laying capacity of hens following immunisation with antigens of different kind and origin and the efficiency of egg yolk antibodies in comparison to mammalian antibodies]. ALTEX, 1994. 11(2): p. 75-84. 49.Larsson, A., D. Carlander, and M. Wilhelmsson, Antibody response in laying hens with small amounts of antigen. Food and Agricultural Immunology, 1998. 10(1): p. 29-36. 50.Gassmann, M., et al., Efficient production of chicken egg yolk antibodies against a conserved mammalian protein. FASEB J, 1990. 4(8): p. 2528-32. 51.Huston, J.S., et al., Protein engineering of single-chain Fv analogs and fusion proteins. Methods Enzymol, 1991. 203: p. 46-88. 52.Bird, R.E., et al., Single-chain antigen-binding proteins. Science, 1988. 242(4877): p. 423-6. 53.Takkinen, K., et al., An active single-chain antibody containing a cellulase linker domain is secreted by Escherichia coli. Protein Eng, 1991. 4(7): p. 837-41. 54.Argos, P., An investigation of oligopeptides linking domains in protein tertiary structures and possible candidates for general gene fusion. J Mol Biol, 1990. 211(4): p. 943-58. 55.Whitlow, M., et al., An improved linker for single-chain Fv with reduced aggregation and enhanced proteolytic stability. Protein Eng, 1993. 6(8): p. 989-95. 56.Smith, G.P., Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface. Science, 1985. 228(4705): p. 1315-7. 57.McCafferty, J., et al., Phage antibodies: filamentous phage displaying antibody variable domains. Nature, 1990. 348(6301): p. 552-4. 58.Ho, M., S. Nagata, and I. Pastan, Isolation of anti-CD22 Fv with high affinity by Fv display on human cells. Proc Natl Acad Sci U S A, 2006. 103(25): p. 9637-42. 59.Feldhaus, M.J. and R.W. Siegel, Yeast display of antibody fragments: a discovery and characterization platform. J Immunol Methods, 2004. 290(1-2): p. 69-80. 60.Galeffi, P., et al., Functional expression of a single-chain antibody to ErbB-2 in plants and cell-free systems. J Transl Med, 2006. 4: p. 39. 61.Choo, A.B., et al., Soluble expression of a functional recombinant cytolytic immunotoxin in insect cells. Protein Expr Purif, 2002. 24(3): p. 338-47. 62.Vaks, L. and I. Benhar, Production of stabilized scFv antibody fragments in the E. coli bacterial cytoplasm. Methods Mol Biol, 2014. 1060: p. 171-84. 63.Cariccio, V.L., et al., Phage display revisited: Epitope mapping of a monoclonal antibody directed against Neisseria meningitidis adhesin A using the PROFILER technology. MAbs, 2016. 8(4): p. 741-50. 64.Marks, J.D., et al., By-passing immunization. Human antibodies from V-gene libraries displayed on phage. J Mol Biol, 1991. 222(3): p. 581-97. 65.Griffiths, A.D. and A.R. Duncan, Strategies for selection of antibodies by phage display. Curr Opin Biotechnol, 1998. 9(1): p. 102-8. 66.Lake, D.F., et al., Molecular cloning, expression and mutagenesis of an anti-insulin single chain Fv (scFv). Mol Immunol, 1994. 31(11): p. 845-56. 67.Sharon, J., Structural correlates of high antibody affinity: three engineered amino acid substitutions can increase the affinity of an anti-p-azophenylarsonate antibody 200-fold. Proc Natl Acad Sci U S A, 1990. 87(12): p. 4814-7. 68.Dai, K., H. Zhu, and C. Ruan, Generation and characterization of recombinant single chain Fv antibody that recognizes platelet glycoprotein Ibalpha. Thromb Res, 2003. 109(2-3): p. 137-44. 69.Ravn, P., et al., Multivalent scFv display of phagemid repertoires for the selection of carbohydrate-specific antibodies and its application to the Thomsen-Friedenreich antigen. J Mol Biol, 2004. 343(4): p. 985-96. 70.Sakai, K., et al., Isolation and characterization of phage-displayed single chain antibodies recognizing nonreducing terminal mannose residues. 1. A new strategy for generation of anti-carbohydrate antibodies. Biochemistry, 2007. 46(1): p. 253-62. 71.Shadidi, M. and M. Sioud, An anti-leukemic single chain Fv antibody selected from a synthetic human phage antibody library. Biochem Biophys Res Commun, 2001. 280(2): p. 548-52. 72.Reiche, N., et al., Generation and characterization of human monoclonal scFv antibodies against Helicobacter pylori antigens. Infect Immun, 2002. 70(8): p. 4158-64. 73.Li, T.W., et al., Development of single-chain variable fragments (scFv) against influenza virus targeting hemagglutinin subunit 2 (HA2). Arch Virol, 2016. 161(1): p. 19-31. 74.Ahmad, Z.A., et al., scFv antibody: principles and clinical application. Clin Dev Immunol, 2012. 2012: p. 980250. 75.Kontermann, R.E., M.G. Wing, and G. Winter, Complement recruitment using bispecific diabodies. Nat Biotechnol, 1997. 15(7): p. 629-31. 76.Emanuel, P.A., et al., Recombinant antibodies: a new reagent for biological agent detection. Biosens Bioelectron, 2000. 14(10-11): p. 751-9. 77.Kerschbaumer, R.J., et al., Single-chain Fv fusion proteins suitable as coating and detecting reagents in a double antibody sandwich enzyme-linked immunosorbent assay. Anal Biochem, 1997. 249(2): p. 219-27. 78.Oelschlaeger, P., et al., Fluorophor-linked immunosorbent assay: a time- and cost-saving method for the characterization of antibody fragments using a fusion protein of a single-chain antibody fragment and enhanced green fluorescent protein. Anal Biochem, 2002. 309(1): p. 27-34. 79.Cho, S.H., et al., Development of novel detection system for sweet potato leaf curl virus using recombinant scFv. Sci Rep, 2020. 10(1): p. 8039. 80.Lichty, J.J., et al., Comparison of affinity tags for protein purification. Protein Expr Purif, 2005. 41(1): p. 98-105. 81.Zhao, Q., et al., One-step expression and purification of single-chain variable antibody fragment using an improved hexahistidine tag phagemid vector. Protein Expr Purif, 2009. 68(2): p. 190-5. 82.Kimple, M.E., A.L. Brill, and R.L. Pasker, Overview of affinity tags for protein purification. Curr Protoc Protein Sci, 2013. 73: p. 9 9 1-9 9 23. 83.Forsstrom, B., et al., Dissecting antibodies with regards to linear and conformational epitopes. PLoS One, 2015. 10(3): p. e0121673. 84.Friguet, B., et al., Measurements of the true affinity constant in solution of antigen-antibody complexes by enzyme-linked immunosorbent assay. J Immunol Methods, 1985. 77(2): p. 305-19. 85.Benedict, C.A., A.J. MacKrell, and W.F. Anderson, Determination of the binding affinity of an anti-CD34 single-chain antibody using a novel, flow cytometry based assay. J Immunol Methods, 1997. 201(2): p. 223-31. 86.Sato, R., et al., Preparation and characterization of anti-tissue factor single-chain variable fragment antibody for cancer diagnosis. Cancer Sci, 2014. 105(12): p. 1631-7. 87.Tadokoro, T., et al., Biophysical characterization and single-chain Fv construction of a neutralizing antibody to measles virus. FEBS J, 2020. 287(1): p. 145-159. 88.Schodin, B.A. and D.M. Kranz, Binding affinity and inhibitory properties of a single-chain anti-T cell receptor antibody. J Biol Chem, 1993. 268(34): p. 25722-7. 89.MacKenzie, C.R., et al., Analysis by surface plasmon resonance of the influence of valence on the ligand binding affinity and kinetics of an anti-carbohydrate antibody. J Biol Chem, 1996. 271(3): p. 1527-33. 90.Sykes, K.F., J.B. Legutki, and P. Stafford, Immunosignaturing: a critical review. Trends Biotechnol, 2013. 31(1): p. 45-51. 91.Avilan, L., et al., Enolase: a key player in the metabolism and a probable virulence factor of trypanosomatid parasites-perspectives for its use as a therapeutic target. Enzyme Res, 2011. 2011: p. 932549. 92.Lagier, J.C., et al., Current and past strategies for bacterial culture in clinical microbiology. Clin Microbiol Rev, 2015. 28(1): p. 208-36. 93.Bouzid, D., et al., Rapid diagnostic tests for infectious diseases in the emergency department. Clin Microbiol Infect, 2021. 27(2): p. 182-191. 94.Challa, S., et al., Diagnosis of filamentous fungi on tissue sections by immunohistochemistry using anti-aspergillus antibody. Med Mycol, 2015. 53(5): p. 470-6. 95.Kozel, T.R. and B. Wickes, Fungal diagnostics. Cold Spring Harb Perspect Med, 2014. 4(4): p. a019299. 96.Foulston, L., et al., The extracellular matrix of Staphylococcus aureus biofilms comprises cytoplasmic proteins that associate with the cell surface in response to decreasing pH. mBio, 2014. 5(5): p. e01667-14. 97.Song, Y., et al., Multifunctional Bismuth Oxychloride/Mesoporous Silica Composites for Photocatalysis, Antibacterial Test, and Simultaneous Stripping Analysis of Heavy Metals. ACS Omega, 2018. 3(1): p. 973-981. 98.Cronin, U.P., et al., Protein A-Mediated Binding of Staphylococcus spp. to Antibodies in Flow Cytometric Assays and Reduction of This Binding by Using Fc Receptor Blocking Reagent. Appl Environ Microbiol, 2020. 86(17). 99.Carneiro, C.R., et al., Identification of enolase as a laminin-binding protein on the surface of Staphylococcus aureus. Microbes Infect, 2004. 6(6): p. 604-8.
|