跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.175) 您好!臺灣時間:2024/12/09 22:18
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:周彥儒
研究生(外文):CHOU, YEN-RU
論文名稱:血小板源生物材料和胚胎成纖維細胞對骨損傷的協同治療潛力
論文名稱(外文):Synergistic Therapeutic Potential of Platelet-derived Biomaterials and Embryonic Fibroblasts towards Bone Injury
指導教授:鄧文炳鄧文炳引用關係
指導教授(外文):Deng, Win-Ping
口試委員:鄧文炳劉仁賢龔瑞林黃茂栓黃豪銘
口試委員(外文):Deng, Win-PingLiu, Ren-ShyanKong, Zwe-LingHuang, Mao-SuanHuang, Haw-Ming
口試日期:2020-12-16
學位類別:博士
校院名稱:臺北醫學大學
系所名稱:生醫材料暨組織工程研究所博士班
學門:工程學門
學類:生醫工程學類
論文種類:學術論文
論文出版年:2021
畢業學年度:109
語文別:英文
論文頁數:47
中文關鍵詞:血小板骨傷害胚胎纖維母細胞
外文關鍵詞:Platelet-derived biomaterialsPDBbone injuryfibroblasts migrationosteogenesis
相關次數:
  • 被引用被引用:0
  • 點閱點閱:102
  • 評分評分:
  • 下載下載:4
  • 收藏至我的研究室書目清單書目收藏:0
ABSTRACT
Bony injury or fracture lead to compromised functional ability and reversing skeletal function
remains a challenge, which further increase in advancing aging population due to reduced
bone mineral density. Therefore, we aimed to investigate the therapeutic potential of plateletderived
biomaterials (PDB) against bone injury. Specifically, we assessed the impact of PDB
on migration and osteo-inductive characteristics of mouse embryonic fibroblasts (MEFs) in
vitro as well as in-vivo mice model. The osteogenic lineage and degree of mineralization was
determined by gene markers (RUNX2, OPN and OCN), and alizarin Red S staining,
respectively. Cell migration was determined by FAK, pFAK and Src (migration markers) as
well as E-cadherin, vimentin and snail (EMT markers). The key component of PDB, TGF-β1,
mediated therapeutic impact was confirmed by employing inhibitor of TGF-β receptor I
(TBRI). In vivo cellular migration in mice was also examined by molecular imaging through
establishing bone injury at right femurs. Our results showed that PDB markedly upregulate
expression of osteogenic markers and matrix mineralization. Increased migration and EMT
markers revealed higher migratory potential of PDB-treated MEFs. The in vivo cell migration
was manifested by expression of migratory factors, SDF-1 and CXR4, and compared to
control, PDB-treated mice exhibited an increased bone density and volume. The TBRI
treatment inhibited migration as well osteogenic potential of MEFs, affirming impact of
TGF-β1. Taken together, the outcomes of our study clearly indicated that PDB rescued from
bone injury by enhancing migratory potential of MEFs and osteogenesis.
ABSTRACT
Bony injury or fracture lead to compromised functional ability and reversing skeletal function
remains a challenge, which further increase in advancing aging population due to reduced
bone mineral density. Therefore, we aimed to investigate the therapeutic potential of plateletderived
biomaterials (PDB) against bone injury. Specifically, we assessed the impact of PDB
on migration and osteo-inductive characteristics of mouse embryonic fibroblasts (MEFs) in
vitro as well as in-vivo mice model. The osteogenic lineage and degree of mineralization was
determined by gene markers (RUNX2, OPN and OCN), and alizarin Red S staining,
respectively. Cell migration was determined by FAK, pFAK and Src (migration markers) as
well as E-cadherin, vimentin and snail (EMT markers). The key component of PDB, TGF-β1,
mediated therapeutic impact was confirmed by employing inhibitor of TGF-β receptor I
(TBRI). In vivo cellular migration in mice was also examined by molecular imaging through
establishing bone injury at right femurs. Our results showed that PDB markedly upregulate
expression of osteogenic markers and matrix mineralization. Increased migration and EMT
markers revealed higher migratory potential of PDB-treated MEFs. The in vivo cell migration
was manifested by expression of migratory factors, SDF-1 and CXR4, and compared to
control, PDB-treated mice exhibited an increased bone density and volume. The TBRI
treatment inhibited migration as well osteogenic potential of MEFs, affirming impact of
TGF-β1. Taken together, the outcomes of our study clearly indicated that PDB rescued from
bone injury by enhancing migratory potential of MEFs and osteogenesis.
TABLE OF CONTENT
ABSTRACT ............................................................................................................................................ i
CHAPTER 1. Introduction ................................................................................................................ 1
I. Overview ............................................................................................................................ 2
II. Bone composition ............................................................................................................... 2
1. Bone cells .................................................................................................................. 3
1.1. Osteoblast ........................................................................................................... 3
1.2. Osteoclast ........................................................................................................... 3
1.3. Osteocytes ........................................................................................................... 3
2. ECM .......................................................................................................................... 4
2.1 Organic ECM ..................................................................................................... 4
2.2 Inorganic ECM or Bone Minerals ......................................................................... 5
III. Bone Injuries/Fractures ................................................................................................ 5
IV. Mechanism of bone healing .......................................................................................... 6
1. Indirect bone healing ................................................................................................... 6
2. Direct Bone Healing ............................................................................................................ 7
V. Cell therapy for bone injury ........................................................................................ 7
1. Mesenchymal Stem cells ..................................................................................................... 8
1.1 Adipose-derived Stem Cell (ADSCs) ................................................................... 8
1.2 Bone Marrow Stem Cell (BMSCs) ....................................................................... 8
1.3 Dental Pulp Stem Cell (DPSCs) ........................................................................... 9
2. Embryonic Stem Cell (hESCs) .................................................................................... 9
2.1. Induced Pluripotent Stem Cell (iPSCs) ............................................................... 10
2.2. Mouse Embryonic Fibroblast Cell (MEF) ........................................................... 10
VI. Role of Growth Factors in bone healing .................................................................. 10
1. Transforming Growth Factor-β1 (TFG-β1) ....................................................................... 11
2. Bone Morphogenetic Proteins (BMPs) .............................................................................. 11
3. Platelet-Derived Growth Factor (PDGF) .......................................................................... 11
4. Fibroblast Growth Factors (FGF) ..................................................................................... 11
VII. Platelet-derived Biomaterial (PDB) .......................................................................... 12
1. Role of PDB in Bone Repair ......................................................................................... 13
2. PDB connection with Growth Factors ......................................................................... 13
2.1 PDB regulate TGFs ................................................................................................. 14
2.2 PDB regulate Insulin-Like Growth Factor 1 ....................................................... 14
2.3 The Effect of PDB in Angiogenesis Factors Promoting Bone Reparation ...... 15
VIII. Aim of Study .................................................................................................................. 16
CHAPTER 2. Materials and Methods .............................................................................................. 17
I. Cell Line and their Culture .................................................................................................. 18
II. Preparation of Platelet-derived biomaterials (PDB) ........................................................... 18
III. RNA extraction and semi-quantitative reverse-transcription PCR ...................................... 18
IV. Cell migration assay ............................................................................................................ 19
V. Immunohistochemistry and Western Blot Analysis ............................................................ 19
VI. Animal studies and ethics .................................................................................................... 20
VII. Assessment of Bone Mineral Density (BMD) .................................................................... 20
VIII. Statistical Analysis .............................................................................................................. 20
CHAPTER 3. RESULT AND DISCUSSION ................................................................................... 21
Study-1 Investigating impact of PDB on osteogenesis and migration of mouse embryonic
fibroblasts (MEFs) ............................................................................................................................. 22
I. Results............................................................................................................................................ 23
1. Effect of PDB on MEFs migratory potential to bone injury site ................................ 23
2. Impact of PDB on Migration ability of MEFs: In-vitro ............................................... 23
3. Corroborating proliferative and migratory ability of PDB-contained TGF-β through TGF-β
receptor I inhibitor (TBRI) activity ...................................................................................... 24
4. PDB-mediated regulation of cell migratory migration through TBRI activity .................... 24
5. PDB-induced regulation of cell migratory through TBRI activity ....................................... 25
II. Discussion .................................................................................................................................... 26
STUDY-2 To evaluate in-vivo Platelet-derived biomaterials-mediated Improvement of Bone
Injury through Migratory Ability of Embryonic Fibroblasts ......................................................... 29
I. Results............................................................................................................................................ 30
1. Impact of PBDB on expression of GFP in MEFs-TGL .......................................................... 30
2. Establishment of bone injury mice and transplantation of PDB-treated MEFs-tagged Cell for
in-vivo tracking ....................................................................................................................... 30
3. Bone Mineral Density analysis through μ-CT and DEXA ..................................................... 30
4. Gene expression analysis of osteogenic and migration markers ............................................ 30
II. Discussion ...................................................................................................................................... 32
CHAPTER 4. CONCLUSION ........................................................................................................... 33
CHAPTER 5. FIGURES AND TABLES .......................................................................................... 35
CHAPTER 6. REFERENCES ........................................................................................................... 47
LIST OF FIGURES
Figure 1: Schematic of in vitro & in vivo experiment protocol representing role of TGF-β-1
containing PDB in migration and osteogenic potential of embryonic fibroblast to improve bone injury
.............................................................................................................................................................. 36
Figure 2: Analysis of in vitro osteoblastic differentiation treated with PDB. ..................................... 37
Figure 3: Analysis of in vitro cell migration of osteoblasts treated with PDB. .................................. 38
Figure 4: Optimization of TBRI concentration for proliferative through TBRI activity .................... 39
Figure 5: Optimization of TBRI concentration for migratory regulation of PDB through TBRI
activity and its quantification. .............................................................................................................. 40
Figure 6: Analysis of in vitro osteoblastic differentiation of PDB induced osteoblasts treated with
PDB/T25 ............................................................................................................................................... 41
Figure 7: Analysis of in vitro cell migration of PDB induced osteoblasts treated with PDB/T25 ..... 42
Figure 8: In vitro optical imaging of GFP transfected NIH3T3-TGL cell line .................................... 43
Figure 9: In vitro bone morphologic characterizations of PDB/NIH3T3-TGL transplanted in mice .. 44
Figure 10: Analysis of bone quantity with photomicrographs ............................................................. 45
Figure 11: Diagrammatic summary of PDB and TBRI mechanism for osteoblast differentiation in
bone injury site ......................................................................................................................... 46
References
[1] A. Bigham-Sadegh, A. Oryan, Basic concepts regarding fracture healing and the current
options and future directions in managing bone fractures, Int Wound J 12(3) (2015) 238-47.
[2] D. Marolt, M. Knezevic, G.V. Novakovic, Bone tissue engineering with human stem cells,
Stem Cell Res Ther 1(2) (2010) 10.
[3] A. Oryan, S. Monazzah, A. Bigham-Sadegh, Bone Injury and Fracture Healing Biology,
Biomedical and Environmental Sciences 28(1) (2015) 57-71.
[4] H.K. Yip, K.H. Chen, N.K. Dubey, C.K. Sun, Y.H. Deng, C.W. Su, W.C. Lo, H.C. Cheng,
W.P. Deng, Cerebro- and renoprotective activities through platelet-derived biomaterials
against cerebrorenal syndrome in rat model, Biomaterials 214 (2019) 119227.
[5] The Composition of Bone, Primer on the Metabolic Bone Diseases and Disorders of
Mineral Metabolism, pp. 49-58.
[6] B. Clarke, Normal bone anatomy and physiology, Clin J Am Soc Nephrol 3 Suppl 3
(2008) S131-9.
[7] F.F. Safadi, M.F. Barbe, S.M. Abdelmagid, M.C. Rico, R.A. Aswad, J. Litvin, S.N.
Popoff, Bone Structure, Development and Bone Biology, in: J.S. Khurana (Ed.), Bone
Pathology, Humana Press, Totowa, NJ, 2009, pp. 1-50.
[8] J. Sarko, Bone and mineral metabolism, Emerg Med Clin North Am 23(3) (2005) 703-21,
viii.
[9] H. Segawa, A. Hanazaki, K. Miyamoto, [Intracellular and extracellular functions of
phosphorus compound in the body], Clin Calcium 26(2) (2016) 187-91.
[10] L.F. Bonewald, M.L. Johnson, Osteocytes, mechanosensing and Wnt signaling, Bone
42(4) (2008) 606-15.
49
[11] D.J. Hadjidakis, Androulakis, II, Bone remodeling, Ann N Y Acad Sci 1092 (2006) 385-
96.
[12] A.I. Caplan, S.P. Bruder, Mesenchymal stem cells: building blocks for molecular
medicine in the 21st century, Trends Mol Med 7(6) (2001) 259-64.
[13] M. Capulli, R. Paone, N. Rucci, Osteoblast and osteocyte: games without frontiers, Arch
Biochem Biophys 561 (2014) 3-12.
[14] T.A. Franz-Odendaal, B.K. Hall, P.E. Witten, Buried alive: how osteoblasts become
osteocytes, Dev Dyn 235(1) (2006) 176-90.
[15] N. Rosenberg, O. Rosenberg, M. Soudry, Osteoblasts in bone physiology-mini review,
Rambam Maimonides Med J 3(2) (2012) e0013.
[16] M.P. Yavropoulou, J.G. Yovos, Osteoclastogenesis--current knowledge and future
perspectives, J Musculoskelet Neuronal Interact 8(3) (2008) 204-16.
[17] C.A. Mullen, M.G. Haugh, M.B. Schaffler, R.J. Majeska, L.M. McNamara, Osteocyte
differentiation is regulated by extracellular matrix stiffness and intercellular separation, J
Mech Behav Biomed Mater 28 (2013) 183-94.
[18] A.L. Boskey, Bone composition: relationship to bone fragility and antiosteoporotic drug
effects, Bonekey Rep 2 (2013) 447.
[19] A.F. Khan, M. Awais, A.S. Khan, S. Tabassum, A.A. Chaudhry, I.U. Rehman, Raman
Spectroscopy of Natural Bone and Synthetic Apatites, Applied Spectroscopy Reviews 48(4)
(2013) 329-355.
[20] A.K. Nair, A. Gautieri, S.W. Chang, M.J. Buehler, Molecular mechanics of mineralized
collagen fibrils in bone, Nat Commun 4 (2013) 1724.
[21] M. Saito, K. Marumo, Effects of Collagen Crosslinking on Bone Material Properties in
Health and Disease, Calcif Tissue Int 97(3) (2015) 242-61.
50
[22] S. Varma, J.P. Orgel, J.D. Schieber, Nanomechanics of Type I Collagen, Biophys J
111(1) (2016) 50-6.
[23] P. Garnero, The Role of Collagen Organization on the Properties of Bone, Calcif Tissue
Int 97(3) (2015) 229-40.
[24] E.M. Rosset, A.D. Bradshaw, SPARC/osteonectin in mineralized tissue, Matrix Biol 52-
54 (2016) 78-87.
[25] A.M. Delany, M. Amling, M. Priemel, C. Howe, R. Baron, E. Canalis, Osteopenia and
decreased bone formation in osteonectin-deficient mice, J Clin Invest 105(7) (2000) 915-23.
[26] G. Luo, P. Ducy, M.D. McKee, G.J. Pinero, E. Loyer, R.R. Behringer, G. Karsenty,
Spontaneous calcification of arteries and cartilage in mice lacking matrix GLA protein,
Nature 386(6620) (1997) 78-81.
[27] N. Ramesh, S.C. Moratti, G.J. Dias, Hydroxyapatite-polymer biocomposites for bone
regeneration: A review of current trends, J Biomed Mater Res B Appl Biomater 106(5) (2018)
2046-2057.
[28] M. Tavafoghi, M. Cerruti, The role of amino acids in hydroxyapatite mineralization,
13(123) (2016) 20160462.
[29] A.K. Ulstrup, Biomechanical concepts of fracture healing in weight-bearing long bones,
Acta Orthop Belg 74(3) (2008) 291-302.
[30] R. Marsell, T.A. Einhorn, The biology of fracture healing, Injury 42(6) (2011) 551-5.
[31] M. Doblaré, J.M. Garcı́a, M.J. Gómez, Modelling bone tissue fracture and healing: a
review, Engineering Fracture Mechanics 71(13) (2004) 1809-1840.
[32] T.A. Einhorn, The science of fracture healing, J Orthop Trauma 19(10 Suppl) (2005) S4-
6.
[33] T.A. Einhorn, The cell and molecular biology of fracture healing, Clin Orthop Relat Res
(355 Suppl) (1998) S7-21.
51
[34] A. Schindeler, M.M. McDonald, P. Bokko, D.G. Little, Bone remodeling during fracture
repair: The cellular picture, Semin Cell Dev Biol 19(5) (2008) 459-66.
[35] L.C. Gerstenfeld, Y.M. Alkhiary, E.A. Krall, F.H. Nicholls, S.N. Stapleton, J.L. Fitch, M.
Bauer, R. Kayal, D.T. Graves, K.J. Jepsen, T.A. Einhorn, Three-dimensional reconstruction
of fracture callus morphogenesis, J Histochem Cytochem 54(11) (2006) 1215-28.
[36] E. Green, J.D. Lubahn, J. Evans, Risk factors, treatment, and outcomes associated with
nonunion of the midshaft humerus fracture, J Surg Orthop Adv 14(2) (2005) 64-72.
[37] H.C. Pape, P.V. Giannoudis, K. Grimme, M. van Griensven, C. Krettek, Effects of
intramedullary femoral fracture fixation: what is the impact of experimental studies in regards
to the clinical knowledge?, Shock 18(4) (2002) 291-300.
[38] S.M. Perren, Evolution of the internal fixation of long bone fractures. The scientific
basis of biological internal fixation: choosing a new balance between stability and biology, J
Bone Joint Surg Br 84(8) (2002) 1093-110.
[39] L.C. Gerstenfeld, D.M. Cullinane, G.L. Barnes, D.T. Graves, T.A. Einhorn, Fracture
healing as a post-natal developmental process: molecular, spatial, and temporal aspects of its
regulation, J Cell Biochem 88(5) (2003) 873-84.
[40] T. Kon, T.J. Cho, T. Aizawa, M. Yamazaki, N. Nooh, D. Graves, L.C. Gerstenfeld, T.A.
Einhorn, Expression of osteoprotegerin, receptor activator of NF-kappaB ligand
(osteoprotegerin ligand) and related proinflammatory cytokines during fracture healing, J
Bone Miner Res 16(6) (2001) 1004-14.
[41] S.K. Lee, J. Lorenzo, Cytokines regulating osteoclast formation and function, Curr Opin
Rheumatol 18(4) (2006) 411-8.
[42] T.J. Cho, L.C. Gerstenfeld, T.A. Einhorn, Differential temporal expression of members
of the transforming growth factor beta superfamily during murine fracture healing, J Bone
Miner Res 17(3) (2002) 513-20.
52
[43] S.M. Trivedi, C.G. Frondoza, R.L. Humphrey, Modified technique for periodic acid-
Schiff staining of glycoproteins on agarose-film electrophoretograms, Clin Chem 29(5) (1983)
836-9.
[44] R. Dimitriou, E. Tsiridis, P.V. Giannoudis, Current concepts of molecular aspects of
bone healing, Injury 36(12) (2005) 1392-404.
[45] A.J. Salgado, O.P. Coutinho, R.L. Reis, Bone tissue engineering: state of the art and
future trends, Macromol Biosci 4(8) (2004) 743-65.
[46] F. Shapiro, Cortical bone repair. The relationship of the lacunar-canalicular system and
intercellular gap junctions to the repair process, J Bone Joint Surg Am 70(7) (1988) 1067-81.
[47] C. Lu, T. Miclau, D. Hu, R.S. Marcucio, Ischemia leads to delayed union during fracture
healing: a mouse model, J Orthop Res 25(1) (2007) 51-61.
[48] T. Savaridas, R.J. Wallace, A.Y. Muir, D.M. Salter, A.H. Simpson, The development of
a novel model of direct fracture healing in the rat, Bone Joint Res 1(11) (2012) 289-96.
[49] M. Haffner-Luntzer, A. Kovtun, A.E. Rapp, A. Ignatius, Mouse Models in Bone
Fracture Healing Research, Current Molecular Biology Reports 2(2) (2016) 101-111.
[50] S. Inoue, H. Otsuka, J. Takito, M. Nakamura, Decisive differences in the bone repair
processes of the metaphysis and diaphysis in young mice, Bone Reports 8 (2018) 1-8.
[51] J.R. Perez, D. Kouroupis, D.J. Li, T.M. Best, L. Kaplan, D. Correa, Tissue Engineering
and Cell-Based Therapies for Fractures and Bone Defects, Front Bioeng Biotechnol 6 (2018)
105.
[52] P. Rosset, F. Deschaseaux, P. Layrolle, Cell therapy for bone repair, Orthop Traumatol
Surg Res 100(1 Suppl) (2014) S107-12.
[53] S. Kumar, Bone defect repair in mice by mesenchymal stem cells, Methods Mol Biol
1213 (2014) 193-207.
53
[54] X. Wang, C. Wang, W. Gou, X. Xu, Y. Wang, A. Wang, W. Xu, Q. Guo, S. Liu, Q. Lu,
H. Meng, M. Yuan, J. Peng, S. Lu, The optimal time to inject bone mesenchymal stem cells
for fracture healing in a murine model, Stem Cell Research & Therapy 9(1) (2018) 272.
[55] N.H. Truong, N.H. Nguyen, T.V. Le, N.B. Vu, N. Huynh, T.V. Nguyen, H.M. Le, N.K.
Phan, P.V. Pham, Comparison of the Treatment Efficiency of Bone Marrow-Derived
Mesenchymal Stem Cell Transplantation via Tail and Portal Veins in CCl4-
Induced Mouse Liver Fibrosis, Stem Cells International 2016 (2016) 5720413.
[56] F. Granero-Molto, J.A. Weis, M.I. Miga, B. Landis, T.J. Myers, L. O'Rear, L.
Longobardi, E.D. Jansen, D.P. Mortlock, A. Spagnoli, Regenerative effects of transplanted
mesenchymal stem cells in fracture healing, Stem Cells 27(8) (2009) 1887-98.
[57] Y. Safarova, B. Umbayev, G. Hortelano, S. Askarova, Mesenchymal stem cells
modifications for enhanced bone targeting and bone regeneration, 15(4) (2020) 1579-1594.
[58] Y. Yoshida, H. Matsubara, X. Fang, K. Hayashi, I. Nomura, S. Ugaji, T. Hamada, H.
Tsuchiya, Adipose-derived stem cell sheets accelerate bone healing in rat femoral defects,
PLoS One 14(3) (2019) e0214488.
[59] H. Zhang, A. Kot, Y.E. Lay, F.A. Fierro, H. Chen, N.E. Lane, W. Yao, Acceleration of
Fracture Healing by Overexpression of Basic Fibroblast Growth Factor in the Mesenchymal
Stromal Cells, Stem Cells Transl Med 6(10) (2017) 1880-1893.
[60] W. Yao, Y.-A.E. Lay, A. Kot, R. Liu, H. Zhang, H. Chen, K. Lam, N.E. Lane, Improved
Mobilization of Exogenous Mesenchymal Stem Cells to Bone for Fracture Healing and Sex
Difference, 34(10) (2016) 2587-2600.
[61] T. Kotani, R. Masutani, T. Suzuka, K. Oda, S. Makino, M. Ii, Anti-inflammatory and
anti-fibrotic effects of intravenous adipose-derived stem cell transplantation in a mouse
model of bleomycin-induced interstitial pneumonia, Scientific Reports 7(1) (2017) 14608.
54
[62] C. Lv, T. Zhang, K. Li, K. Gao, Bone marrow mesenchymal stem cells improve spinal
function of spinal cord injury in rats via TGF-β/Smads signaling pathway, Exp Ther Med
19(6) (2020) 3657-3663.
[63] K. Taguchi, R. Ogawa, M. Migita, H. Hanawa, H. Ito, H. Orimo, The role of bone
marrow-derived cells in bone fracture repair in a green fluorescent protein chimeric mouse
model, Biochem Biophys Res Commun 331(1) (2005) 31-6.
[64] C.-H. Chiu, T.-H. Chang, S.-S. Chang, G.-J. Chang, A.C.-Y. Chen, C.-Y. Cheng, S.-C.
Chen, J.-F. Fu, C.-J. Wen, Y.-S. Chan, Application of Bone Marrow–Derived Mesenchymal
Stem Cells for Muscle Healing After Contusion Injury in Mice, 48(5) (2020) 1226-1235.
[65] M.J. Devine, C.M. Mierisch, E. Jang, P.C. Anderson, G. Balian, Transplanted bone
marrow cells localize to fracture callus in a mouse model, 20(6) (2002) 1232-1239.
[66] W. Cheng, Q. Ge, L. Wan, X. Wang, X. Chen, X. Wu, A method to establish a mouse
model of bone marrow microenvironment injury, Exp Anim 66(4) (2017) 329-336.
[67] Y. Fujii, Y. Kawase-Koga, H. Hojo, F. Yano, M. Sato, U.-I. Chung, S. Ohba, D. Chikazu,
Bone regeneration by human dental pulp stem cells using a helioxanthin derivative and cellsheet
technology, Stem cell research & therapy 9(1) (2018) 24-24.
[68] S.H. Zainal Ariffin, S. Kermani, R. Megat Abdul Wahab, S. Senafi, Z. Zainal Ariffin, M.
Abdul Razak, In Vitro Chondrogenesis Transformation Study of Mouse Dental Pulp
Stem Cells, The Scientific World Journal 2012 (2012) 827149.
[69] C. Zhang, Y. Zhang, Z. Feng, F. Zhang, Z. Liu, X. Sun, M. Ruan, M. Liu, S. Jin,
Therapeutic effect of dental pulp stem cell transplantation on a rat model of radioactivityinduced
esophageal injury, Cell Death & Disease 9(7) (2018) 738.
[70] J.T. Taiani, H.R. Buie, G.M. Campbell, S.L. Manske, R.J. Krawetz, D.E. Rancourt, S.K.
Boyd, J.R. Matyas, Embryonic stem cell therapy improves bone quality in a model of
55
impaired fracture healing in the mouse; tracked temporally using in vivo micro-CT, Bone 64
(2014) 263-272.
[71] G. Guasch, E. Fuchs, Mice in the world of stem cell biology, Nat Genet 37(11) (2005)
1201-1206.
[72] S. Uto, S. Nishizawa, Y. Takasawa, Y. Asawa, Y. Fujihara, T. Takato, K. Hoshi, Bone
and cartilage repair by transplantation of induced pluripotent stem cells in murine joint defect
model, Biomed Res 34(6) (2013) 281-8.
[73] S. Komura, T. Satake, A. Goto, H. Aoki, H. Shibata, K. Ito, A. Hirakawa, Y. Yamada, H.
Akiyama, Induced pluripotent stem cell-derived tenocyte-like cells promote the regeneration
of injured tendons in mice, Scientific Reports 10(1) (2020) 3992.
[74] P. Limraksasin, T. Kondo, M. Zhang, H. Okawa, T. Osathanon, P. Pavasant, H. Egusa,
In Vitro Fabrication of Hybrid Bone/Cartilage Complex Using Mouse Induced Pluripotent
Stem Cells, Int J Mol Sci 21(2) (2020) 581.
[75] M. Csobonyeiova, S. Polak, R. Zamborsky, L. Danisovic, iPS cell technologies and their
prospect for bone regeneration and disease modeling: A mini review, Journal of Advanced
Research 8(4) (2017) 321-327.
[76] J.A. Thomson, J. Itskovitz-Eldor, S.S. Shapiro, M.A. Waknitz, J.J. Swiergiel, V.S.
Marshall, J.M. Jones, Embryonic stem cell lines derived from human blastocysts, Science
(New York, N.Y.) 282(5391) (1998) 1145-7.
[77] O. Rossi, O. Barbieri, G. Frosina, Time-course of spontaneous transformation of CD-1
mouse embryonic fibroblasts, Anticancer Res 23(2B) (2003) 1373-7.
[78] G.J. Schmid, C. Kobayashi, L.J. Sandell, D.M. Ornitz, Fibroblast growth factor
expression during skeletal fracture healing in mice, Developmental dynamics : an official
publication of the American Association of Anatomists 238(3) (2009) 766-774.
56
[79] P.K. Singhal, S. Sassi, L. Lan, P. Au, S.C. Halvorsen, D. Fukumura, R.K. Jain, B. Seed,
Mouse embryonic fibroblasts exhibit extensive developmental and phenotypic diversity,
113(1) (2016) 122-127.
[80] P. Charoenlarp, A.K. Rajendran, S. Iseki, Role of fibroblast growth factors in bone
regeneration, Inflammation and Regeneration 37(1) (2017) 10.
[81] D.S. Steinbrech, B.J. Mehrara, N.M. Rowe, M.E. Dudziak, J.S. Luchs, P.B. Saadeh, G.K.
Gittes, M.T. Longaker, Gene expression of TGF-beta, TGF-beta receptor, and extracellular
matrix proteins during membranous bone healing in rats, Plastic and reconstructive surgery
105(6) (2000) 2028-38.
[82] I. Blumenfeld, S. Srouji, Y. Lanir, D. Laufer, E. Livne, Enhancement of bone defect
healing in old rats by TGF-beta and IGF-1, Experimental gerontology 37(4) (2002) 553-65.
[83] I. Dumic-Cule, M. Peric, L. Kucko, L. Grgurevic, M. Pecina, S. Vukicevic, Bone
morphogenetic proteins in fracture repair, International Orthopaedics 42(11) (2018) 2619-
2626.
[84] A.S. Spiro, F.T. Beil, A. Baranowsky, F. Barvencik, A.F. Schilling, K. Nguyen, S.
Khadem, S. Seitz, J.M. Rueger, T. Schinke, M. Amling, BMP-7-induced ectopic bone
formation and fracture healing is impaired by systemic NSAID application in C57BL/6-mice,
J Orthop Res 28(6) (2010) 785-91.
[85] K. Huang, G. Wu, J. Zou, S. Peng, Combination therapy with BMP‑ 2 and psoralen
enhances fracture healing in ovariectomized mice, Exp Ther Med 16(3) (2018) 1655-1662.
[86] G. Kesler, D.K. Shvero, Y.S. Tov, G. Romanos, Platelet derived growth factor secretion
and bone healing after Er:YAG laser bone irradiation, The Journal of oral implantology 37
Spec No (2011) 195-204.
[87] S.-y. Gao, R.-b. Lin, S.-h. Huang, Y.-j. Liang, X. Li, S.-e. Zhang, D.-q. Ouyang, K. Li,
G.-s. Zheng, G.-q. Liao, PDGF-BB exhibited therapeutic effects on rat model of
57
bisphosphonate-related osteonecrosis of the jaw by enhancing angiogenesis and osteogenesis,
Bone (2019) 115117.
[88] D.M. Ranly, J. McMillan, T. Keller, C.H. Lohmann, T. Meunch, D.L. Cochran, Z.
Schwartz, B.D. Boyan, Platelet-derived growth factor inhibits demineralized bone matrixinduced
intramuscular cartilage and bone formation. A study of immunocompromised mice, J
Bone Joint Surg Am 87(9) (2005) 2052-64.
[89] P. Charoenlarp, A.K. Rajendran, S. Iseki, Role of fibroblast growth factors in bone
regeneration, Inflammation and regeneration 37 (2017) 10-10.
[90] N. Su, M. Jin, L. Chen, Role of FGF/FGFR signaling in skeletal development and
homeostasis: learning from mouse models, Bone Research 2(1) (2014) 14003.
[91] E. Landi, A. Tampieri, G. Celotti, S. Sprio, M. Sandri, G. Logroscino, Sr-substituted
hydroxyapatites for osteoporotic bone replacement, Acta biomaterialia 3(6) (2007) 961-9.
[92] V. Martin, A. Bettencourt, Bone regeneration: Biomaterials as local delivery systems
with improved osteoinductive properties, Materials science & engineering. C, Materials for
biological applications 82 (2018) 363-371.
[93] A. Oryan, S. Alidadi, A. Moshiri, N. Maffulli, Bone regenerative medicine: classic
options, novel strategies, and future directions, Journal of orthopaedic surgery and research
9(1) (2014) 18.
[94] P. Rozman, Z. Bolta, Use of platelet growth factors in treating wounds and soft-tissue
injuries, Acta dermatovenerologica Alpina, Pannonica, et Adriatica 16(4) (2007) 156-65.
[95] R.E. Marx, Platelet-rich plasma: evidence to support its use, Journal of oral and
maxillofacial surgery : official journal of the American Association of Oral and Maxillofacial
Surgeons 62(4) (2004) 489-96.
58
[96] T.E. Foster, B.L. Puskas, B.R. Mandelbaum, M.B. Gerhardt, S.A. Rodeo, Platelet-rich
plasma: from basic science to clinical applications, The American journal of sports medicine
37(11) (2009) 2259-72.
[97] R.E. Marx, Platelet-rich plasma (PRP): what is PRP and what is not PRP?, Implant
dentistry 10(4) (2001) 225-8.
[98] E. Anitua, I. Andia, B. Ardanza, P. Nurden, A.T. Nurden, Autologous platelets as a
source of proteins for healing and tissue regeneration, Thrombosis and haemostasis 91(1)
(2004) 4-15.
[99] G.M. Calori, E. Mazza, M. Colombo, C. Ripamonti, The use of bone-graft substitutes in
large bone defects: any specific needs?, Injury 42 Suppl 2 (2011) S56-63.
[100] D.J. Hak, The use of osteoconductive bone graft substitutes in orthopaedic trauma, The
Journal of the American Academy of Orthopaedic Surgeons 15(9) (2007) 525-36.
[101] G.A. Zimmerman, T.M. McIntyre, S.M. Prescott, D.M. Stafforini, The plateletactivating
factor signaling system and its regulators in syndromes of inflammation and
thrombosis, Critical care medicine 30(5 Suppl) (2002) S294-301.
[102] C.M. Chesney, D.D. Pifer, L.W. Byers, E.E. Muirhead, Effect of platelet-activating
factor (PAF) on human platelets, Blood 59(3) (1982) 582-5.
[103] K. Jurk, B.E. Kehrel, Platelets: physiology and biochemistry, Seminars in thrombosis
and hemostasis 31(4) (2005) 381-92.
[104] J.P. David, G. Schett, TNF and bone, Current directions in autoimmunity 11 (2010)
135-44.
[105] A.S. Cachaço, T. Carvalho, A.C. Santos, C. Igreja, R. Fragoso, C. Osório, M. Ferreira,
J. Serpa, S. Correia, O.P. Pinto-do, S. Dias, TNF-alpha regulates the effects of irradiation in
the mouse bone marrow microenvironment, PLoS One 5(2) (2010) e8980.
59
[106] D.N. Lyras, K. Kazakos, D. Verettas, S. Botaitis, G. Agrogiannis, A. Kokka, M.
Pitiakoudis, A. Kotzakaris, The effect of platelet-rich plasma gel in the early phase of patellar
tendon healing, Archives of orthopaedic and trauma surgery 129(11) (2009) 1577-82.
[107] D.W. Taylor, M. Petrera, M. Hendry, J.S. Theodoropoulos, A systematic review of the
use of platelet-rich plasma in sports medicine as a new treatment for tendon and ligament
injuries, Clinical journal of sport medicine : official journal of the Canadian Academy of
Sport Medicine 21(4) (2011) 344-52.
[108] P. Sharma, N. Maffulli, Tendon injury and tendinopathy: healing and repair, J Bone
Joint Surg Am 87(1) (2005) 187-202.
[109] W.S. Pietrzak, B.L. Eppley, Platelet rich plasma: biology and new technology, The
Journal of craniofacial surgery 16(6) (2005) 1043-54.
[110] J. van den Dolder, R. Mooren, A.P. Vloon, P.J. Stoelinga, J.A. Jansen, Platelet-rich
plasma: quantification of growth factor levels and the effect on growth and differentiation of
rat bone marrow cells, Tissue engineering 12(11) (2006) 3067-73.
[111] J. Alsousou, M. Thompson, P. Hulley, A. Noble, K. Willett, The biology of plateletrich
plasma and its application in trauma and orthopaedic surgery: a review of the literature, J
Bone Joint Surg Br 91(8) (2009) 987-96.
[112] R.J. Salib, Transforming growth factor-beta gene expression studies in nasal mucosal
biopsies in naturally occurring allergic rhinitis, Annals of the Royal College of Surgeons of
England 89(6) (2007) 563-73.
[113] D. Nikolidakis, J.A. Jansen, The biology of platelet-rich plasma and its application in
oral surgery: literature review, Tissue engineering. Part B, Reviews 14(3) (2008) 249-58.
[114] C.H. Heldin, K. Miyazono, P. ten Dijke, TGF-beta signalling from cell membrane to
nucleus through SMAD proteins, Nature 390(6659) (1997) 465-71.
60
[115] S. Weiss, G. Zimmermann, T. Pufe, D. Varoga, P. Henle, The systemic angiogenic
response during bone healing, Archives of orthopaedic and trauma surgery 129(7) (2009)
989-97.
[116] S. Panseri, A. Russo, C. Cunha, A. Bondi, A. Di Martino, S. Patella, E. Kon,
Osteochondral tissue engineering approaches for articular cartilage and subchondral bone
regeneration, Knee surgery, sports traumatology, arthroscopy : official journal of the ESSKA
20(6) (2012) 1182-91.
[117] L.F. Bonewald, G.R. Mundy, Role of transforming growth factor-beta in bone
remodeling, Clin Orthop Relat Res (250) (1990) 261-76.
[118] B.K. Joseph, N.W. Savage, T.J. Daley, W.G. Young, In situ hybridization evidence for
a paracrine/autocrine role for insulin-like growth factor-I in tooth development, Growth
factors (Chur, Switzerland) 13(1-2) (1996) 11-7.
[119] S. Mohan, D.J. Baylink, IGF-binding proteins are multifunctional and act via IGFdependent
and -independent mechanisms, The Journal of endocrinology 175(1) (2002) 19-31.
[120] K.E. Govoni, D.J. Baylink, S. Mohan, The multi-functional role of insulin-like growth
factor binding proteins in bone, Pediatric nephrology (Berlin, Germany) 20(3) (2005) 261-8.
[121] B. Behr, C. Tang, G. Germann, M.T. Longaker, N. Quarto, Locally applied vascular
endothelial growth factor A increases the osteogenic healing capacity of human adiposederived
stem cells by promoting osteogenic and endothelial differentiation, Stem Cells 29(2)
(2011) 286-96.
[122] J.H. Holstein, S.C. Becker, M. Fiedler, P. Garcia, T. Histing, M. Klein, M.W. Laschke,
M. Corsten, T. Pohlemann, M.D. Menger, Intravital microscopic studies of angiogenesis
during bone defect healing in mice calvaria, Injury 42(8) (2011) 765-71.
[123] B. Li, J.H. Wang, Fibroblasts and myofibroblasts in wound healing: force generation
and measurement, J Tissue Viability 20(4) (2011) 108-20.
61
[124] P. Su, Y. Tian, C. Yang, X. Ma, X. Wang, J. Pei, A. Qian, Mesenchymal Stem Cell
Migration during Bone Formation and Bone Diseases Therapy, Int J Mol Sci 19(8) (2018).
[125] J.C. Chen, B.B. Lin, H.W. Hu, C. Lin, W.Y. Jin, F.B. Zhang, Y.A. Zhu, C.J. Lu, X.J.
Wei, R.J. Chen, NGF accelerates cutaneous wound healing by promoting the migration of
dermal fibroblasts via the PI3K/Akt-Rac1-JNK and ERK pathways, Biomed Res Int 2014
(2014) 547187.
[126] M.N. Walter, K.T. Wright, H.R. Fuller, S. MacNeil, W.E. Johnson, Mesenchymal stem
cell-conditioned medium accelerates skin wound healing: an in vitro study of fibroblast and
keratinocyte scratch assays, Exp Cell Res 316(7) (2010) 1271-81.
[127] T. Genova, S. Petrillo, E. Zicola, I. Roato, R. Ferracini, E. Tolosano, F. Altruda, S.
Carossa, F. Mussano, L. Munaron, The Crosstalk Between Osteodifferentiating Stem Cells
and Endothelial Cells Promotes Angiogenesis and Bone Formation, Front Physiol 10 (2019)
1291.
[128] Y. Li, J. Huard, Differentiation of muscle-derived cells into myofibroblasts in injured
skeletal muscle, Am J Pathol 161(3) (2002) 895-907.
[129] Y. Shirai, K. Kawabe, I. Tosa, S. Tsukamoto, D. Yamada, T. Takarada, Runx2 function
in cells of neural crest origin during intramembranous ossification, Biochemical and
Biophysical Research Communications 509(4) (2019) 1028-1033.
[130] T. Fujita, Y. Azuma, R. Fukuyama, Y. Hattori, C. Yoshida, M. Koida, K. Ogita, T.
Komori, Runx2 induces osteoblast and chondrocyte differentiation and enhances their
migration by coupling with PI3K-Akt signaling, J Cell Biol 166(1) (2004) 85-95.
[131] H.Y. Liu, M.C. Liu, M.F. Wang, W.H. Chen, C.Y. Tsai, K.H. Wu, C.T. Lin, Y.H.
Shieh, R. Zeng, W.P. Deng, Potential Osteoporosis Recovery by Deep Sea Water through
Bone Regeneration in SAMP8 Mice, Evid Based Complement Alternat Med 2013 (2013)
161976.
62
[132] H.-J.W. Navneet Kumar Dubey, Sung-Hsun Yu, David F. Williams, Joseph R. Wang,
Yue-Hua Deng, Feng-Chou Tsai, Peter D. Wang, Win-Ping Deng, Adipose-derived Stem
Cells Attenuates Diabetic Osteoarthritis via Inhibition of Glycation-mediated Inflammatory
Cascade, 10(3) (2019) 483-496.
[133] J.T. Parsons, Focal adhesion kinase: the first ten years, J Cell Sci 116(Pt 8) (2003)
1409-16.
[134] H.C. Chen, P.A. Appeddu, H. Isoda, J.L. Guan, Phosphorylation of tyrosine 397 in
focal adhesion kinase is required for binding phosphatidylinositol 3-kinase, J Biol Chem
271(42) (1996) 26329-34.
[135] R. Palumbo, F. De Marchis, T. Pusterla, A. Conti, M. Alessio, M.E. Bianchi, Src family
kinases are necessary for cell migration induced by extracellular HMGB1, J Leukoc Biol
86(3) (2009) 617-23.
[136] J.Q. Bu, F. Chen, TGF-beta1 promotes cells invasion and migration by inducing
epithelial mesenchymal transformation in oral squamous cell carcinoma, Eur Rev Med
Pharmacol Sci 21(9) (2017) 2137-2144.
[137] J. Li, W. Guo, M. Xiong, H. Han, J. Chen, D. Mao, B. Tang, H. Yu, Y. Zeng, Effect of
SDF-1/CXCR4 axis on the migration of transplanted bone mesenchymal stem cells mobilized
by erythropoietin toward lesion sites following spinal cord injury, Int J Mol Med 36(5) (2015)
1205-1214.
[138] S.K. Ghadge, S. Mühlstedt, C. Ö zcelik, M. Bader, SDF-1α as a therapeutic stem cell
homing factor in myocardial infarction, Pharmacology & Therapeutics 129(1) (2011) 97-108.
[139] Y. Wang, Y. Deng, G.-Q. Zhou, SDF-1α/CXCR4-mediated migration of systemically
transplanted bone marrow stromal cells towards ischemic brain lesion in a rat model, Brain
Research 1195 (2008) 104-112.
63
[140] Y. Jiang, J. Zhao, P. Augat, X. Ouyang, Y. Lu, S. Majumdar, H.K. Genant, Trabecular
bone mineral and calculated structure of human bone specimens scanned by peripheral
quantitative computed tomography: relation to biomechanical properties, J Bone Miner Res
13(11) (1998) 1783-90.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top