|
References [1] A. Bigham-Sadegh, A. Oryan, Basic concepts regarding fracture healing and the current options and future directions in managing bone fractures, Int Wound J 12(3) (2015) 238-47. [2] D. Marolt, M. Knezevic, G.V. Novakovic, Bone tissue engineering with human stem cells, Stem Cell Res Ther 1(2) (2010) 10. [3] A. Oryan, S. Monazzah, A. Bigham-Sadegh, Bone Injury and Fracture Healing Biology, Biomedical and Environmental Sciences 28(1) (2015) 57-71. [4] H.K. Yip, K.H. Chen, N.K. Dubey, C.K. Sun, Y.H. Deng, C.W. Su, W.C. Lo, H.C. Cheng, W.P. Deng, Cerebro- and renoprotective activities through platelet-derived biomaterials against cerebrorenal syndrome in rat model, Biomaterials 214 (2019) 119227. [5] The Composition of Bone, Primer on the Metabolic Bone Diseases and Disorders of Mineral Metabolism, pp. 49-58. [6] B. Clarke, Normal bone anatomy and physiology, Clin J Am Soc Nephrol 3 Suppl 3 (2008) S131-9. [7] F.F. Safadi, M.F. Barbe, S.M. Abdelmagid, M.C. Rico, R.A. Aswad, J. Litvin, S.N. Popoff, Bone Structure, Development and Bone Biology, in: J.S. Khurana (Ed.), Bone Pathology, Humana Press, Totowa, NJ, 2009, pp. 1-50. [8] J. Sarko, Bone and mineral metabolism, Emerg Med Clin North Am 23(3) (2005) 703-21, viii. [9] H. Segawa, A. Hanazaki, K. Miyamoto, [Intracellular and extracellular functions of phosphorus compound in the body], Clin Calcium 26(2) (2016) 187-91. [10] L.F. Bonewald, M.L. Johnson, Osteocytes, mechanosensing and Wnt signaling, Bone 42(4) (2008) 606-15. 49 [11] D.J. Hadjidakis, Androulakis, II, Bone remodeling, Ann N Y Acad Sci 1092 (2006) 385- 96. [12] A.I. Caplan, S.P. Bruder, Mesenchymal stem cells: building blocks for molecular medicine in the 21st century, Trends Mol Med 7(6) (2001) 259-64. [13] M. Capulli, R. Paone, N. Rucci, Osteoblast and osteocyte: games without frontiers, Arch Biochem Biophys 561 (2014) 3-12. [14] T.A. Franz-Odendaal, B.K. Hall, P.E. Witten, Buried alive: how osteoblasts become osteocytes, Dev Dyn 235(1) (2006) 176-90. [15] N. Rosenberg, O. Rosenberg, M. Soudry, Osteoblasts in bone physiology-mini review, Rambam Maimonides Med J 3(2) (2012) e0013. [16] M.P. Yavropoulou, J.G. Yovos, Osteoclastogenesis--current knowledge and future perspectives, J Musculoskelet Neuronal Interact 8(3) (2008) 204-16. [17] C.A. Mullen, M.G. Haugh, M.B. Schaffler, R.J. Majeska, L.M. McNamara, Osteocyte differentiation is regulated by extracellular matrix stiffness and intercellular separation, J Mech Behav Biomed Mater 28 (2013) 183-94. [18] A.L. Boskey, Bone composition: relationship to bone fragility and antiosteoporotic drug effects, Bonekey Rep 2 (2013) 447. [19] A.F. Khan, M. Awais, A.S. Khan, S. Tabassum, A.A. Chaudhry, I.U. Rehman, Raman Spectroscopy of Natural Bone and Synthetic Apatites, Applied Spectroscopy Reviews 48(4) (2013) 329-355. [20] A.K. Nair, A. Gautieri, S.W. Chang, M.J. Buehler, Molecular mechanics of mineralized collagen fibrils in bone, Nat Commun 4 (2013) 1724. [21] M. Saito, K. Marumo, Effects of Collagen Crosslinking on Bone Material Properties in Health and Disease, Calcif Tissue Int 97(3) (2015) 242-61. 50 [22] S. Varma, J.P. Orgel, J.D. Schieber, Nanomechanics of Type I Collagen, Biophys J 111(1) (2016) 50-6. [23] P. Garnero, The Role of Collagen Organization on the Properties of Bone, Calcif Tissue Int 97(3) (2015) 229-40. [24] E.M. Rosset, A.D. Bradshaw, SPARC/osteonectin in mineralized tissue, Matrix Biol 52- 54 (2016) 78-87. [25] A.M. Delany, M. Amling, M. Priemel, C. Howe, R. Baron, E. Canalis, Osteopenia and decreased bone formation in osteonectin-deficient mice, J Clin Invest 105(7) (2000) 915-23. [26] G. Luo, P. Ducy, M.D. McKee, G.J. Pinero, E. Loyer, R.R. Behringer, G. Karsenty, Spontaneous calcification of arteries and cartilage in mice lacking matrix GLA protein, Nature 386(6620) (1997) 78-81. [27] N. Ramesh, S.C. Moratti, G.J. Dias, Hydroxyapatite-polymer biocomposites for bone regeneration: A review of current trends, J Biomed Mater Res B Appl Biomater 106(5) (2018) 2046-2057. [28] M. Tavafoghi, M. Cerruti, The role of amino acids in hydroxyapatite mineralization, 13(123) (2016) 20160462. [29] A.K. Ulstrup, Biomechanical concepts of fracture healing in weight-bearing long bones, Acta Orthop Belg 74(3) (2008) 291-302. [30] R. Marsell, T.A. Einhorn, The biology of fracture healing, Injury 42(6) (2011) 551-5. [31] M. Doblaré, J.M. Garcı́a, M.J. Gómez, Modelling bone tissue fracture and healing: a review, Engineering Fracture Mechanics 71(13) (2004) 1809-1840. [32] T.A. Einhorn, The science of fracture healing, J Orthop Trauma 19(10 Suppl) (2005) S4- 6. [33] T.A. Einhorn, The cell and molecular biology of fracture healing, Clin Orthop Relat Res (355 Suppl) (1998) S7-21. 51 [34] A. Schindeler, M.M. McDonald, P. Bokko, D.G. Little, Bone remodeling during fracture repair: The cellular picture, Semin Cell Dev Biol 19(5) (2008) 459-66. [35] L.C. Gerstenfeld, Y.M. Alkhiary, E.A. Krall, F.H. Nicholls, S.N. Stapleton, J.L. Fitch, M. Bauer, R. Kayal, D.T. Graves, K.J. Jepsen, T.A. Einhorn, Three-dimensional reconstruction of fracture callus morphogenesis, J Histochem Cytochem 54(11) (2006) 1215-28. [36] E. Green, J.D. Lubahn, J. Evans, Risk factors, treatment, and outcomes associated with nonunion of the midshaft humerus fracture, J Surg Orthop Adv 14(2) (2005) 64-72. [37] H.C. Pape, P.V. Giannoudis, K. Grimme, M. van Griensven, C. Krettek, Effects of intramedullary femoral fracture fixation: what is the impact of experimental studies in regards to the clinical knowledge?, Shock 18(4) (2002) 291-300. [38] S.M. Perren, Evolution of the internal fixation of long bone fractures. The scientific basis of biological internal fixation: choosing a new balance between stability and biology, J Bone Joint Surg Br 84(8) (2002) 1093-110. [39] L.C. Gerstenfeld, D.M. Cullinane, G.L. Barnes, D.T. Graves, T.A. Einhorn, Fracture healing as a post-natal developmental process: molecular, spatial, and temporal aspects of its regulation, J Cell Biochem 88(5) (2003) 873-84. [40] T. Kon, T.J. Cho, T. Aizawa, M. Yamazaki, N. Nooh, D. Graves, L.C. Gerstenfeld, T.A. Einhorn, Expression of osteoprotegerin, receptor activator of NF-kappaB ligand (osteoprotegerin ligand) and related proinflammatory cytokines during fracture healing, J Bone Miner Res 16(6) (2001) 1004-14. [41] S.K. Lee, J. Lorenzo, Cytokines regulating osteoclast formation and function, Curr Opin Rheumatol 18(4) (2006) 411-8. [42] T.J. Cho, L.C. Gerstenfeld, T.A. Einhorn, Differential temporal expression of members of the transforming growth factor beta superfamily during murine fracture healing, J Bone Miner Res 17(3) (2002) 513-20. 52 [43] S.M. Trivedi, C.G. Frondoza, R.L. Humphrey, Modified technique for periodic acid- Schiff staining of glycoproteins on agarose-film electrophoretograms, Clin Chem 29(5) (1983) 836-9. [44] R. Dimitriou, E. Tsiridis, P.V. Giannoudis, Current concepts of molecular aspects of bone healing, Injury 36(12) (2005) 1392-404. [45] A.J. Salgado, O.P. Coutinho, R.L. Reis, Bone tissue engineering: state of the art and future trends, Macromol Biosci 4(8) (2004) 743-65. [46] F. Shapiro, Cortical bone repair. The relationship of the lacunar-canalicular system and intercellular gap junctions to the repair process, J Bone Joint Surg Am 70(7) (1988) 1067-81. [47] C. Lu, T. Miclau, D. Hu, R.S. Marcucio, Ischemia leads to delayed union during fracture healing: a mouse model, J Orthop Res 25(1) (2007) 51-61. [48] T. Savaridas, R.J. Wallace, A.Y. Muir, D.M. Salter, A.H. Simpson, The development of a novel model of direct fracture healing in the rat, Bone Joint Res 1(11) (2012) 289-96. [49] M. Haffner-Luntzer, A. Kovtun, A.E. Rapp, A. Ignatius, Mouse Models in Bone Fracture Healing Research, Current Molecular Biology Reports 2(2) (2016) 101-111. [50] S. Inoue, H. Otsuka, J. Takito, M. Nakamura, Decisive differences in the bone repair processes of the metaphysis and diaphysis in young mice, Bone Reports 8 (2018) 1-8. [51] J.R. Perez, D. Kouroupis, D.J. Li, T.M. Best, L. Kaplan, D. Correa, Tissue Engineering and Cell-Based Therapies for Fractures and Bone Defects, Front Bioeng Biotechnol 6 (2018) 105. [52] P. Rosset, F. Deschaseaux, P. Layrolle, Cell therapy for bone repair, Orthop Traumatol Surg Res 100(1 Suppl) (2014) S107-12. [53] S. Kumar, Bone defect repair in mice by mesenchymal stem cells, Methods Mol Biol 1213 (2014) 193-207. 53 [54] X. Wang, C. Wang, W. Gou, X. Xu, Y. Wang, A. Wang, W. Xu, Q. Guo, S. Liu, Q. Lu, H. Meng, M. Yuan, J. Peng, S. Lu, The optimal time to inject bone mesenchymal stem cells for fracture healing in a murine model, Stem Cell Research & Therapy 9(1) (2018) 272. [55] N.H. Truong, N.H. Nguyen, T.V. Le, N.B. Vu, N. Huynh, T.V. Nguyen, H.M. Le, N.K. Phan, P.V. Pham, Comparison of the Treatment Efficiency of Bone Marrow-Derived Mesenchymal Stem Cell Transplantation via Tail and Portal Veins in CCl4- Induced Mouse Liver Fibrosis, Stem Cells International 2016 (2016) 5720413. [56] F. Granero-Molto, J.A. Weis, M.I. Miga, B. Landis, T.J. Myers, L. O'Rear, L. Longobardi, E.D. Jansen, D.P. Mortlock, A. Spagnoli, Regenerative effects of transplanted mesenchymal stem cells in fracture healing, Stem Cells 27(8) (2009) 1887-98. [57] Y. Safarova, B. Umbayev, G. Hortelano, S. Askarova, Mesenchymal stem cells modifications for enhanced bone targeting and bone regeneration, 15(4) (2020) 1579-1594. [58] Y. Yoshida, H. Matsubara, X. Fang, K. Hayashi, I. Nomura, S. Ugaji, T. Hamada, H. Tsuchiya, Adipose-derived stem cell sheets accelerate bone healing in rat femoral defects, PLoS One 14(3) (2019) e0214488. [59] H. Zhang, A. Kot, Y.E. Lay, F.A. Fierro, H. Chen, N.E. Lane, W. Yao, Acceleration of Fracture Healing by Overexpression of Basic Fibroblast Growth Factor in the Mesenchymal Stromal Cells, Stem Cells Transl Med 6(10) (2017) 1880-1893. [60] W. Yao, Y.-A.E. Lay, A. Kot, R. Liu, H. Zhang, H. Chen, K. Lam, N.E. Lane, Improved Mobilization of Exogenous Mesenchymal Stem Cells to Bone for Fracture Healing and Sex Difference, 34(10) (2016) 2587-2600. [61] T. Kotani, R. Masutani, T. Suzuka, K. Oda, S. Makino, M. Ii, Anti-inflammatory and anti-fibrotic effects of intravenous adipose-derived stem cell transplantation in a mouse model of bleomycin-induced interstitial pneumonia, Scientific Reports 7(1) (2017) 14608. 54 [62] C. Lv, T. Zhang, K. Li, K. Gao, Bone marrow mesenchymal stem cells improve spinal function of spinal cord injury in rats via TGF-β/Smads signaling pathway, Exp Ther Med 19(6) (2020) 3657-3663. [63] K. Taguchi, R. Ogawa, M. Migita, H. Hanawa, H. Ito, H. Orimo, The role of bone marrow-derived cells in bone fracture repair in a green fluorescent protein chimeric mouse model, Biochem Biophys Res Commun 331(1) (2005) 31-6. [64] C.-H. Chiu, T.-H. Chang, S.-S. Chang, G.-J. Chang, A.C.-Y. Chen, C.-Y. Cheng, S.-C. Chen, J.-F. Fu, C.-J. Wen, Y.-S. Chan, Application of Bone Marrow–Derived Mesenchymal Stem Cells for Muscle Healing After Contusion Injury in Mice, 48(5) (2020) 1226-1235. [65] M.J. Devine, C.M. Mierisch, E. Jang, P.C. Anderson, G. Balian, Transplanted bone marrow cells localize to fracture callus in a mouse model, 20(6) (2002) 1232-1239. [66] W. Cheng, Q. Ge, L. Wan, X. Wang, X. Chen, X. Wu, A method to establish a mouse model of bone marrow microenvironment injury, Exp Anim 66(4) (2017) 329-336. [67] Y. Fujii, Y. Kawase-Koga, H. Hojo, F. Yano, M. Sato, U.-I. Chung, S. Ohba, D. Chikazu, Bone regeneration by human dental pulp stem cells using a helioxanthin derivative and cellsheet technology, Stem cell research & therapy 9(1) (2018) 24-24. [68] S.H. Zainal Ariffin, S. Kermani, R. Megat Abdul Wahab, S. Senafi, Z. Zainal Ariffin, M. Abdul Razak, In Vitro Chondrogenesis Transformation Study of Mouse Dental Pulp Stem Cells, The Scientific World Journal 2012 (2012) 827149. [69] C. Zhang, Y. Zhang, Z. Feng, F. Zhang, Z. Liu, X. Sun, M. Ruan, M. Liu, S. Jin, Therapeutic effect of dental pulp stem cell transplantation on a rat model of radioactivityinduced esophageal injury, Cell Death & Disease 9(7) (2018) 738. [70] J.T. Taiani, H.R. Buie, G.M. Campbell, S.L. Manske, R.J. Krawetz, D.E. Rancourt, S.K. Boyd, J.R. Matyas, Embryonic stem cell therapy improves bone quality in a model of 55 impaired fracture healing in the mouse; tracked temporally using in vivo micro-CT, Bone 64 (2014) 263-272. [71] G. Guasch, E. Fuchs, Mice in the world of stem cell biology, Nat Genet 37(11) (2005) 1201-1206. [72] S. Uto, S. Nishizawa, Y. Takasawa, Y. Asawa, Y. Fujihara, T. Takato, K. Hoshi, Bone and cartilage repair by transplantation of induced pluripotent stem cells in murine joint defect model, Biomed Res 34(6) (2013) 281-8. [73] S. Komura, T. Satake, A. Goto, H. Aoki, H. Shibata, K. Ito, A. Hirakawa, Y. Yamada, H. Akiyama, Induced pluripotent stem cell-derived tenocyte-like cells promote the regeneration of injured tendons in mice, Scientific Reports 10(1) (2020) 3992. [74] P. Limraksasin, T. Kondo, M. Zhang, H. Okawa, T. Osathanon, P. Pavasant, H. Egusa, In Vitro Fabrication of Hybrid Bone/Cartilage Complex Using Mouse Induced Pluripotent Stem Cells, Int J Mol Sci 21(2) (2020) 581. [75] M. Csobonyeiova, S. Polak, R. Zamborsky, L. Danisovic, iPS cell technologies and their prospect for bone regeneration and disease modeling: A mini review, Journal of Advanced Research 8(4) (2017) 321-327. [76] J.A. Thomson, J. Itskovitz-Eldor, S.S. Shapiro, M.A. Waknitz, J.J. Swiergiel, V.S. Marshall, J.M. Jones, Embryonic stem cell lines derived from human blastocysts, Science (New York, N.Y.) 282(5391) (1998) 1145-7. [77] O. Rossi, O. Barbieri, G. Frosina, Time-course of spontaneous transformation of CD-1 mouse embryonic fibroblasts, Anticancer Res 23(2B) (2003) 1373-7. [78] G.J. Schmid, C. Kobayashi, L.J. Sandell, D.M. Ornitz, Fibroblast growth factor expression during skeletal fracture healing in mice, Developmental dynamics : an official publication of the American Association of Anatomists 238(3) (2009) 766-774. 56 [79] P.K. Singhal, S. Sassi, L. Lan, P. Au, S.C. Halvorsen, D. Fukumura, R.K. Jain, B. Seed, Mouse embryonic fibroblasts exhibit extensive developmental and phenotypic diversity, 113(1) (2016) 122-127. [80] P. Charoenlarp, A.K. Rajendran, S. Iseki, Role of fibroblast growth factors in bone regeneration, Inflammation and Regeneration 37(1) (2017) 10. [81] D.S. Steinbrech, B.J. Mehrara, N.M. Rowe, M.E. Dudziak, J.S. Luchs, P.B. Saadeh, G.K. Gittes, M.T. Longaker, Gene expression of TGF-beta, TGF-beta receptor, and extracellular matrix proteins during membranous bone healing in rats, Plastic and reconstructive surgery 105(6) (2000) 2028-38. [82] I. Blumenfeld, S. Srouji, Y. Lanir, D. Laufer, E. Livne, Enhancement of bone defect healing in old rats by TGF-beta and IGF-1, Experimental gerontology 37(4) (2002) 553-65. [83] I. Dumic-Cule, M. Peric, L. Kucko, L. Grgurevic, M. Pecina, S. Vukicevic, Bone morphogenetic proteins in fracture repair, International Orthopaedics 42(11) (2018) 2619- 2626. [84] A.S. Spiro, F.T. Beil, A. Baranowsky, F. Barvencik, A.F. Schilling, K. Nguyen, S. Khadem, S. Seitz, J.M. Rueger, T. Schinke, M. Amling, BMP-7-induced ectopic bone formation and fracture healing is impaired by systemic NSAID application in C57BL/6-mice, J Orthop Res 28(6) (2010) 785-91. [85] K. Huang, G. Wu, J. Zou, S. Peng, Combination therapy with BMP‑ 2 and psoralen enhances fracture healing in ovariectomized mice, Exp Ther Med 16(3) (2018) 1655-1662. [86] G. Kesler, D.K. Shvero, Y.S. Tov, G. Romanos, Platelet derived growth factor secretion and bone healing after Er:YAG laser bone irradiation, The Journal of oral implantology 37 Spec No (2011) 195-204. [87] S.-y. Gao, R.-b. Lin, S.-h. Huang, Y.-j. Liang, X. Li, S.-e. Zhang, D.-q. Ouyang, K. Li, G.-s. Zheng, G.-q. Liao, PDGF-BB exhibited therapeutic effects on rat model of 57 bisphosphonate-related osteonecrosis of the jaw by enhancing angiogenesis and osteogenesis, Bone (2019) 115117. [88] D.M. Ranly, J. McMillan, T. Keller, C.H. Lohmann, T. Meunch, D.L. Cochran, Z. Schwartz, B.D. Boyan, Platelet-derived growth factor inhibits demineralized bone matrixinduced intramuscular cartilage and bone formation. A study of immunocompromised mice, J Bone Joint Surg Am 87(9) (2005) 2052-64. [89] P. Charoenlarp, A.K. Rajendran, S. Iseki, Role of fibroblast growth factors in bone regeneration, Inflammation and regeneration 37 (2017) 10-10. [90] N. Su, M. Jin, L. Chen, Role of FGF/FGFR signaling in skeletal development and homeostasis: learning from mouse models, Bone Research 2(1) (2014) 14003. [91] E. Landi, A. Tampieri, G. Celotti, S. Sprio, M. Sandri, G. Logroscino, Sr-substituted hydroxyapatites for osteoporotic bone replacement, Acta biomaterialia 3(6) (2007) 961-9. [92] V. Martin, A. Bettencourt, Bone regeneration: Biomaterials as local delivery systems with improved osteoinductive properties, Materials science & engineering. C, Materials for biological applications 82 (2018) 363-371. [93] A. Oryan, S. Alidadi, A. Moshiri, N. Maffulli, Bone regenerative medicine: classic options, novel strategies, and future directions, Journal of orthopaedic surgery and research 9(1) (2014) 18. [94] P. Rozman, Z. Bolta, Use of platelet growth factors in treating wounds and soft-tissue injuries, Acta dermatovenerologica Alpina, Pannonica, et Adriatica 16(4) (2007) 156-65. [95] R.E. Marx, Platelet-rich plasma: evidence to support its use, Journal of oral and maxillofacial surgery : official journal of the American Association of Oral and Maxillofacial Surgeons 62(4) (2004) 489-96. 58 [96] T.E. Foster, B.L. Puskas, B.R. Mandelbaum, M.B. Gerhardt, S.A. Rodeo, Platelet-rich plasma: from basic science to clinical applications, The American journal of sports medicine 37(11) (2009) 2259-72. [97] R.E. Marx, Platelet-rich plasma (PRP): what is PRP and what is not PRP?, Implant dentistry 10(4) (2001) 225-8. [98] E. Anitua, I. Andia, B. Ardanza, P. Nurden, A.T. Nurden, Autologous platelets as a source of proteins for healing and tissue regeneration, Thrombosis and haemostasis 91(1) (2004) 4-15. [99] G.M. Calori, E. Mazza, M. Colombo, C. Ripamonti, The use of bone-graft substitutes in large bone defects: any specific needs?, Injury 42 Suppl 2 (2011) S56-63. [100] D.J. Hak, The use of osteoconductive bone graft substitutes in orthopaedic trauma, The Journal of the American Academy of Orthopaedic Surgeons 15(9) (2007) 525-36. [101] G.A. Zimmerman, T.M. McIntyre, S.M. Prescott, D.M. Stafforini, The plateletactivating factor signaling system and its regulators in syndromes of inflammation and thrombosis, Critical care medicine 30(5 Suppl) (2002) S294-301. [102] C.M. Chesney, D.D. Pifer, L.W. Byers, E.E. Muirhead, Effect of platelet-activating factor (PAF) on human platelets, Blood 59(3) (1982) 582-5. [103] K. Jurk, B.E. Kehrel, Platelets: physiology and biochemistry, Seminars in thrombosis and hemostasis 31(4) (2005) 381-92. [104] J.P. David, G. Schett, TNF and bone, Current directions in autoimmunity 11 (2010) 135-44. [105] A.S. Cachaço, T. Carvalho, A.C. Santos, C. Igreja, R. Fragoso, C. Osório, M. Ferreira, J. Serpa, S. Correia, O.P. Pinto-do, S. Dias, TNF-alpha regulates the effects of irradiation in the mouse bone marrow microenvironment, PLoS One 5(2) (2010) e8980. 59 [106] D.N. Lyras, K. Kazakos, D. Verettas, S. Botaitis, G. Agrogiannis, A. Kokka, M. Pitiakoudis, A. Kotzakaris, The effect of platelet-rich plasma gel in the early phase of patellar tendon healing, Archives of orthopaedic and trauma surgery 129(11) (2009) 1577-82. [107] D.W. Taylor, M. Petrera, M. Hendry, J.S. Theodoropoulos, A systematic review of the use of platelet-rich plasma in sports medicine as a new treatment for tendon and ligament injuries, Clinical journal of sport medicine : official journal of the Canadian Academy of Sport Medicine 21(4) (2011) 344-52. [108] P. Sharma, N. Maffulli, Tendon injury and tendinopathy: healing and repair, J Bone Joint Surg Am 87(1) (2005) 187-202. [109] W.S. Pietrzak, B.L. Eppley, Platelet rich plasma: biology and new technology, The Journal of craniofacial surgery 16(6) (2005) 1043-54. [110] J. van den Dolder, R. Mooren, A.P. Vloon, P.J. Stoelinga, J.A. Jansen, Platelet-rich plasma: quantification of growth factor levels and the effect on growth and differentiation of rat bone marrow cells, Tissue engineering 12(11) (2006) 3067-73. [111] J. Alsousou, M. Thompson, P. Hulley, A. Noble, K. Willett, The biology of plateletrich plasma and its application in trauma and orthopaedic surgery: a review of the literature, J Bone Joint Surg Br 91(8) (2009) 987-96. [112] R.J. Salib, Transforming growth factor-beta gene expression studies in nasal mucosal biopsies in naturally occurring allergic rhinitis, Annals of the Royal College of Surgeons of England 89(6) (2007) 563-73. [113] D. Nikolidakis, J.A. Jansen, The biology of platelet-rich plasma and its application in oral surgery: literature review, Tissue engineering. Part B, Reviews 14(3) (2008) 249-58. [114] C.H. Heldin, K. Miyazono, P. ten Dijke, TGF-beta signalling from cell membrane to nucleus through SMAD proteins, Nature 390(6659) (1997) 465-71. 60 [115] S. Weiss, G. Zimmermann, T. Pufe, D. Varoga, P. Henle, The systemic angiogenic response during bone healing, Archives of orthopaedic and trauma surgery 129(7) (2009) 989-97. [116] S. Panseri, A. Russo, C. Cunha, A. Bondi, A. Di Martino, S. Patella, E. Kon, Osteochondral tissue engineering approaches for articular cartilage and subchondral bone regeneration, Knee surgery, sports traumatology, arthroscopy : official journal of the ESSKA 20(6) (2012) 1182-91. [117] L.F. Bonewald, G.R. Mundy, Role of transforming growth factor-beta in bone remodeling, Clin Orthop Relat Res (250) (1990) 261-76. [118] B.K. Joseph, N.W. Savage, T.J. Daley, W.G. Young, In situ hybridization evidence for a paracrine/autocrine role for insulin-like growth factor-I in tooth development, Growth factors (Chur, Switzerland) 13(1-2) (1996) 11-7. [119] S. Mohan, D.J. Baylink, IGF-binding proteins are multifunctional and act via IGFdependent and -independent mechanisms, The Journal of endocrinology 175(1) (2002) 19-31. [120] K.E. Govoni, D.J. Baylink, S. Mohan, The multi-functional role of insulin-like growth factor binding proteins in bone, Pediatric nephrology (Berlin, Germany) 20(3) (2005) 261-8. [121] B. Behr, C. Tang, G. Germann, M.T. Longaker, N. Quarto, Locally applied vascular endothelial growth factor A increases the osteogenic healing capacity of human adiposederived stem cells by promoting osteogenic and endothelial differentiation, Stem Cells 29(2) (2011) 286-96. [122] J.H. Holstein, S.C. Becker, M. Fiedler, P. Garcia, T. Histing, M. Klein, M.W. Laschke, M. Corsten, T. Pohlemann, M.D. Menger, Intravital microscopic studies of angiogenesis during bone defect healing in mice calvaria, Injury 42(8) (2011) 765-71. [123] B. Li, J.H. Wang, Fibroblasts and myofibroblasts in wound healing: force generation and measurement, J Tissue Viability 20(4) (2011) 108-20. 61 [124] P. Su, Y. Tian, C. Yang, X. Ma, X. Wang, J. Pei, A. Qian, Mesenchymal Stem Cell Migration during Bone Formation and Bone Diseases Therapy, Int J Mol Sci 19(8) (2018). [125] J.C. Chen, B.B. Lin, H.W. Hu, C. Lin, W.Y. Jin, F.B. Zhang, Y.A. Zhu, C.J. Lu, X.J. Wei, R.J. Chen, NGF accelerates cutaneous wound healing by promoting the migration of dermal fibroblasts via the PI3K/Akt-Rac1-JNK and ERK pathways, Biomed Res Int 2014 (2014) 547187. [126] M.N. Walter, K.T. Wright, H.R. Fuller, S. MacNeil, W.E. Johnson, Mesenchymal stem cell-conditioned medium accelerates skin wound healing: an in vitro study of fibroblast and keratinocyte scratch assays, Exp Cell Res 316(7) (2010) 1271-81. [127] T. Genova, S. Petrillo, E. Zicola, I. Roato, R. Ferracini, E. Tolosano, F. Altruda, S. Carossa, F. Mussano, L. Munaron, The Crosstalk Between Osteodifferentiating Stem Cells and Endothelial Cells Promotes Angiogenesis and Bone Formation, Front Physiol 10 (2019) 1291. [128] Y. Li, J. Huard, Differentiation of muscle-derived cells into myofibroblasts in injured skeletal muscle, Am J Pathol 161(3) (2002) 895-907. [129] Y. Shirai, K. Kawabe, I. Tosa, S. Tsukamoto, D. Yamada, T. Takarada, Runx2 function in cells of neural crest origin during intramembranous ossification, Biochemical and Biophysical Research Communications 509(4) (2019) 1028-1033. [130] T. Fujita, Y. Azuma, R. Fukuyama, Y. Hattori, C. Yoshida, M. Koida, K. Ogita, T. Komori, Runx2 induces osteoblast and chondrocyte differentiation and enhances their migration by coupling with PI3K-Akt signaling, J Cell Biol 166(1) (2004) 85-95. [131] H.Y. Liu, M.C. Liu, M.F. Wang, W.H. Chen, C.Y. Tsai, K.H. Wu, C.T. Lin, Y.H. Shieh, R. Zeng, W.P. Deng, Potential Osteoporosis Recovery by Deep Sea Water through Bone Regeneration in SAMP8 Mice, Evid Based Complement Alternat Med 2013 (2013) 161976. 62 [132] H.-J.W. Navneet Kumar Dubey, Sung-Hsun Yu, David F. Williams, Joseph R. Wang, Yue-Hua Deng, Feng-Chou Tsai, Peter D. Wang, Win-Ping Deng, Adipose-derived Stem Cells Attenuates Diabetic Osteoarthritis via Inhibition of Glycation-mediated Inflammatory Cascade, 10(3) (2019) 483-496. [133] J.T. Parsons, Focal adhesion kinase: the first ten years, J Cell Sci 116(Pt 8) (2003) 1409-16. [134] H.C. Chen, P.A. Appeddu, H. Isoda, J.L. Guan, Phosphorylation of tyrosine 397 in focal adhesion kinase is required for binding phosphatidylinositol 3-kinase, J Biol Chem 271(42) (1996) 26329-34. [135] R. Palumbo, F. De Marchis, T. Pusterla, A. Conti, M. Alessio, M.E. Bianchi, Src family kinases are necessary for cell migration induced by extracellular HMGB1, J Leukoc Biol 86(3) (2009) 617-23. [136] J.Q. Bu, F. Chen, TGF-beta1 promotes cells invasion and migration by inducing epithelial mesenchymal transformation in oral squamous cell carcinoma, Eur Rev Med Pharmacol Sci 21(9) (2017) 2137-2144. [137] J. Li, W. Guo, M. Xiong, H. Han, J. Chen, D. Mao, B. Tang, H. Yu, Y. Zeng, Effect of SDF-1/CXCR4 axis on the migration of transplanted bone mesenchymal stem cells mobilized by erythropoietin toward lesion sites following spinal cord injury, Int J Mol Med 36(5) (2015) 1205-1214. [138] S.K. Ghadge, S. Mühlstedt, C. Ö zcelik, M. Bader, SDF-1α as a therapeutic stem cell homing factor in myocardial infarction, Pharmacology & Therapeutics 129(1) (2011) 97-108. [139] Y. Wang, Y. Deng, G.-Q. Zhou, SDF-1α/CXCR4-mediated migration of systemically transplanted bone marrow stromal cells towards ischemic brain lesion in a rat model, Brain Research 1195 (2008) 104-112. 63 [140] Y. Jiang, J. Zhao, P. Augat, X. Ouyang, Y. Lu, S. Majumdar, H.K. Genant, Trabecular bone mineral and calculated structure of human bone specimens scanned by peripheral quantitative computed tomography: relation to biomechanical properties, J Bone Miner Res 13(11) (1998) 1783-90.
|