跳到主要內容

臺灣博碩士論文加值系統

(44.200.117.166) 您好!臺灣時間:2023/10/03 18:29
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:徐秀惠
研究生(外文):Hsiu-Hui Hsu
論文名稱:以電腦輔助教學於彩妝設計之研究
論文名稱(外文):A Study on Computer-Assisted Instruction Teaching Model of Makeup Design
指導教授:吳志富吳志富引用關係
指導教授(外文):Chih-Fu Wu
口試委員:吳志富
口試委員(外文):Chih-Fu Wu
口試日期:2021-05-28
學位類別:博士
校院名稱:大同大學
系所名稱:設計科學研究所
學門:設計學門
學類:綜合設計學類
論文種類:學術論文
論文出版年:2021
畢業學年度:109
語文別:中文
論文頁數:182
中文關鍵詞:電腦繪圖設計電腦輔助教學彩妝設計
外文關鍵詞:computer graphic designcomputer-assisted instruction (CAI)makeup design
相關次數:
  • 被引用被引用:0
  • 點閱點閱:152
  • 評分評分:
  • 下載下載:28
  • 收藏至我的研究室書目清單書目收藏:0
彩妝設計以彩妝設計圖為前置溝通依據,取得國家美容高級證照必需通過彩妝設計圖考試項目。長久以來彩妝設計圖維持專業老師以傳統手繪經驗傳承教學模式,面臨彩妝設計圖更換彩妝色彩或修正後留下無法擦拭的痕跡而需重新繪製以及設計紙圖保存不易的問題,缺乏與時俱進之教學模式。為探討彩妝設計圖傳統教學所面對之問題,達到更具效率之教學與學習目標,期望以電腦輔助教學解決彩妝設計教學面臨之問題,以數位化教學改變學生遷就老師的傳統教學模式,因此本研究目的為探討電腦彩妝筆刷之應用、建立電腦彩妝筆刷資料庫及教學與學習成效分析。
研究之實驗設計分三階段進行。實驗階段一分3個步驟進行,步驟1實驗對象為3名專業學生繪製者參與前測筆刷初選,步驟2實驗對象為40名專業學生參與筆刷篩選問卷,步驟3實驗對象為10位專家老師參與筆刷排序評選。實驗階段二實驗對象為40名專業學生及10位專家老師參與筆刷流量評選。實驗階段三實驗對象為36名專業學生參與學習成效問卷以及3名專業學生繪製者參與學習成效訪談與10位專家老師參與教學成效訪談。實驗分析方法採用SPSS統計項目分析組合獲得研究結果。
本研究結果獲得符合彩妝設計圖彩妝工具需求之電腦彩妝筆刷與電腦彩妝筆刷流量排序結果、建立電腦彩妝筆刷之「可用筆刷」、「適用筆刷」、「最佳筆刷」與「最佳流量」使用建議資料庫以及彩妝設計圖教學與學習成效分析結果。本研究以彩妝設計數位化教學之發展研究,達到提昇教學品質及更具效率的學習成效,以電腦輔助教學建立具新穎及創新之彩妝設計教育模式,其研究結果將提供未來彩妝教學改善之重要參考。
Makeup design drawings are important references for the makeup design upfront communication, the teaching goal of makeup design drawing courses is to obtain the Level B technician for beauty. It has been a long time professional teachers use cosmetics as a material and hand-drawn traditional teaching method to explain the makeup design drawing. Whenever facing the needs to change color of makeup or to modify the design, teacher needs to make a new drawing again because the drawing is not erasable and difficult to be modified. This process is time consuming and inefficient; hand-drawn drawings also have problems of preservation. Summarizing the above problems, it is found that it is necessary to change the traditional teaching model to solve the problems and needs faced by makeup design drawings with computer-assisted instruction, and to achieve the goal of teaching and learning more efficiently.
The research was conducted in a three-stage experimental design. The first experiment stage is divided into 3 steps: in step 1, the subjects are 3 professional plotter students who participated in the pre-testing of brushes selection, in step 2 the subjects are 40 professional students participated in the questionnaire of brushes screening, and in step 3 the subjects are 10 expert teachers participated in the evaluation of brushes ranking. In the second stage of the experiment, 40 professional students and 10 expert teachers together participated in the selection and evaluation of brush flow. In the third stage of experiment, the subjects were 36 professional students participating in the learning effectiveness questionnaire, 3 professional plotter students participating in the learning effectiveness interview and 10 expert teachers participating in the teaching effectiveness interview. This experiment adopts the SPSS project statistical analysis combination as analysis method to obtain the research results.
Results obtained in this study: (1) to obtain the computer makeup brush and computer makeup brush flow in line with the needs of the makeup design drawing tools. (2) to establish a database of suggestions for the use of "available brushes", "applicable brushes", "best brushes" and "best flow" for computer makeup brushes. (3) to obtain the teaching and learning results to solve the problem of makeup design. This study uses the development of digital teaching of makeup design drawings to improve the quality of teaching and more efficient learning results, and to establish a novel and innovative makeup education model with computer- assisted instruction. The results of the study will provide an important reference for future teaching improvements.
目錄
誌謝i
摘要ii
Abstractiii
目錄v
圖目錄x
表目錄xiv
第壹章 緒論1
1.1 研究背景與動機1
1.2 研究目的4
1.3 研究範圍與限制5
1.3.1 研究範圍5
1.3.2 研究限制6
1.4 研究步驟與架構7
第貳章 文獻探討10
2.1 電腦輔助教學研究10
2.2 彩妝設計圖教學研究13
2.2.1 彩妝設計圖背景13
2.2.2 彩妝設計圖發展15
2.3 電腦平面繪圖軟體研究17
2.4 教學與學習成效分析方法23
2.5 半結構式訪談26
2.6 小結27
第參章 研究方法30
3.1 實驗設計30
3.2 實驗對象31
3.3 三階段實驗設計方法32
3.3.1 實驗設計階段一 電腦彩妝筆刷篩選與排序33
3.3.2 實驗設計階段二 電腦彩妝筆刷流量排序39
3.3.3 實驗設計階段三 教學與學習成效分析42
3.4 分析方法43
第肆章 電腦彩妝筆刷篩選與排序47
4.1 第1步驟 前測電腦彩妝筆刷初選獲得「可用筆刷」結果48
4.1.1 實驗對象48
4.1.2 實驗步驟48
4.1.3 實驗結果49
4.2 第2步驟 電腦彩妝筆刷篩選問卷之「適用筆刷」結果51
4.2.1 實驗對象51
4.2.2 實驗步驟51
4.2.3 實驗分析55
4.2.4 實驗結果61
4.3 第3步驟 電腦彩妝筆刷評選問使用排序及「最佳筆刷」結果61
4.3.1 實驗對象61
4.3.2 實驗步驟62
4.3.3 實驗流程65
4.3.4 實驗分析67
4.3.5 實驗結果76
4.4 小結77
第伍章 電腦彩妝筆刷流量排序79
5.1 電腦彩妝筆刷流量排序80
5.1.1 實驗對象80
5.1.2 實驗步驟80
5.1.3 研究分析-專業學生受測者84
5.1.4 研究分析-專家老師受測者88
5.1.5 實驗結果93
5.2 建立電腦彩妝筆刷資料庫94
5.3 建立電腦彩妝筆刷教學應用模式100
5.4 小結102
第陸章 教學與學習成效分析104
6.1 教學與學習成效分析-學習成效問卷104
6.2 教學與學習成效分析-半結構式訪談(專業學生) 109
6.3 教學與學習成效分析-半結構式訪談(專家老師) 114
6.4 小結125
第柒章 結論與建議127
7.1 綜合討論127
7.2 結論128
7.3 後續研究發展建議129
參考文獻131
中文部份131
英文部份134
附錄A141
附錄B149
附錄C157
附錄D163
圖目錄
圖1.1 研究流程9
圖2.1 彩妝大師軟體提供彩妝造型設計建議11
圖2.2 電腦輔助教學類型12
圖2.3 彩妝設計圖與彩妝設計14
圖2.4 中華民國勞動部美容乙級(高級)證照彩妝設計圖15
圖2.5 Photoshop套用濾鏡進行圖像情境設計18
圖2.6 InDesign可感知主體的繞圖排文與內嵌雲端文件的功能19
圖2.7 Illustrator 增強創意視覺設計20
圖2.8 Corel Painter軟體作畫版面21
圖2.9 柯氏學習評估模型(Kirkpatrick Model) 25
圖2.10 新柯氏學習評估模型概念說明26
圖3.1 三階段實驗設計31
圖3.2 三階段實驗設計與步驟33
圖3.3 測試者之實驗構件與操作情況模擬圖35
圖3.4 專業學生實驗進行情況之模擬圖36
圖3.5 電腦彩妝「適用筆刷」問卷樣本37
圖3.6 專家老師實驗進行情況之模擬圖38
圖3.7 電腦彩妝筆刷排序評選樣本(一)39
圖3.8 電腦彩妝筆刷排序評選樣本(二)39
圖3.9 電腦彩妝最佳筆刷流量評選樣本總圖41
圖3.10 電腦彩妝最佳筆刷流量評選41
圖3.11 電腦筆刷及筆觸繪製彩妝設計圖操作過程之縮時攝影示意圖42
圖4.1 第一階段電腦彩妝筆刷篩選與排序實驗設計與步驟47
圖4.2 以電腦彩妝筆刷繪製彩妝設計圖實驗樣本之流程與步驟49
圖4.3 電腦彩妝筆刷眉型、眼影、眼線部位之「可用筆刷」50
圖4.4 電腦彩妝筆刷鼻影、腮紅、唇型部位之「可用筆刷」50
圖4.5 適用筆刷問卷樣本-「眉型」52
圖4.6 適用筆刷問卷樣本-「眼影」52
圖4.7 適用筆刷問卷樣本-「眼線」53
圖4.8 適用筆刷問卷樣本-「鼻影」53
圖4.9 適用筆刷問卷樣本-「腮紅」54
圖4.10 適用筆刷問卷樣本-「唇型」54
圖4.11 電腦彩妝筆刷各部位之「適用筆刷」61
圖4.12 電腦最佳筆刷評選樣本(一) -「眉型」及「眼影」62
圖4.13 電腦最佳筆刷評選樣本(一) -「眼線」及「鼻影」63
圖4.14 電腦最佳筆刷評選樣本(一) -「腮紅」及「唇型」63
圖4.15 電腦最佳筆刷評選樣本(二) -「眉型」及「眼影」64
圖4.16 電腦最佳筆刷評選樣本(二) -「眼線」及「鼻影」64
圖4.17 電腦最佳筆刷評選樣本(二) -「腮紅」及「唇型」65
圖4.18 專家最佳筆刷排序評選之實驗步驟與流程66
圖4.19「眉型」電腦彩妝筆刷使用排序結果68
圖4.20「眼影」電腦彩妝筆刷使用排序結果70
圖4.21「眼線」電腦彩妝筆刷使用排序結果71
圖4.22「鼻影」電腦彩妝筆刷使用排序結果73
圖4.23「腮紅」電腦彩妝筆刷使用排序結果74
圖4.24「唇型」電腦彩妝筆刷使用排序結果75
圖4.25 各部位電腦彩妝筆刷使用排序77
圖4.26 各部位電腦彩妝筆刷之最佳筆刷77
圖5.1 第二階段電腦彩妝筆刷流量排序實驗設計與步驟79
圖5.2 電腦彩妝筆刷最佳筆刷流量總集81
圖5.3 「眉型」最佳電腦彩妝筆刷流量評選表81
圖5.4 「眼影」最佳電腦彩妝筆刷流量評選表82
圖5.5 「眼線」最佳電腦彩妝筆刷流量評選表82
圖5.6 「鼻影」最佳電腦彩妝筆刷流量評選表83
圖5.7 「腮紅」最佳電腦彩妝筆刷流量評選表83
圖5.8 「唇型」最佳電腦彩妝筆刷流量評選表84
圖5.9 各部位電腦彩妝筆刷最佳流量建議94
圖5.10「眉型」電腦彩妝筆刷筆觸資料庫98
圖5.11「眼影」電腦彩妝筆刷筆觸資料庫98
圖5.12「眼線」電腦彩妝筆刷筆觸資料庫99
圖5.13「鼻影」電腦彩妝筆刷筆觸資料庫99
圖5.14「腮紅」電腦彩妝筆刷筆觸資料庫100
圖5.15「唇型」電腦彩妝筆刷筆觸資料庫100
圖5.16 彩妝設計圖之「最佳筆刷」電腦彩妝教學應用模式101
圖5.17 彩妝設計圖色彩變更之電腦彩妝教學應用模式101
圖6.1 第三階段彩妝數位化之教學與學習成效分析方法104
圖6.2 主成份陡坡圖106
表目錄
表2-1 彩妝設計圖評分標準16
表3.1 實驗儀器設備與規格說明34
表3.2 「適用筆刷」實驗儀器設備與規格說明36
表3.3 「最佳筆刷」實驗儀器設備與規格說明38
表3.5 Cronbach's α 係數值可信度衡量參考標準49
表4.1 可靠性統計量 55
表4.2 遺漏值之檢定56
表4.3 專業學生電腦彩妝筆刷篩選項目分析彙整表57
表4.4 彩妝設計圖標準圖各部位筆觸比對標準66
表4.5「眉型」電腦彩妝筆刷信度分析(Test-Retest Reliability) 68
表4.6「眉型」電腦彩妝筆刷一致性及評價分析68
表4.7「眼影」電腦彩妝筆刷信度分析(Test-Retest Reliability) 69
表4.8「眼影」電腦彩妝筆刷一致性及評價分析69
表4.9「眼線」電腦彩妝筆刷信度分析(Test-Retest Reliability) 71
表4.10「眼線」電腦彩妝筆刷一致性及評價分析71
表4.11「鼻影」電腦彩妝筆刷信度分析(Test-Retest Reliability) 72
表4.12「鼻影」電腦彩妝筆刷一致性及評價分析72
表4.13「腮紅」電腦彩妝筆刷信度分析(Test-Retest Reliability) 74
表4.14「腮紅」電腦彩妝筆刷一致性及評價分析74
表4.15「唇型」電腦彩妝筆刷信度分析(Test-Retest Reliability) 75
表4.16「唇型」電腦彩妝筆刷一致性及評價分析75
表5.1 可靠性統計量85
表5.2 遺漏值評估表86
表5.3 專業學生電腦筆刷繪圖工具篩選項目分析彙整表86
表5.4 可靠性統計量-專家老師89
表5.5 遺漏值評估表-專家老師90
表5.6 專家老師電腦筆刷繪圖工具篩選項目分析彙整表91
表5.7 電腦筆刷最佳流量排序表93
表5.8「眉型」電腦彩妝筆刷資料庫95
表5.9「眼影」電腦彩妝筆刷資料庫95
表5.10「眼線」電腦彩妝筆刷資料庫96
表5.11「鼻影」電腦彩妝筆刷資料庫96
表5.12「腮紅」電腦彩妝筆刷資料庫97
表5.13「唇型」電腦彩妝筆刷資料庫97
表6.1 KMO與Bartlett球形檢定105
表6.2 轉軸後的成份矩陣107
表6.3 解說總變異量108
表6.4 可靠性統計量108
表6.5 專業學生問卷調查分析結果109
表6.6 專業學生繪製者訪談大綱111
表6.7 專業學生繪製者訪談回覆綱要彙整112
表6.8 專家老師訪談逐字稿編碼表115
表6.9 專家老師訪談大綱116
表6.10專家老師訪談回覆綱要彙整119
中文部份
1.王正華、陳寬裕 (2011)。論文統計分析實務: SPSS 與 AMOS 的運用。台北: 五南圖書出版股份有限公司。
2.白玥淳、洪惠娟 (2017)。電腦輔助造型設計課程學生學習態度對學習滿意度影響之研究。美容科技學刊,14(1),37-62。
3.田玲玲 (2008)。Adobe InDesign 軟件在中醫藥期刊排版中的應用。遼寧中醫藥大學學報,10(8),179-180。
4.吳明隆、涂金堂 (2005)。SPSS與統計應用分析。台北:五南圖書出版股份有限公司。
5.吳國鳯、劉淑芬 (2020). 人力資源管理領域訓練移轉模式之介紹。新臺北護理期刊,22(1),1-7。
6.邱皓政 (2006)。量化研究與統計分析-SPSS中文視窗版資料分析範例解析(附光碟)。台北:五南圖書出版股份有限公司。
7.洪美伶 (2012)。整體造型設計。新北市:全華圖書股份有限公司。
8.侯鳳霞 (2011)。Photoshop在教學中的問题初探。中國教育技術裝備,2011(9),44-45。
9.陸定邦、陳劭農 (2010)。具檢驗手繪兩點透視立方體功能之電腦輔助教學系統研發。設計學報,15(2),19-36。
10.張秀華、黃仲楷、林純如 (2019)。大學校園智慧零售實作場域之人才培育個案研究。當代教育研究季刊,27(1),1-37。
11.張迺貞、周天 (2015)。運用 Kirkpatrick 模式評估資訊法律課程在數位學習環境之學習成效。教育資料與圖書館學,52(4),417-450。
12.張俊彥、董家莒 (2000)。“問題解決” 或 “無問題解決”? 電腦輔助教學成效的比較研究。科學教育學刊,8(4),357-377。
13.張惠如 (2004)。創意數位插畫。台北市:藝風堂。
14.連禾 (2014)。時尚整體造型彩妝畫。新北市:全華圖書股份有限公司。
15.陳麗文、劉威德 (2019)。臺灣與韓國美容技專院校教育現況發展分析。臺灣教育評論月刊,8(7),136-161。
16.許南雄 (2010)。國際禮儀。新北市:華立圖書股份有限公司。
17.曾瑞譙 (2009)。電腦輔助教學軟體使用後之效益分析-科技接受模式的觀點與應用。新竹教育大學教育學報,26(2), 127-163。
18.蔡宜錦、黃基正 (2008)。服裝設計學生對電腦輔助教學感受的探討。華岡紡織期刊,15(3),271-282。
19.黃宜純、詹慧珊 (2006)。電腦輔助美容造型設計課程之教學評估。設計學研究,9(2),79-100。
20.黃雅卿 (2000)。高職廣告設計科電腦繪圖課程內涵之研究。臺灣師範大學工業教育學系學位論文,1-182。
21.黃龍文、張少鶴、李建杭 (2014)。Photoshop CS6影像設計。台北市:巨匠電腦股份有限公司。
22.黃龍文、張少鶴、李建杭 (2014)。Illustrator CS6 插畫設計。台北市:巨匠電腦股份有限公司。
23.黃龍文、張少鶴、李沛茂 (2014)。Indesign CS6 跨界數位出版。台北市:巨匠電腦股份有限公司。
24.賈勇鋒 (2009)。PAINTER軟件在服裝數字化教學改革中的應用研究。產業與科技論壇,8(6),186-187。
25.詹慧珊 (2006)。數位影像在美容整體造型課程之成效-學生的態度分析。餐旅暨家政學刊,3(4), 587-610。
26.劉光夏、李翊駿 (2013)。提昇非設計背景大學生之電腦繪圖能力: 五位經驗教師的分享與探究。國教新知,60(3),36-44。
27.劉震寰 (2011)。實例教學法在Painter數碼繪畫課程教學中的運用。考試周刊,(59),195-196。
28.鍾佩君 (2017)。初探新版柯氏學習評估模式。評鑑雙月刊,(68),34-38。
英文部份
1.Alessi, S. M., & Trollip, S. R. (1984). Computer-based instruction: Methods and development. Prentice-Hall, Inc..
2.Alliger, G. M., Tannenbaum, S. I., Bennett Jr, W., Traver, H., & Shotland, A. (1997). A meta‐analysis of the relations among training criteria. Personnel psychology, 50(2), 341-358.
3.Ando, R., & Tsuruno, R. (2010). Segmental Brush Synthesis with Stroke Images. In: Proceedings of the Eurographics, 89-92.
4.Bartholomew, K., Henderson, A. J., & Marcia, J. E. (2000). Coded semistructured interviews in social psychological research.
5.Basturk, R. (2005). The effectiveness of computer-assisted instruction in teaching introductory statistics. Journal of Educational Technology & Society, 8(2), 170-178.
6.Berezhnoy, I. E., Postma, E. O., & van den Herik, H. J. (2005). Authentic: computerized brushstroke analysis. In: Proceedings of the International Conference on Multimedia and Expo, IEEE, 1586-1588.
7.Bhalla, J. (2013). Computer use by school teachers in teaching-learning process. Journal of Education and Training Studies, 1(2), 174-185.
8.Brown, G. A., Bull, J., & Pendlebury, M. (2013). Assessing student learning in higher education. Routledge.
9.Campbell, A. (1993). The new designer's handbook. Little, Brown and Company : New York.
10.Cho, J., Ohya, J., & Park, S. I. (2019). Makeup interpolation based on color and shape parametrization. Symmetry, 11(11), 1422.
11.Chu, N. H., & Tai, C. L. (2002). An efficient brush model for physically-based 3D painting. In 10th Pacific Conference on Computer Graphics and Applications, 2002. Proceedings. IEEE. 413-421.
12.Devisir, K., & Kalaimathi, H. D. (2016). Effect of CAI on the achievement of information technology. Raleigh, NC: Lulu Publication.
13.Gao, P., Xiang, H., Liu, S., Liu, Y., Dong, S., Liu, F., ... & Tang, S. (2018). Evaluation of a consulting training course for international development assistance for health. BMC medical education, 18(1), 1-10.
14.Harrington, S. S., & Walker, B. L. (2004). The effects of computer-based training on immediate and residual learning of nursing facility staff. The journal of continuing Education in Nursing, 35(4), 154-163.
15.Hamtini, T. M. (2008). Evaluating e-learning programs: An adaptation of Kirkpatrick's model to accommodate e-learning environments. Journal of Computer Science, 4(8), 693-698.
16.Hemmerla, P. S. (2000). Factors related to the level of instructional use of computer-based technology by Missouri secondary art teachers, 1-153. University of Missouri-Columbia.
17.Hsu, H. H., Wu, C. F., Cho, W. J., & Wang, S. B. (2021). Applying Computer Graphic Design Software in a Computer-Assisted Instruction Teaching Model of Makeup Design. Symmetry, 13(4), 654.
18.Jereb, E., & Šmitek, B. (2006). Applying multimedia instruction in e‐learning. Innovations in Education and Teaching International, 43(1), 15-27.
19.Jones, A. L., Kramer, R. S., & Ward, R. (2014). Miscalibrations in judgements of attractiveness with cosmetics. Quarterly Journal of Experimental Psychology, 67(10), 2060-2068.
20.Jones, A. L., Russell, R., & Ward, R. (2015). Cosmetics alter biologically-based factors of beauty: evidence from facial contrast. Evolutionary Psychology, 13(1), 210-229.
21.Jones, A. L., & Kramer, R. S. (2016). Facial cosmetics and attractiveness: Comparing the effect sizes of professionally-applied cosmetics and identity. PloS one, 11(10), 1-17.
22.Joshi, A. (2018). Efficient Rendering of Linear Brush Strokes. Journal of Computer Graphics Techniques, 7(1), 1-16.
23.Kim, Y. S., Song, J. H., & Cho, H. J. (2015). Application of eyeshadow colors to bridal makeups according to makeup images. Kor J Aesthet Cosmetol, 13(3), 425-435.
24.Kirkpatrick, D. (1959a). Techniques for evaluation training programs. Journal of the American Society of Training Directors, 13, 3-9.
25.Kirkpatrick, D. (1959b). Techniques for evaluating programs: Part 2-Learning. Journal of the American Society of Training Directors, 13(12), 21-26.
26.Kirkpatrick, D. (1960a). Techniques for evaluating training programs: Part 3-Behavior. Journal of ASTD, 14(1), 13-18.
27.Kirkpatrick, D. (1960b). Techniques for evaluating training programs: Part 4-Results. Journal of ASTD, 14, 28-32.
28.Kirkpatrick, D. (1994). Evaluation, training programs: the four levels, San Francisco: Berrett-Koehler publishers. Learning transfer. International Journal of Training and Development, 6(1), 36-48.
29.Kirkpatrick, D., & Kirkpatrick, J. (2006). Evaluating training programs: The four levels. Berrett-Koehler Publishers.
30.Kirkpatrick, J. D., & Kirkpatrick, W. K. (2016). Kirkpatrick's four levels of training evaluation. Association for Talent Development.
31.Korichi, R., & Pelle-de-Queral, D. (2008). Why women use makeup: Implication of psychological. Journal of cosmetic science, 59, 127-137.
32.Kuh, J. M. (2003). A Study of the Relationship between Face Satisfaction and Makeup Satisfaction. The International Journal of Costume Culture, 6(2), 93-104.
33.Li, C., Zhou, K., & Lin, S. (2015). Simulating Makeup Through Physics-based Manipulation of Intrinsic Image Layers. In Proceedings of the Conference on Computer Vision and Pattern Recognition, IEEE, 4621–4629.
34.Lozano, J. F., Boni, A., Peris, J., & Hueso, A. (2012). Competencies in H igher E ducation: A Critical Analysis from the Capabilities Approach. Journal of philosophy of education, 46(1), 132-147.
35.Lu, B. (2015). Study on the Application of Corel Painter to Art Education. In 2015 7th International Conference on Information Technology in Medicine and Education, IEEE, 605-609.
36.Matsushita, S., Morikawa, K., & Yamanami, H. (2015). Measurement of eye size illusion caused by eyeliner, mascara, and eye shadow. Journal of cosmetic science, 66(3), 161-174.
37.Matthews, J. C. (1997). Computers and Art Education. ERIC Digest.
38.McIntosh, M. J., & Morse, J. M. (2015). Situating and constructing diversity in semi-structured interviews. Global qualitative nursing research, 2, 1-12.
39.Meth, M. A. (1991). Concurrent engineering - changing the process for bringing products to market. Computer, 24(9), 100-101.
40.Morikawa, K., Matsushita, S., Tomita, A., & Yamanami, H. (2015). A real-life illusion of assimilation in the human face: eye size illusion caused by eyebrows and eye shadow. Frontiers in human neuroscience, 9 (139), 1-9.
41.Morris, M. H., & Kuratko, D. F. (2014). Building university 21st century entrepreneurship programs that empower and transform. In Innovative Pathways for University entrepreneurship in the 21st Century. Emerald Group Publishing Limited.
42.Mulhern, R., Fieldman, G., Hussey, T., Lévêque, J. L., & Pineau, P. (2003). Do cosmetics enhance female Caucasian facial attractiveness?. International journal of cosmetic science, 25(4), 199-205.
43.Muto, H., Ide, M., Tomita, A., & Morikawa, K. (2019). Viewpoint invariance of eye size illusion caused by eyeshadow. Frontiers in psychology, 10, 1510.
44.Nash, R., Fieldman, G., Hussey, T., Lévêque, J. L., & Pineau, P. (2006). Cosmetics: They influence more than Caucasian female facial attractiveness. Journal of applied social psychology, 36(2), 493-504.
45.Nunnally, J. C. (1978). An overview of psychological measurement. Clinical diagnosis of mental disorders, 97-146.
46.Park, Y.& Yoon, K.(2004) Adaptive Brush Stroke Generation for Painterly Rendering. In: Proceedings of the Eurographics,1-4.
47.Porter, T., & Duff, T. (1984). Compositing digital images. In: Proceedings of the 11th annual conference on Computer graphics and interactive techniques, 253-259.
48.Raymond, M. R., & Roberts, D. M. (1987). A comparison of methods for treating incomplete data in selection research. Educational and Psychological Measurement, 47(1), 13-26.
49.Ruiz, J. G., Mintzer, M. J., & Leipzig, R. M. (2006). The impact of e-learning in medical education. Academic medicine, 81(3), 207-212.
50.Simarmata, J., Limbong, T., Napitupulu, E., Sriadhi, S., Tambunan, A. R. S., & Sinaga, E. K. (2018). Learning Application of Multimedia-Based-Computer Network Using Computer Assisted Instruction Method. Int. J. Eng. Technol, 7(2.13), 341-344.
51.Slavin, R. E., & Lake, C. (2008). Effective programs in elementary mathematics: A best-evidence synthesis. Review of educational research, 78(3), 427-515.
52.Smidt, A., Balandin, S., Sigafoos, J., & Reed, V. A. (2009). The Kirkpatrick model: A useful tool for evaluating training outcomes. Journal of Intellectual and Developmental Disability, 34(3), 266-274.
53.Stephen, I. D., Coetzee, V., & Perrett, D. I. (2011). Carotenoid and melanin pigment coloration affect perceived human health. Evolution and Human Behavior, 32(3), 216-227.
54.Strike, K., El Emam, K., & Madhavji, N. (2001). Software cost estimation with incomplete data. IEEE Transactions on Software Engineering, 27(10), 890-908.
55.Sutton, J. (2005). Painter IX creativity: digital artist's handbook. Taylor & Francis: Burlington, MA, USA.
56.Tanaka, H. (2016). Facial cosmetics exert a greater influence on processing of the mouth relative to the eyes: Evidence from the N170 event-related potential component. Frontiers in psychology, 7, 1359.
57.Thatcher, J. B., & Perrewe, P. L. (2002). An empirical examination of individual traits as antecedents to computer anxiety and computer self-efficacy. MIS quarterly, 381-396.
58.Venkatesh, V., & Davis, F. (1996). A model of the antecedents of perceived ease of use: Development and test. Decision Sciences, 27(3), 451-482.
59.Zhou, S., Kang, H., & Gong, Y. (2017). Design a learning-oriented fall event reporting system based on Kirkpatrick model. In MEDINFO 2017: Precision Healthcare through Informatics, 828-832.
網路資源
1.教育部統計處. (2020). Available online: https://depart.moe.edu.tw/ed4500/News.aspx?n=5A930C32CC6C3818&sms=91B3AAE8C6388B96 (accessed on 26 March 2021).
2.InDesign官網.https://www.adobe.com/tw/products/indesign.html (accessed on 23 May 2021)
3.Illustrator官網.https://www.adobe.com/tw/products/illustrator.html (accessed on 13 May 2021)
4.Painter官網. https://www.painterartist.com/tw/product/painter/fine-art/ (accessed on 10 May 2021).
5.Photoshop官網.https://www.adobe.com/tw/products/photoshop.html (accessed on 10 May 2021).
6.Creative Bloq. https://www.creativebloq.com/reviews/corel-painter-2020-review (accessed on 23 May 2021)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top