跳到主要內容

臺灣博碩士論文加值系統

(100.28.227.63) 您好!臺灣時間:2024/06/16 21:46
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃郁旻
研究生(外文):HUANG, YU-MIN
論文名稱:鈣 -鐵層狀複金屬氫氧化物在廢水處理上之應用研究
論文名稱(外文):The application of Ca–Fe-layered double hydroxides for the treatment of wastewater
指導教授:李中光
指導教授(外文):Lee, Chung-Kung
口試委員:趙煥平黃富昌洪明瑞李中光
口試委員(外文):ZHAO, HUAN-PINGHUANG, FU-CHANGHONG, MING-RUILee, Chung-Kung
口試日期:2021-06-09
學位類別:碩士
校院名稱:萬能科技大學
系所名稱:環境工程研究所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2021
畢業學年度:109
語文別:中文
論文頁數:110
中文關鍵詞:鈣鹽氯化鐵陰離子即時合成法鈣-鐵層狀複金屬氫氧化物
外文關鍵詞:calcium saltferric chlorideanionssynthesis in situCa–Fe-layered double hydroxides
相關次數:
  • 被引用被引用:0
  • 點閱點閱:78
  • 評分評分:
  • 下載下載:9
  • 收藏至我的研究室書目清單書目收藏:0
本研究主要是在探討僅添加鈣鹽(氯化鈣或氫氧化鈣),僅添加氯化鐵及同時添加鈣鹽及氯化鐵以形成鈣-鐵層狀複金屬氫氧化物在廢水處理上之應用及限制。研究過程首先使用正交實驗法以決定各操作條件之優先順序及於最佳操作條件組合下,各單一污染物(磷酸根離子、六價鉻離子、氟離子、亞硝酸根離子、硝酸根離子及硼)之去除率。接著,參考所得之最佳操作條件進行共存陰離子實驗以獲得在共存污染物的情況下,各陰離子間之競爭去除率。
研究結果指出於最佳操作條件下,僅添加鈣鹽對磷酸根離子、氟離子及硼之去除率可分別達 100,90 及 21%(若添加 H2O2 則最高去除率可達 63%),僅添加氯化鐵對磷酸根離子、氟離子及硼之去除率可分別達 100,95 及 54%,而同時添加鈣鹽及氯化鐵以形成鈣-鐵層狀複金屬氫氧化物對磷酸根離子、六價鉻離子、氟離子、亞硝酸根離子、硝酸根離子及硼之去除率則分別達 100,100,94,8,8 及 34%。共存陰離子實驗則指出各陰離子之去除率大小順序和單成份陰離子之去除率大小順序是相一致的。
使用即時合成法形成鈣-鐵層狀複金屬氫氧化物以去除陰離子之機制包含有表面吸附、陰離子交換機制及和所添加之混凝劑原料直接產生沉澱反應;其中陰離子交換機制可有效去除水中高電價之陰離子污染物,例如 〖Cr_2 O〗_7^(2-)。論文中亦討論了使用單一混凝劑及同時添加兩種混凝劑在實際去除水中污染物時之優勢及可能遭遇之問題及解決之道。
In this study, the application and limitation of removing anion pollutants from wastewater by only adding calcium salt, only adding ferric chloride, and adding both calcium salt and ferric chloride simultaneously to synthesize Ca–Fe-layered double hydroxides in situ was investigated. The orthogonal experimental design was firstly adopted to obtain the optimal operation conditions for the remove of pollutants (PO_4^(3-), 〖Cr_2 O〗_7^(2-), F, NO_2^-, NO_3^-, and 〖B(OH)〗_4^-) with chemical precipitation. Then, the effects of coexisting anions for the remove of target anions were examined with the aid of previous orthogonal experimental results.
It was found that the removal efficiency of PO_4^(3-), F, and 〖B(OH)〗_4^- under the optimal operation conditions with the addition of calcium salt might reach 100, 90, and 21%(63% if adding H2O2), respectively. The removal efficiency of PO_4^(3-), F, and 〖B(OH)〗_4^- under the optimal operation conditions with the addition of ferric chloride might reach 100, 95, and 54%, respectively. The removal efficiency of PO_4^(3-), 〖Cr_2 O〗_7^(2-), F, NO_2^-, NO_3^-, and 〖B(OH)〗_4^- under the optimal operation conditions with the addition of both of calcium salt and ferric chloride might reach 100, 100, 94, 8, 8, and 34%, respectively. The experimental results of coexisting anions indicated that the order for the performance of the examined anions was with the same trend in the orthogonal experimental results for the single anion.
It was experimentally concluded that the remove mechanism of anions by synthesizing hydrocalumite in situ might include surface adsorption, anion exchange, and the direct precipitation with the adding calcium or ferric salts; the anion exchange mechanism was effective for the removal of anion pollutants with high charge, such as 〖Cr_2 O〗_7^(2-). The advantages and some problems that should be overcome for the practical application of single coagulant and Ca–Fe-layered double hydroxides to remove the anions from wastewater were also discussed.
摘要 i
Abstract ii
誌 謝 iv
目錄 v
表目錄 vii
圖目錄 ix
第一章 前言 1
1.1研究緣起 1
1.2研究目的 2
第二章 文獻回顧 3
2.1 LDH 及 Ca-Fe-LDH 之特性 3
2.2 Ca-Fe-LDH 在污染防治上之應用 8
第三章 實驗材料及研究方法 21
3.1實驗藥品 21
3.2 實驗儀器與設備 22
3.3 研究架構 23
3.4 實驗項目與步驟 24
3.4.1 正交實驗 24
3.4.2 單因素實驗 24
3.4.3 污染物之分析 25
第四章 結果與討論 26
4.1 去磷酸根離子 26
4.1.1 使用氯化鈣 26
4.1.2 使用氯化鐵 32
4.1.3 使用鈣-鐵層狀複金屬氫氧化物 37
4.2去六價鉻離子 43
4.3 去氟離子 48
4.3.1 添加氯化鈣 48
4.3.2 添加氯化鐵 54
4.3.3 形成鈣-鐵層狀複金屬氫氧化物 59
4.4 去亞硝酸根離子 65
4.5 去硝酸根離子 70
4.6 去硼 75
4.6.1 使用氫氧化鈣 75
4.6.2 使用氯化鐵 80
4.6.3 使用鈣-鐵層狀複金屬氫氧化物 86
4.6.4 使用氫氧化鈣-雙氧水 91
4.7 共存陰離子之干擾效應 97
4.8 綜合討論 99
第五章 結論與建議 103
5.1 結論 103
5.2 建議 104
參考文獻 105

表目錄
表 3.1 實驗藥品相關資料 21
表 3.2 實驗儀器及設備相關資料 22
表 3.3 L9(34)正交設計因素水準表 24
表 3.4 各項污染物之檢測方法 25
表 4.1 氯化鈣之四因素三水準單一指標磷酸根離子濃度之正交實驗結果 29
表 4.2 氯化鐵之四因素三水準單一指標磷酸根離子濃度之正交實驗結果 34
表 4.3 鈣-鐵層狀複金屬氫氧化物之四因素三水準單一指標磷酸根離子濃度之 正交實驗結果 40
表 4.4 鈣-鐵層狀複金屬氫氧化物之四因素三水準單一指標六價鉻離子濃度之正 交實驗結果 45
表 4.5 氯化鈣之四因素三水準單一指標氟離子濃度之正交實驗結果 51
表 4.6 氯化鐵之四因素三水準單一指標氟離子濃度之正交實驗結果 56
表 4.7 鈣-鐵層狀複金屬氫氧化物之四因素三水準單一指標氟離子濃度之正交實驗結果 62
表 4.8 鈣-鐵層狀複金屬氫氧化物之四因素三水準單一指標亞硝酸根離子濃度之正交實驗結果 67
表 4.9 鈣-鐵層狀複金屬氫氧化物之四因素三水準單一指標硝酸根離子濃度之正交實驗結果 72
表 4.10 氫氧化鈣之四因素三水準單一指標硼濃度之正交實驗結果 77
表 4.11 氯化鐵之四因素三水準單一指標硼濃度之正交實驗結果 83
表 4.12 鈣-鐵層狀複金屬氫氧化物之四因素三水準單一指標硼濃度之正交實驗結果 88
表 4.13 氫氧化鈣-雙氧水之四因素三水準單一指標硼濃度之正交實驗結果 94
表 4.14 等莫耳(0.96 mmole)陰離子混合物在僅添加氫氧化鈣,僅添加氯化鐵及同時添加氫氧化鈣及氯化鐵下之競爭去除率 98
表 4.15 僅添加鈣鹽時,磷酸根離子、氟離子及硼之最佳操作參數組合及去除率 102
表 4.16 僅添加鐵鹽時,磷酸根離子、氟離子及硼之最佳操作參數組合及去除率 102
表 4.17 同時添加氫氧化鈣及氯化鐵時,磷酸根離子、重鉻酸根離子、氟離子、亞硝酸根離子、硝酸根離子及硼之最佳操作參數組合及去除率 102

圖目錄
圖 2.1 LDH 結構示意圖 (Goh et al., 2008) 7
圖 3.1 研究架構 23
圖 4.1 磷酸根離子去除率隨 pH 之變化情形 30
圖 4.2 磷酸根離子去除率隨反應時間之變化情形 30
圖 4.3 磷酸根離子去除率隨反應溫度之變化情形 31
圖 4.4 磷酸根離子去除率隨氯化鈣添加量之變化情形 31
圖 4.5 磷酸根離子去除率隨氯化鐵添加量之變化情形 35
圖 4.6 磷酸根離子去除率隨 pH 之變化情形 35
圖 4.7 磷酸根離子去除率隨反應時間之變化情形 36
圖 4.8 磷酸根離子去除率隨反應溫度之變化情形 36
圖 4.9 磷酸根離子去除率隨鐵鹽添加量之變化情形 41
圖 4.10 磷酸根離子去除率隨 Ca/Fe 質量比之變化情形 41
圖 4.11 磷酸根離子去除率隨反應溫度之變化情形 42
圖 4.12 磷酸根離子去除率隨反應時間之變化情形 42
圖 4.13 六價鉻去除率隨反應時間之變化情形 46
圖 4.14 六價鉻去除率隨 Ca/Fe 質量比之變化情形 46
圖 4.15 六價鉻去除率隨鐵鹽添加量之變化情形 47
圖 4.16 六價鉻去除率隨反應溫度之變化情形 47
圖 4.17 氟離子去除率隨氯化鈣添加量之變化情形 52
圖 4.18 氟離子去除率隨反應溫度之變化情形 52
圖 4.19 氟離子去除率隨 pH 之變化情形 53
圖 4.20 氟離子去除率隨反應時間之變化情形 53
圖 4.21 氟離子去除率隨 pH 之變化情形 57
圖 4.22 氟離子去除率隨氯化鐵添加量之變化情形 57
圖 4.23 氟離子去除率隨反應溫度之變化情形 58
圖 4.24 氟離子去除率隨反應時間之變化情形 58
圖 4.25 氟離子去除率隨反應溫度之變化情形 63
圖 4.26 氟離子去除率隨反應時間之變化情形 63
圖 4.27 氟離子去除率隨 Ca/Fe 質量比之變化情形 64
圖 4.28 氟離子去除率隨鐵鹽添加量之變化情形 64
圖 4.29 亞硝酸根離子去除率隨 Ca/Fe 質量比之變化情形 68
圖 4.30 亞硝酸根離子去除率隨反應時間之變化情形 68
圖 4.31 亞硝酸根離子去除率隨鐵鹽添加量之變化情形 69
圖 4.32 亞硝酸根離子去除率隨反應溫度之變化情形 69
圖 4.33 硝酸根離子去除率隨反應溫度之變化情形 73
圖 4.34 硝酸根離子去除率隨反應時間之變化情形 73
圖 4.35 硝酸根離子去除率隨鐵鹽添加量之變化情形 74
圖 4.36 硝酸根離子去除率隨 Ca/Fe 質量比之變化情形 74
圖 4.37 硼去除率隨氫氧化鈣添加量之變化情形 78
圖 4.38 硼去除率隨 pH之變化情形 78
圖 4.39 硼去除率隨反應時間之變化情形 79
圖 4.40 硼去除率隨反應溫度之變化情形 79
圖 4.41 硼去除率隨氯化鐵添加量之變化情形 84
圖 4.42 硼去除率隨 pH之變化情形 84
圖 4.43 硼去除率隨反應溫度之變化情形 85
圖 4.44 硼去除率隨反應時間之變化情形 85
圖 4.45 硼去除率隨鐵鹽添加量之變化情形 89
圖 4.46 硼去除率隨 Ca/Fe質量比之變化情形 89
圖 4.47 硼去除率隨反應溫度之變化情形 90
圖 4.48 硼去除率隨反應時間之變化情形 90
圖 4.49 硼去除率隨 Ca/B 莫耳比之變化情形 95
圖 4.50 硼去除率隨 H2O2/B 莫耳比之變化情形 95
圖 4.51 硼去除率隨反應溫度之變化情形 96
圖 4.52 硼去除率隨反應時間之變化情形 96
1.Al Jaberi, M., Mallet, M., Greenwell, H. Chris, Abdelmoula, M., Ruby. C. Using Ca-Fe layered double hydroxide transformation to optimise phosphate removal from waste waters. Applied Clay Science 182 (2019) 105281.
2.Al-Jaberi, M., Naille, S., Dossot, M.I., Ruby. C. Interlayer interaction in Ca-Fe layered double hydroxides intercalated with nitrate and chloride species. Journal of Molecular Structure 1102 (2015) 253-260.
3.Ashekuzzaman, S.M., Jiang, J.-Q. Study on the sorption–desorption–regeneration performance of Ca-, Mg- and CaMg-based layered double hydroxides for removing phosphate from water. Chemical Engineering Journal 246 (2014) 97-105.
4.Bourrie, G., Trolard, F., Refait, P., Feder, F. A solid-solution model for Fe(II)-Fe(III)-Mg(II) green rusts and fougerite and estimation of their Gibbs free energies of formation. Clays and Clay Minerals 52 (2004) 382-394.
5.Cavani, F., Trifiro, F., Vaccari. A. Hydrotalcite-type anionic clays: Preparation, properties and applications. Catalysis Today 11 (1991) 173-301.
6.Chitrakar, R., Sonoda, A., Makita, Y., Hirotsu, T. Selective Uptake of Phosphate Ions from Sea Water on Inorganic Ion-Exchange Materials, in: J.A. Daniels (Ed.), Advances in Environmental Research, Nova Science Publishers Inc, New York, 2011, pp. 119-152.
7.Chitrakar, R., Tezuka, S., Hosokawa, J., Makita, Y., Sonoda, A., Ooi, K., Hirotsu, T. Uptake properties of phosphate on a novel Zr-modified MgFe–LDH(CO3). Journal of Colloid and Interface Science 349 (2010) 314-320.
8.Dai, Y.C., Qian, G.R., Cao, Y.L., Chi, Y., Xu, Y.F., Zhou, J.Z., Liu, Q., Xu, Z.P., Qiao, S.Z. Effective removal and fixation of Cr(VI) from aqueous solution with Friedel’s salt. Journal of Hazardous Materials 170 (2009) 1086-1092.
9.De Roy, A., Forano, A., Besse, J.P. in: V. Rives (Ed.), Layered Double Hydroxides: Present and Future, Nova Science Publishers, New York, 2001, pp. 1-39 (Chapter 1).
10.El-Ashtoukhy, E.S.Z., Amin, N.K., Abdelwahab, O. Removal of lead (II) and copper (II) from aqueous solution using pomegranate peel as a new adsorbent. Desalination 223 (2008) 162-173.
11.Giesler, R., Andersson, T., Lovgren, L., Persson, P. Phosphate sorption in aluminum- and iron-rich humus soils. Soil Science Society of America Journal 69 (2005) 77-86.
12.Goh, KH, Lim,_TT, Dong, Z. Application of layered double hydroxides for removal of oxyanions: a review. Water Research 42 (2008) 1343-1368.
13.Guan, X.H., Chen, G.H., Shang, C. Adsorption behavior of condensed phosphate on aluminum hydroxide. Journal of Environmental Science 19 (2007) 312-318.
14.He, J, Wei, M, Li, B, Kang, Y, Evans, DG, Duan, X. Preparation of layered double hydroxides. Structure and Bonding 119 (1) (2005) 89-119.
15.Hibino, T. Chemistry of Materials 16 (2004) 5482-5488.
16.Johnson, P.N., Amirtharajah, A. Ferric chloride and alum as single and dual coagulants. Journal of American Water Works Association 5 (1983) 232-239.
17.Khan, A.I., O’Hare, D. Intercalation chemistry of layered double hydroxides: recent developments and applications. Journal of Materials Chemistry 12 (2002) 3191-3198.
18.Khan, A.I., Ragavan, A., Fong, B., Markland, C., O’Brien, M., Dunbar, T.G., Williams, G.R., O’Hare, D. Industrial & Engineering Chemistry Research 48 (2009) 10196-10205.
19.Kooli, F, Kosuge, K, Tsunashima, A. New Ni–Al–Cr and Ni–Al–Fe carbonate hydrotalcite-like compounds: synthesis and characterization. Journal of Solid State Chemistry 118 (2) (1995) 285-291.
20.Kuzawa, K., Jung, Y.J., Kiso, Y., Yamada, T., Nagai, M., Lee, T.G. Phosphate removal and recovery with a synthetic hydrotalcite as an adsorbent. Chemosphere 62 (2006) 45-52.
21.Kwak, S.Y., Jeong, Y.J., Park, J.S., Choy, J.H. Solid State Ionics 151 (2002) 229-234.
22.Manzi-Nshuti, C., Wang, D., Hossenlopp, J.M., Wilkie, C.A. Journal of Materials Chemistry 18 (2008) 3091-3102.
23.Meng, W., Li, F., Evans, D.G., Duan, X. Preparation and intercalation chemistry of magnesium–iron(III) layered double hydroxides containing exchangeable interlayer chloride and nitrate ions. Materials Research Bulletin 39 (2004) 1185-1193.
24.Mollah, M.Y.A., Schennach, R., Parga, J.R., Cocke, D.L. Electrocoagulation (EC)-science and applications. Journal of Hazardous Materials B84 (2001) 29-41.
25.Newman, S.P., Jones, W. in: W. Jones, C.N.R. Rao (Eds.) Supramolecular Organization and Materials Design, University Press, Cambridge, 2001, pp.295-331 (Chapter 9).
26.Newman, SP, Jones, W. Synthesis, characterization and applications of layered double hydroxides containing organic guests. New Journal of Chemistry 22 (2) (1998) 105-115.
27.Nunan, JG, Himelfarb, PB, Herman, RG, Klier, K, Bogdan, CE, Simmons, GW. Methanol synthesis catalysts based on Cs/Cu/ZnO/M2O3 (M = Al, Cr, Ga): genesis from coprecipitated hydrotalcite-like precursors, solid-state chemistry, morphology, and stability. Inorganic Chemistry 28 (20) (1989) 3868-3874.
28.Omelon, S.J., Grynpas, M.D. Relationships between polyphosphate chemistry, biochemistry and apatite biomineralization. Chemical Reviews 108 (2008) 4694-4715.
29.Ookubo, A., Ooi, K., Hayashi, H. Preparation and phosphate ion-exchange properties of a hydrotalcite-like compound. Langmuir 9 (1993) 1418-1422.
30.Panda, H.S., Srivastava, R., Bahadur, D. Journal of Physical Chemistry B 113 (2009) 15090-15100.
31.Prasanna, S.V., Kamath, K.V., Shivakumara, C Effects of milling on the thermal stability of synthetic hydromagnesite. Materials Research Bulletin 42 (2007) 1028-1039.
32.Radha, A.V., Kamath, P.V., Shivakumara, C. Order and disorder among the layered double hydroxides: combined Rietveld and DIFFaX approach. Acta Crystallographica B 63 (2007) 243-250.
33.Rahmanian, O., Dinari, M., Neamati, S. Synthesis and characterization of citrate intercalated layered double hydroxide as a green adsorbent for Ni2+ and Pb2+ removal. Environmental Science and Pollution Research 25 (2018) 36267-36277.
34.Seida, Y., Nakano, Y. Removal of phosphate by layered double hydroxides containing iron. Water Research 36 (2002) 1306-1312.
35.Seida, Y., Nakano, Y. Removal of humic substances by layered double hydroxide containing iron. Water Research 34 (2000) 1487-1494.
36.Shek, T.H., Ma, A., Lee, V.K.C., McKay, G. Kinetics of zinc ions removal from effluents using ion exchange resin. Chemical Engineering Journal 146 (2009) 63-70.
37.Sipiczki, M., Kuzmann, E., Homonnay, Z., Megyeri, J., Palinko, I., Sipos, P. The structure and stability of CaFe layered double hydroxides with various Ca:Fe ratios studied by Mossbauer spectroscopy, X-ray diffractometry and microscopic analysis. Journal of Molecular Structure 1044 (2013) 116-120.
38.Sundareshwar, P.V., Morris, J.T., Pellechia, P.J., Cohen, H.J., Porter, D.E., Jones, B.C. Occurrence and ecological implications of pyrophosphate in estuaries. Limnology and Oceanography 46 (2001) 1570-1577.
39.Suryavanshi, A.K., Scantlebury, J.D., Lyon, S.B. The binding of chloride ions by sulphate resistant portland cement. Cement and Concrete Research 25 (1995) 581-592.
40.Triantafyllidis, K.S., Peleka, E.N., Komvokis, V.G., Mavros, P.P. Iron-modified hydrotalcite-like materials as highly efficient phosphate sorbents. Journal of Colloid and Interface Science 342 (2010) 427-436.
41.Vasudevan, T.V., Somasundaran, P., Howie-Meyers, C.L., Elliott, D.L., Ananthapadmanabhan, K.P. Interaction of pyrophosphate with calcium phosphates. Langmuir 10 (1994) 320-325.
42.Vucelic, M., Jones, W., Moggridge, G.D. Cation ordering in synthetic layered double hydroxides. Clays and Clay Minerals 45 (1997) 803-813.
43.Wang, Y., Gao, B.Y., Yue, W.W., Yue, Q.Y. Adsorption kinetics of nitrate from aqueous solutions onto modified wheat residue. Colloids and Surfaces A: Physicochemical Engineering Aspects 308 (2007) 1-5.
44.Woo, M.A., Kim, T.W., Paek, M.-J., Ha, H.-W., Choy, J.H., Hwan, S.J. Phosphate-intercalated Ca–Fe-layered double hydroxides: Crystal structure, bonding character, and release kinetics of phosphate. Journal of Solid State Chemistry 184 (2011) 171-176.
45.Wu, Y., Yu, Y., Zhou, J.Z., Liua, J., Chi, Y., Xu, Z.P., Qian, G. Effective removal of pyrophosphate by Ca-Fe-LDH and its mechanism. Chemical Engineering Journal 179 (2012) 72-79.
46.Xu, Y.F., Dai, Y.C., Zhou, J.Z., Xu, Z.P., Qian, G.R., Lu, G.Q.M. Removal efficiency of arsenate and phosphate from aqueous solution using layered double hydroxide materials: intercalation vs. precipitation. Journal of Materials Chemistry 20 (2010) 4684-4691.
47.Xu, Y., Guo, S., Xia, W., Dou, L., Zhou, J., Zhang, J., Liu, J., Qian, G. Removal competition mechanism of orthophosphate and pyrophosphate by CaFe-Cl-LDHs. Desalination and Water Treatment 57 (2016a) 29393-29403.
48.Xu, Y., Hou, H., Liu, Q., Liu, J., Dou, L., Qian, G. Removal behavior research of orthophosphate by CaFe-layered double hydroxides. Desalination and Water Treatment 57 (2016b) 7918-7925.
49.Xu, Y., Lv, H., Qian, G., Zhang, J., Zhou. J.Z. Dual Removal Process of Phosphate on Ca-Layered Double Hydroxide with Substitution of Fe for Al. Journal of Hazardous, Toxic, and Radioactive Waste 18 (2014) A4014001
50.Yang, J.H., Han, Y.S., Park, M., Park, T., Hwang, S.J., Choy, J.H. Chemistry of Materials 19 (2007) 2679-2685.
51.Zhou, J., Li, X., Li, W., Wei, F., Su, Y, Zhang, J., Xu, Z.P., Qian, G. Multi-step removal mechanism of pyrophosphate using CaFe-layered double hydroxide at high pH. Applied Clay Science 105-106 (2015) 21-26.
52.Zhou, J., Yang, S., Yu, J. Facile fabrication of mesoporous MgO microspheres and their enhanced adsorption performance for phosphate from aqueous solutions. Colloids and Surfaces A: Physicochemical Engineering Aspects 379 (2011) 102-108.
53.Zhou, J., Yang, S., Yu, J., Shu, Z. Novel hollow microspheres of hierarchical zinc-aluminum layered double hydroxides and their enhanced adsorption capacity for phosphate in water. Journal of Hazardous Materials 192 (2011) 1114-1121.
54.Zhou, J.Z., Xu, Z.P., Qiao, S.Z., Liu, O., Xu, Y.F., Qian, G.R. Enhanced removal of triphosphate by MgCaFe-Cl-LDH: synergism of precipitation with intercalation and surface uptake. Journal of Hazardous Materials 189 (2011) 586-594.
55.林睿彥,黃耀輝,鋇系化學過氧沉澱程式回收高濃度含硼廢水中的硼,國立成功大學化學工程學系碩士班 103 學年度碩士論文
56.藍韋盛,黃耀輝,雙氧水對化學沉降處理高濃度含硼廢水影響之研究,國立成功大學化學工程學系碩士班 100 學年度碩士論文。
57.劉佳勳,黃耀輝,以化學過氧沉澱(COP)技術回收含硼酸廢液研究,國立成功大學化學工程學系碩士班 101學年度碩士論文。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊