|
Abdelfattah, A. S., Kawashima, T., Singh, A., Novak, O., Liu, H., Shuai, Y., Huang, Y.-C., Campagnola, L., Seeman, S. C., Yu, J., Zheng, J., Grimm, J. B., Patel, R., Friedrich, J., Mensh, B. D., Paninski, L., Macklin, J. J., Murphy, G. J., Podgorski, K., Lin, B.-J., Chen, T.-W., Turner, G. C., Liu, Z., Koyama, M., Svoboda, K., Ahrens, M. B., Lavis, L. D., Schreiter, E. R. (2019). Bright and photostable chemigenetic indicators for extended in vivo voltage imaging. Science 365: 699-704. Doi: 10.1126/science.aav6416 Abbas, W., Rodo, D. M. (2019). Computer methods for automatic locomotion and gesture tracking in mice and small Animals for neuroscience applications: a survey. Sensor 19: 3274. Doi: 10.3390/s19153274 Alexander, G. M., Farris, S., Pirone, J. R., Zheng, C., Colgin, L. L., & Dudek, S.M. (2016). Social and novel contexts modify hippocampal CA2 representations of space. Nature Communications 7. Doi: 10.1038/nocmms10300 Assini, F. L., Duzzioni, M., & Takahashi, R. N. (2009). Object location memory in mice: Pharmacological validation and further evidence of hippocampal CA1 participation. Behavioural Brain Research 204: 206-211. Doi: 10.1016/j.bbr.2009.06.005 Antunes, M. & Biala, G. (2012). The novel object recognition memory: neurobiology, test procedure, and its modifications. Cognitive Processing 13: 93~110. Doi: 10.1007/s10339-011-0430-z. Bayley, P. J., Wixted, J. T., Hopkins, R. O., & Squire, L. R. (2008). Yes/No recognition, forced-choice recognition, and the human hippocampus. Journal of Cognitive Neuroscience 20: 505-512. Doi: 10.1162/jocn.2008.20038 Bevins, R. A., & Besheer, J. (2006). Object recognition in rats and mice: a one-trial non-matching-to-sample learning task to study 'recognition memory'. Nature Protocols 1: 1306-1311. Doi: 10.1038/nprot.2006.205 Burke, S. N., Maurer, A. P., Nematollahi, S., Uprety, A. R., Wallace, J. L., & Barnes, C. A. (2011). The Influence of Objects on Place Field Expression and Size in Distal Hippocampal CA1. Hippocanpus 21: 783-801. Doi: 10.1002/hipo.20929 Buzsáki, G. (2004). Large-scale recording of neuronal ensembles. Nature Neuroscience 7: 446-451. Doi: 10.1038/nn1233 Cameron, T., & Hockley, W. E. (2000). The revelation effect for item and associative recognition: Familiarity versus recollection. Memory & Cognition 28: 176-183. Doi: 10.3758/bf03213797 Chen T.-W., Wardill, T. J., Sun, Y., Pulver, S. R., Renninger, S. L., Baohan, A. Schreiter, E. R., Kerr, R. A., Orger, M. B., Jayaraman, V., Looger, L. L., Svoboda, K., & Kim, D. S. (2013). Ultrasensitive fluorescent proteins for imaging neuronal activity. Nature 499: 295-300. Doi: 10.1038/nature12354 Clark, R. E., Zola, S. M., & Squire, L. R. (2000). Impaired recognition memory in rats after damage to the hippocampus. The Journal of Neuroscience 20: 8853-8860. Doi: 10.1523/JNEUROSCI.20-23-08853.2000 Cohen, S. J., Munchow, A. H., Rios, L. M., Zhang, G., Ásgeirsdóttir, H. N., & Stackman Jr., R. W. (2013). The rodent hippocampus is essential for non-spatial object memory. Current biology 23: 1685-1690. Doi: 10.1016/j.cub.2013.07.002 Cohen, S. J. & Stackman Jr., R. W. (2015). Assessing rodent hippocampal involvement in the novel object recognition task. A review. Behavioural Brain Research 285: 105-117. Doi: 10.1016/j.bbr.2014.08.002 Denninger, J. K., Smith, B. M., & Kirby, E. D. (2018). Novel object recognition and object location behavioral testing in mice on a budget. Journal of Visualized Experiments 141. Doi: 10.3791/58593 Deshmukh, S. S. & Knierim, J. J. (2013). Influence of local objects on hippocampal representations: Landmark vectors and memory. Hippocampus 23: 253-267. Doi: 10.1002/hipo.22101 Dhawale, A. K., Poddar, R., Wolff, S. B. E., Normand, V. A., Kopelowitz, E., Ölveczky, B. P. (2017). Automated long-term recording and analysis of neural activity in behaving animals. eLife 6. Doi: 10. 7554/eLife.27702 Dombeck, D. A., Harvey, C. D., Tian, L., Looger, L. L., & Tank, D. W. (2010). Functional imaging of hippocampal place cells at cellular resolution during virtual navigation. Nature Neuroscience 13: 1433-1440. Doi: 10.1038/nn.2648 Ennaceur, A., & Delacour, J. (1988). A new one-trial test for neurobiological studies of memory in rats. 1" Behavioral data. Behavioural Brain Research 31: 47-59. Doi: 10.1016/0166-4328(88)90157-x Fried, I., MacDonald, K. A.,& Wilson, C. L. (1997). Single neuron activity in human hippocampus and amygdala during recognition of faces and objects. Neuron 18: 753-765. Doi: 10.1016/s0896-6273(00)80315-3 Giancardo, L., Sona, D., Huang, H., Sannino, S., Manago, F., Scheggia, D., Papaleo, F., Murino, V. (2013). Automatic visual tracking and social behaviour analysis with multiple Mice. PLoS one 8: e74557. Doi: 10.1371/journal.pone.0074557 Gong, Y., Huang, C., Li, J. Z., Grewe, B. F., Zhang, Y., Eismann, S., & Schnitzer, M. J. (2015). High-speed recording of neural spikes in awake mice and flies with a fluorescent voltage sensor. Science 350: 1361-1366. Doi: 10.1126/science.aab0810 Grienberger, C. & Konnerth, A. (2012). Imaging calcium in neurons. Neuron 73: 862-885. Doi: 10.1016/j.neuron.2012.02.011 Hammond, R. S., Tull, L. E., & Stackman, R. W. (2004). On the delay-dependent involvement of the hippocampus in object recognition memory. Neurobiology of Learning and Memory 82: 26-34. Doi: 10.1016/j.nlm.2004.03.005 Harris, K. D., Quiroga, R. Q., Freeman, J., & Smith, S. L. (2017). Improving data quality in neuronal population recordings. Nature neuroscience 19: 1165-1174. Doi: 10.1038/nn.4365 Helmchen, F., Fee, M. S., Tank, D. W., & Denk, W. (2001). A miniature head-mounted two-photon microscope. high-resolution brain imaging in freely moving animals. Neuron 31: 903-912. Doi: 10.1016/s0896-6273(01)00421-4 Hintzman, D. L., Caulton, D. A., & Levitin, D. J. (1998). Retrieval dynamics in recognition and list discrimination: Further evidence of separate processes of familiarity and recall. Memory & Cognition 26: 449-462. Doi: 10.3758/bf03201155 Jeneson, A., Kirwan, C.B., Hopkins, R. O., Wixted, J. T., & Squire, L. R. (2010). Recognition memory and the hippocampus: A test of the hippocampal contribution to recollection and familiarity. Learning & Memory 17: 63-70. Doi: 10.1101/lm.1546110 Juczewski, K., Koussa, J. A., Kesner, A. J., Lee, J. O. & Lovinger, D. M. (2020). Stress and behavioral correlates in the head-fixed method: stress measurements, habituation dynamics, locomotion, and motor-skill learning in mice. Scientific Reports 10: 12245. Doi: 10.1038/s41598-020-69132-6 Kaidanovich-Beilin, O., Lipina, T., Vukobradovic, I., Roder, J., & Woodgett, J. R. (2011). Assessment of Social Interaction Behaviors. Journal of Visualized Experiments 48. Doi: 10.3791/2473 Kislin, M., Mugantseva, E., Molotkov, D., Kulesskaya, N., Khirug, S., Kirilkin, I., Pryazhnikov, E., Kolikova, J., Toptunov, D., Yuryev, M., Giniatullin, R., Voikar, V., Rivera, C., Rauvala, H., Khiroug, L. (2014). Flat-floored air-lifted platform: a new method for combining behavior with microscopy or electrophysiology on awake freely moving rodents. Journal of Visualized Experiments 88. Doi: 10.3791/51869 Klioutchnikov, A., Wallace, D. J., Frosz, M. H., Zeltner, R., Sawinski, J., Pawlak, V., Voit, K.-M., Russell, P. St. J., & Kerr, J. N. D. (2020). Three-photon head-mounted microscope for imaging deep cortical layers in freely moving rats. Nature Methods 17: 509-513. Doi: 10.1038/s41592-020-0817-9 Manns, J. R., Hopkins, R. O., Reed, J. M., Kitchener, E. G., & Squire, L. R. (2003). Recognition memory and the human hippocampus. Neuron 37: 171-180. Doi: 10.1016/s0896-6273(02)01147-9 Murai, T., Okuda., S., Tanaka, T., & Ohta, H. (2007). Characteristics of object location memory in mice: Behavioral and pharmacological studies. Physiology & Behavior 90: 116-124. Doi: 10.1016/j.physbeh.2006.09.013 Larkin, M. C., Lykken, C., Tye, L. D., Wickelgren, J. G., & Frank, L. M. (2014). Hippocampal output area CA1 broadcasts a generalized novelty signal during an object-place recognition task. Hippocampus 24: 773-783. Doi: 10.1002/hipo.22268 Leger, M., Quiedeville, A., Bouet, V., Haelewyn, B., Boulouard, M., Schumann-Bard, P., & Freret, T. (2013). Object recognition test in mice. Nature protocols 8: 2531-2537. Doi: 10.1038/nprot.2013.155 Merkow, M. B., Burke, J. F., Kahana, M. J. (2015). The human hippocampus contributes to both the recollection and familiarity components of recognition memory. Proceedings of the National Academy of Sciences of the United States of America 112: 14378-14383. Doi: 10.1073/pnas.1513145112 Okuyama, T., Kitamura, T., Roy, D. S., Itohara, S., & Tonegawa, S. (2016). Ventral CA1 neurons store social memory. Science 353: 1536-1541. Doi: 10.1126/science.aaf7003 Olarte-Sanchez, C. M., Amin, E., Warburton, E. C., & Aggleton, J. P. (2015). Perirhinal cortex lesions impair tests of object recognition memory but spare novelty detection. The European Journal of Neuroscience 42: 3117-3127. Doi: 10.1111/ejn.13106 Oliveira, A. M. M., Hawk, J. D., Abel, T., & Havekes, R. (2010). Post-training reversible inactivation of the hippocampus enhances novel object recognition memory. Learning & Memory 17: 155-160. Doi: 10.1101/lm.1625310 Quiroga, R. Q., Reddy, L., Kreiman, G., Koch, C., & Fried, I. (2005). Invariant visual representation by single neurons in the human brain. Nature 435: 1102-1107. Doi: 10.1038/nature03687 Sawinski, J., Wallace, D. J., Greenberg, D. S., Grossmann, S., Denk, W., & Kerr, J. N. D. (2009). Visually evoked activity in cortical cells imaged in freely moving animals. Proceedings of the National Academy of Sciences of the United States of America 106: 19557-19562. Doi: 10.1073/pnas.0903680106 Sheintuch, L., Rubin, A., Brande-Eliat, N., Geva, N., Sadeh, N., Pinchasof, O., & Ziv, Y. (2017). Tracking the same neurons across multiple days in Ca2+ imaging data. Cell Reports 21: 1102-1115. Doi: 10.1016/j.celrep.2017.10.013 Squire, L. R. (2009). The legacy of patient H.M. for neuroscience. Neuron 61: 6-9. Doi: 10.1016/j.neuron.2008.12.023 Stackman Jr., R. W., Cohen, S. J., Lora, J. C., Rios, L. M. (2016). Temporary inactivation reveals that the CA1 region of the mouse dorsal hippocampus plays an equivalent role in the retrieval of long-term object memory and spatial memory. Neurobiology of Learning and Memory 133: 118-128. Doi: 10.1016/j.nlm.2016.06.016 Wilson, D. I. G., Langston, R. F., Schlesiger, M. I., Wagner, M., Watanabe, S., & Ainge, J. A. (2013). Lateral Entorhinal Cortex is Critical for Novel Object-Context Recognition. Hippocampus 23: 352-366. Doi: 10.1002/hipo.22101 Winters, B. D., Forwood, S. E., Cowell, R. A., Saksida, L. M., & Bussey, T. J. (2004). Double dissociation between the effects of peri-postrhinal cortex and hippocampal lesions on tests of object recognition and spatial memory: Heterogeneity of function within the temporal lobe. The Journal of Neuroscience 24: 5901-5908. Doi: 10.1523/JNEUROSCI.1346-04.2004 Yonelinas, A. P. (2002). The nature of recollection and familiarity: a review of 30 years of research. Journal of Memory & Language 46: 441-517. Doi: 10.1016/j.actpsy.2006.06.002
|