跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.84) 您好!臺灣時間:2024/12/04 11:28
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:王子祥
研究生(外文):Tzu-Hsiang Wang
論文名稱:在頭部固定小鼠上建立新奇事物認知測試
論文名稱(外文):Establishing novel-object recognition tests in head-fixed mice
指導教授:林貝容陳摘文
指導教授(外文):Bei-Jung LinTsai-Wen Chen
學位類別:碩士
校院名稱:國立陽明大學
系所名稱:神經科學研究所
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2020
畢業學年度:109
語文別:中文
論文頁數:90
中文關鍵詞:新奇事物認知頭部固定動物行為再認記憶
外文關鍵詞:Novel object recognitionHead-fixedAnimal behaviorrecognition memory
相關次數:
  • 被引用被引用:0
  • 點閱點閱:112
  • 評分評分:
  • 下載下載:5
  • 收藏至我的研究室書目清單書目收藏:0
認出過去遭遇物品的能力對動物的生存至關重要,幫助我們更快的理解所處情境,但在背後支撐該能力的神經機制尚未明朗。對物品的辨識需要形成與回憶物品再認記憶,而新奇事物認知則是在齧齒類動物上研究物品再認記憶時常使用到的的行為典範。科學家利用了齧齒類動物偏愛新奇事物勝過熟悉事物的天性設計該行為典範,以測試動物形成或回憶再認記憶的能力,擁有正常再認記憶的齧齒動物會花上較多時間在新奇物體上,反之則否。不同區域的腦損傷對新奇事物認知的影響揭示該行為典範與海馬迴的可能聯繫,但該腦區的神經元參與建構物品再認記憶的方式尚未解開。我們希望使用活體螢光成像與活體單細胞膜片鉗技術來深入了解海馬迴內神經元在物品再認記憶建構中的角色,然而上述實驗方式需要動物的頭部固定以取得更高質量的數據,為此需要建構一套用於測試頭部固定動物再認記憶的行為典範,我們於此試著滿足此需求。藉由在動物頭顱骨上安裝金屬棒,我們能限制行為實驗中動物頭部的移動。同時結合一個由氣浮支撐的迷宮,動物便能藉由撥動迷宮本身來探索迷宮中的熟悉與新奇物品。依此我們嘗試讓動物在頭部固定狀況下進行新奇事物認知,寄望未來能將其與活體螢光成像或活體單細胞膜片鉗技術結合以研究海馬迴或其他腦區神經元在動物進行新奇事物認知時的活性。
The ability to remember the objects encountered before is crucial to survival, but its underlying neuronal mechanism has not yet been clear. Recognizing objects requires formation and retrieval of recognition memory. Novel object recognition task is a common method to study this kind of memory in rodent models. Scientists exploit rodents’ internal preference of novel objects over familiar ones to test whether subjects form proper recognition memory or not. Rodents without recognition memory deficits would spend more time interacting with novel objects. Lesion studies combined with such behavioral task have revealed important brain regions involved in forming/maintaining the memory. Nevertheless, to study how neurons of these brain regions achieve memory function requires measurements of their activities and/or connectivity using in vivo two-photon imaging or intracellular recordings. Such measurements, however, depend upon animals’ heads to be fixed to harvest high-quality data. There is a need, thus, to develop behavioral tasks to test recognition memory in head-fixed animals. Here we suggest a solution to solve this problem. By implanting a metal strip on mice skulls, we restrict their head movement. During the behavior tests, subjects explore new and familiar objects in an arena lifted by air. With this, we aim to test novel object recognition paradigms in head-fixed mice hoping to combine the new behavioral tasks with in vivo recordings for further investigation of neuronal mechanism underlying novel object recognition.
目錄
致謝……………………………………………………………………………………………………………………………i
中文摘要 ……………………………………………………………………………………………………………………ii
英文摘要……………………………………………………………………………………………………………………iii
目錄 …………………………………………………………………………………………………………………………iv
圖目錄 ………………………………………………………………………………………………………………………ix
表目錄 ………………………………………………………………………………………………………………………xi
程式編碼目錄………………………………………………………………………………………………………………xii
第一章 引言 …………………………………………………………………………………………………………………1
1.1再認記憶與新奇事物認知 ………………………………………………………………………………………………1
1.2新奇事物認知與海馬迴的聯繫 …………………………………………………………………………………………3
1.3於頭部固定動物測試行為典範的需求 …………………………………………………………………………………5
第二章 實驗材料以及方法 …………………………………………………………………………………………………7
2.1動物與其待遇 ……………………………………………………………………………………………………………7
2.2照明與攝影設備 …………………………………………………………………………………………………………7
2.3動物的上手 ………………………………………………………………………………………………………………7
2.4自由移動新奇事物認知 …………………………………………………………………………………………………7
2.4.1設備 ……………………………………………………………………………………………………………………7
2.4.2物品 ……………………………………………………………………………………………………………………8
2.4.3實驗流程 ………………………………………………………………………………………………………………8
2.4.4設備清潔 ………………………………………………………………………………………………………………8
2.4.5動物探索物品時間的紀錄 ……………………………………………………………………………………………8
2.5 頭棒植入手術……………………………………………………………………………………………………………9
2.5.1手術器具與藥物 ………………………………………………………………………………………………………9
2.5.2實驗流程 ………………………………………………………………………………………………………………9
2.6 頭部固定新奇事物認知 ………………………………………………………………………………………………10
2.6.1 MHC印製………………………………………………………………………………………………………………10
2.6.2物品……………………………………………………………………………………………………………………10
2.6.3 MHC系統架設…………………………………………………………………………………………………………10
2.6.4 MHC使用訓練 ………………………………………………………………………………………………………11
2.6.5實驗流程………………………………………………………………………………………………………………11
2.6.6設備清潔………………………………………………………………………………………………………………11
2.6.7動物探索物品時間的紀錄……………………………………………………………………………………………11
2.7 統計數據分析 …………………………………………………………………………………………………………12
2.7.1量化動物對物品的偏好………………………………………………………………………………………………12
2.7.2量化動物的活動力……………………………………………………………………………………………………12
2.7.3單一樣本T檢定 ………………………………………………………………………………………………………12
2.7.4獨立樣本T檢定 ………………………………………………………………………………………………………13
2.7.5成對樣本T檢定 ………………………………………………………………………………………………………13
2.7.6自由移動新奇事物認知熱圖繪製……………………………………………………………………………………13
2.7.7頭部固定新奇事物認知熱圖繪製……………………………………………………………………………………13
第三章 結果…………………………………………………………………………………………………………………15
3.1嘗試在尺寸與MHC相仿的環境中進行自由移動新奇事物認知 ………………………………………………………15
3.1.1動物在尺寸與MHC相仿的環境中表現出對新奇物品的偏好 ………………………………………………………15
3.1.2確認動物對新出現物品的偏好並非出於物品擺放的位置或是物品的種類………………………………………15
3.1.3不同對探索的定義/不同測試期長度對動物分辨率的影響 ………………………………………………………16
3.2訓練動物使用MHC ………………………………………………………………………………………………………18
3.2.1使用於動物頭部固定的手術與設備…………………………………………………………………………………18
3.2.2 MHC的印製與MHC系統的架設 ………………………………………………………………………………………18
3.2.3使動物習慣實驗者、頭部固定的流程與MHC的使用 ………………………………………………………………19
3.3頭部固定新奇事物認知…………………………………………………………………………………………………21
3.3.1規劃頭部固定新奇事物認知的實驗流程……………………………………………………………………………21
3.3.2修正物品尺寸與頭部固定動物較長休息時間對實驗造成的影響…………………………………………………21
3.3.3頭部固定新奇事物認知無法在不同的實驗室位置重複……………………………………………………………23
3.3.4修改實驗流程與設備以改善動物的探索時間………………………………………………………………………23
3.3.5接受修改過實驗流程訓練的動物由於對特定物品的偏愛,並未展現出對新奇物品的偏好……………………25
3.4結論………………………………………………………………………………………………………………………26
第四章 討論…………………………………………………………………………………………………………………28
4.1即使經過四天的訓練,頭部固定與MHC的使用依然有可能使動物感受到壓力 ……………………………………28
4.2 利用自動追蹤軟體分析動物行為 ……………………………………………………………………………………29
4.3頭部固定新奇事物認知中物品採用的條件……………………………………………………………………………30
4.4 造成頭部固定動物與自由移動動物移動力指數差異的可能原因 …………………………………………………31
4.5 MHC材質的挑選與不同的設計…………………………………………………………………………………………32
4.6基於MHC系統設計頭部固定新奇事物認知的優點與限制 ……………………………………………………………33
4.7未來展望…………………………………………………………………………………………………………………34
參考文獻 ……………………………………………………………………………………………………………………83
圖 目 錄
圖1實驗中採用之物品………………………………………………………………………………………………………36
圖2在尺寸與MHC相似環境中進行自由移動新奇事物認知動物的分辨率 ………………………………………………37
圖3採用不同長度的測試期與採用不同的探索定義對計算分辨率的影響………………………………………………39
圖4頭部固定新奇事物認知中使用到的儀器………………………………………………………………………………41
圖5進行頭部固定新奇事物認知前動物所需經過的訓練…………………………………………………………………42
圖6訓練期中頭部固定動物在MHC上的軌跡與速度紀錄 …………………………………………………………………43
圖7縮短訓練期的時長並不會影響實驗動物的移動力指數………………………………………………………………45
圖8應用於頭部固定新奇事物認知的實驗流程……………………………………………………………………………47
圖9移動力指數較低的實驗動物有著極端的分辨率………………………………………………………………………48
圖10頭部固定新奇事物認知中使用的物品更動 …………………………………………………………………………49
圖11頭部固定動物較長的休息時間與其休息位置的選擇對動物的分辨率有所影響…………………………………………50
圖12在舊日實驗室位置取得的頭部固定新奇事物認知實驗結果無法在新實驗室位置重複 ……………………………52
圖13對頭部固定新奇事物認知實驗細節的修改 …………………………………………………………………………53
圖14接受修改過實驗流程訓練的動物在移動力指數與探索時間上優於接受舊式實驗流程訓練的動物 ……………55
圖15接受修改過實驗流程訓練的動物表現出對特定的物品種類的偏好 ………………………………………………57
圖16除未達探索時間標準後動物在熟悉期與測試期的分辨率 …………………………………………………………59
表 目 錄
表1自由移動新奇事物認知中所使用動物資訊……………………………………………………………………………60
表2訓練期長度為2小時的頭部固定新奇事物認知中所使用動物資訊 …………………………………………………61
表3訓練期長度為1小時的頭部固定新奇事物認知中所使用動物資訊 …………………………………………………62
表4在每次頭部固定前讓動物上手的實驗中所使用動物資訊……………………………………………………………63
表5嘗試重複舊實驗室位置實驗中所使用動物資訊………………………………………………………………………64
表6使用修改頭部固定新奇事物認知實驗流程的實驗中所使用動物資訊………………………………………………65
程 式 編 碼 目 錄
編碼1將自由移動新奇事物認知影片檔案轉為mat檔案並降低影片的幀率 ……………………………………………66
編碼2將半自動自由移動動物鼻尖、身體中心位置紀錄換算為分辨率與移動力指數…………………………………67
編碼2.1 explorationdefine_ver_2 …………………………………………………………………………………… 68
編碼3自由移動新奇事物認知測試期熱圖繪製……………………………………………………………………………69
編碼4 2小時訓練期移動力指數計算………………………………………………………………………………………71
編碼5 2小時訓練期中每15分鐘時間區間的移動力指數計算……………………………………………………………72
編碼6 2小時訓練期中第一小時與第二小時時間區間中移動力指數計算………………………………………………73
編碼7 1小時訓練期移動力指數計算………………………………………………………………………………………74
編碼8頭部固定動物在測試期中的分辨率與移動力指數計算……………………………………………………………75
編碼8.1 TrainingExam ……………………………………………………………………………………………………78
編碼9頭部固定新奇事物認知測試期熱圖繪製……………………………………………………………………………79
編碼10頭部固定新奇事物認知測試期移動狀態下熱圖繪製 ……………………………………………………………81
Abdelfattah, A. S., Kawashima, T., Singh, A., Novak, O., Liu, H., Shuai, Y., Huang, Y.-C., Campagnola, L., Seeman, S. C., Yu, J., Zheng, J., Grimm, J. B., Patel, R., Friedrich, J., Mensh, B. D., Paninski, L., Macklin, J. J., Murphy, G. J., Podgorski, K., Lin, B.-J., Chen, T.-W., Turner, G. C., Liu, Z., Koyama, M., Svoboda, K., Ahrens, M. B., Lavis, L. D., Schreiter, E. R. (2019). Bright and photostable chemigenetic indicators for extended in vivo voltage imaging. Science 365: 699-704. Doi: 10.1126/science.aav6416
Abbas, W., Rodo, D. M. (2019). Computer methods for automatic locomotion and gesture tracking in mice and small Animals for neuroscience applications: a survey. Sensor 19: 3274. Doi: 10.3390/s19153274
Alexander, G. M., Farris, S., Pirone, J. R., Zheng, C., Colgin, L. L., & Dudek, S.M. (2016). Social and novel contexts modify hippocampal CA2 representations of space. Nature Communications 7. Doi: 10.1038/nocmms10300
Assini, F. L., Duzzioni, M., & Takahashi, R. N. (2009). Object location memory in mice: Pharmacological validation and further evidence of hippocampal CA1 participation. Behavioural Brain Research 204: 206-211. Doi: 10.1016/j.bbr.2009.06.005
Antunes, M. & Biala, G. (2012). The novel object recognition memory: neurobiology, test procedure, and its modifications. Cognitive Processing 13: 93~110. Doi: 10.1007/s10339-011-0430-z.
Bayley, P. J., Wixted, J. T., Hopkins, R. O., & Squire, L. R. (2008). Yes/No recognition, forced-choice recognition, and the human hippocampus. Journal of Cognitive Neuroscience 20: 505-512. Doi: 10.1162/jocn.2008.20038
Bevins, R. A., & Besheer, J. (2006). Object recognition in rats and mice: a one-trial non-matching-to-sample learning task to study 'recognition memory'. Nature Protocols 1: 1306-1311. Doi: 10.1038/nprot.2006.205
Burke, S. N., Maurer, A. P., Nematollahi, S., Uprety, A. R., Wallace, J. L., & Barnes, C. A. (2011). The Influence of Objects on Place Field Expression and Size in Distal Hippocampal CA1. Hippocanpus 21: 783-801. Doi: 10.1002/hipo.20929
Buzsáki, G. (2004). Large-scale recording of neuronal ensembles. Nature Neuroscience 7: 446-451. Doi: 10.1038/nn1233
Cameron, T., & Hockley, W. E. (2000). The revelation effect for item and associative recognition: Familiarity versus recollection. Memory & Cognition 28: 176-183. Doi: 10.3758/bf03213797
Chen T.-W., Wardill, T. J., Sun, Y., Pulver, S. R., Renninger, S. L., Baohan, A. Schreiter, E. R., Kerr, R. A., Orger, M. B., Jayaraman, V., Looger, L. L., Svoboda, K., & Kim, D. S. (2013). Ultrasensitive fluorescent proteins for imaging neuronal activity. Nature 499: 295-300. Doi: 10.1038/nature12354
Clark, R. E., Zola, S. M., & Squire, L. R. (2000). Impaired recognition memory in rats after damage to the hippocampus. The Journal of Neuroscience 20: 8853-8860. Doi: 10.1523/JNEUROSCI.20-23-08853.2000
Cohen, S. J., Munchow, A. H., Rios, L. M., Zhang, G., Ásgeirsdóttir, H. N., & Stackman Jr., R. W. (2013). The rodent hippocampus is essential for non-spatial object memory. Current biology 23: 1685-1690. Doi: 10.1016/j.cub.2013.07.002
Cohen, S. J. & Stackman Jr., R. W. (2015). Assessing rodent hippocampal involvement in the novel object recognition task. A review. Behavioural Brain Research 285: 105-117. Doi: 10.1016/j.bbr.2014.08.002
Denninger, J. K., Smith, B. M., & Kirby, E. D. (2018). Novel object recognition and object location behavioral testing in mice on a budget. Journal of Visualized Experiments 141. Doi: 10.3791/58593
Deshmukh, S. S. & Knierim, J. J. (2013). Influence of local objects on hippocampal representations: Landmark vectors and memory. Hippocampus 23: 253-267. Doi: 10.1002/hipo.22101
Dhawale, A. K., Poddar, R., Wolff, S. B. E., Normand, V. A., Kopelowitz, E., Ölveczky, B. P. (2017). Automated long-term recording and analysis of neural activity in behaving animals. eLife 6. Doi: 10. 7554/eLife.27702
Dombeck, D. A., Harvey, C. D., Tian, L., Looger, L. L., & Tank, D. W. (2010). Functional imaging of hippocampal place cells at cellular resolution during virtual navigation. Nature Neuroscience 13: 1433-1440. Doi: 10.1038/nn.2648
Ennaceur, A., & Delacour, J. (1988). A new one-trial test for neurobiological studies of memory in rats. 1" Behavioral data. Behavioural Brain Research 31: 47-59. Doi: 10.1016/0166-4328(88)90157-x
Fried, I., MacDonald, K. A.,& Wilson, C. L. (1997). Single neuron activity in human hippocampus and amygdala during recognition of faces and objects. Neuron 18: 753-765. Doi: 10.1016/s0896-6273(00)80315-3
Giancardo, L., Sona, D., Huang, H., Sannino, S., Manago, F., Scheggia, D., Papaleo, F., Murino, V. (2013). Automatic visual tracking and social behaviour analysis with multiple Mice. PLoS one 8: e74557. Doi: 10.1371/journal.pone.0074557
Gong, Y., Huang, C., Li, J. Z., Grewe, B. F., Zhang, Y., Eismann, S., & Schnitzer, M. J. (2015). High-speed recording of neural spikes in awake mice and flies with a fluorescent voltage sensor. Science 350: 1361-1366. Doi: 10.1126/science.aab0810
Grienberger, C. & Konnerth, A. (2012). Imaging calcium in neurons. Neuron 73: 862-885. Doi: 10.1016/j.neuron.2012.02.011
Hammond, R. S., Tull, L. E., & Stackman, R. W. (2004). On the delay-dependent involvement of the hippocampus in object recognition memory. Neurobiology of Learning and Memory 82: 26-34. Doi: 10.1016/j.nlm.2004.03.005
Harris, K. D., Quiroga, R. Q., Freeman, J., & Smith, S. L. (2017). Improving data quality in neuronal population recordings. Nature neuroscience 19: 1165-1174. Doi: 10.1038/nn.4365
Helmchen, F., Fee, M. S., Tank, D. W., & Denk, W. (2001). A miniature head-mounted two-photon microscope. high-resolution brain imaging in freely moving animals. Neuron 31: 903-912. Doi: 10.1016/s0896-6273(01)00421-4
Hintzman, D. L., Caulton, D. A., & Levitin, D. J. (1998). Retrieval dynamics in recognition and list discrimination: Further evidence of separate processes of familiarity and recall. Memory & Cognition 26: 449-462. Doi: 10.3758/bf03201155
Jeneson, A., Kirwan, C.B., Hopkins, R. O., Wixted, J. T., & Squire, L. R. (2010). Recognition memory and the hippocampus: A test of the hippocampal contribution to recollection and familiarity. Learning & Memory 17: 63-70. Doi: 10.1101/lm.1546110
Juczewski, K., Koussa, J. A., Kesner, A. J., Lee, J. O. & Lovinger, D. M. (2020). Stress and behavioral correlates in the head-fixed method: stress measurements, habituation dynamics, locomotion, and motor-skill learning in mice. Scientific Reports 10: 12245. Doi: 10.1038/s41598-020-69132-6
Kaidanovich-Beilin, O., Lipina, T., Vukobradovic, I., Roder, J., & Woodgett, J. R. (2011). Assessment of Social Interaction Behaviors. Journal of Visualized Experiments 48. Doi: 10.3791/2473
Kislin, M., Mugantseva, E., Molotkov, D., Kulesskaya, N., Khirug, S., Kirilkin, I., Pryazhnikov, E., Kolikova, J., Toptunov, D., Yuryev, M., Giniatullin, R., Voikar, V., Rivera, C., Rauvala, H., Khiroug, L. (2014). Flat-floored air-lifted platform: a new method for combining behavior with microscopy or electrophysiology on awake freely moving rodents. Journal of Visualized Experiments 88. Doi: 10.3791/51869
Klioutchnikov, A., Wallace, D. J., Frosz, M. H., Zeltner, R., Sawinski, J., Pawlak, V., Voit, K.-M., Russell, P. St. J., & Kerr, J. N. D. (2020). Three-photon head-mounted microscope for imaging deep cortical layers in freely moving rats. Nature Methods 17: 509-513. Doi: 10.1038/s41592-020-0817-9
Manns, J. R., Hopkins, R. O., Reed, J. M., Kitchener, E. G., & Squire, L. R. (2003). Recognition memory and the human hippocampus. Neuron 37: 171-180. Doi: 10.1016/s0896-6273(02)01147-9
Murai, T., Okuda., S., Tanaka, T., & Ohta, H. (2007). Characteristics of object location memory in mice: Behavioral and pharmacological studies. Physiology & Behavior 90: 116-124. Doi: 10.1016/j.physbeh.2006.09.013
Larkin, M. C., Lykken, C., Tye, L. D., Wickelgren, J. G., & Frank, L. M. (2014). Hippocampal output area CA1 broadcasts a generalized novelty signal during an object-place recognition task. Hippocampus 24: 773-783. Doi: 10.1002/hipo.22268
Leger, M., Quiedeville, A., Bouet, V., Haelewyn, B., Boulouard, M., Schumann-Bard, P., & Freret, T. (2013). Object recognition test in mice. Nature protocols 8: 2531-2537. Doi: 10.1038/nprot.2013.155
Merkow, M. B., Burke, J. F., Kahana, M. J. (2015). The human hippocampus contributes to both the recollection and familiarity components of recognition memory. Proceedings of the National Academy of Sciences of the United States of America 112: 14378-14383. Doi: 10.1073/pnas.1513145112
Okuyama, T., Kitamura, T., Roy, D. S., Itohara, S., & Tonegawa, S. (2016). Ventral CA1 neurons store social memory. Science 353: 1536-1541. Doi: 10.1126/science.aaf7003
Olarte-Sanchez, C. M., Amin, E., Warburton, E. C., & Aggleton, J. P. (2015). Perirhinal cortex lesions impair tests of object recognition memory but spare novelty detection. The European Journal of Neuroscience 42: 3117-3127. Doi: 10.1111/ejn.13106
Oliveira, A. M. M., Hawk, J. D., Abel, T., & Havekes, R. (2010). Post-training reversible inactivation of the hippocampus enhances novel object recognition memory. Learning & Memory 17: 155-160. Doi: 10.1101/lm.1625310
Quiroga, R. Q., Reddy, L., Kreiman, G., Koch, C., & Fried, I. (2005). Invariant visual representation by single neurons in the human brain. Nature 435: 1102-1107. Doi: 10.1038/nature03687
Sawinski, J., Wallace, D. J., Greenberg, D. S., Grossmann, S., Denk, W., & Kerr, J. N. D. (2009). Visually evoked activity in cortical cells imaged in freely moving animals. Proceedings of the National Academy of Sciences of the United States of America 106: 19557-19562. Doi: 10.1073/pnas.0903680106
Sheintuch, L., Rubin, A., Brande-Eliat, N., Geva, N., Sadeh, N., Pinchasof, O., & Ziv, Y. (2017). Tracking the same neurons across multiple days in Ca2+ imaging data. Cell Reports 21: 1102-1115. Doi: 10.1016/j.celrep.2017.10.013
Squire, L. R. (2009). The legacy of patient H.M. for neuroscience. Neuron 61: 6-9. Doi: 10.1016/j.neuron.2008.12.023
Stackman Jr., R. W., Cohen, S. J., Lora, J. C., Rios, L. M. (2016). Temporary inactivation reveals that the CA1 region of the mouse dorsal hippocampus plays an equivalent role in the retrieval of long-term object memory and spatial memory. Neurobiology of Learning and Memory 133: 118-128. Doi: 10.1016/j.nlm.2016.06.016
Wilson, D. I. G., Langston, R. F., Schlesiger, M. I., Wagner, M., Watanabe, S., & Ainge, J. A. (2013). Lateral Entorhinal Cortex is Critical for Novel Object-Context Recognition. Hippocampus 23: 352-366. Doi: 10.1002/hipo.22101
Winters, B. D., Forwood, S. E., Cowell, R. A., Saksida, L. M., & Bussey, T. J. (2004). Double dissociation between the effects of peri-postrhinal cortex and hippocampal lesions on tests of object recognition and spatial memory: Heterogeneity of function within the temporal lobe. The Journal of Neuroscience 24: 5901-5908. Doi: 10.1523/JNEUROSCI.1346-04.2004
Yonelinas, A. P. (2002). The nature of recollection and familiarity: a review of 30 years of research. Journal of Memory & Language 46: 441-517. Doi: 10.1016/j.actpsy.2006.06.002
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top