跳到主要內容

臺灣博碩士論文加值系統

(44.200.101.84) 您好!臺灣時間:2023/09/25 13:49
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:吳維倫
研究生(外文):Wei-Lun Wu
論文名稱:心房纖維顫動患者的急性缺血性中風次級預防藥物使用時機
論文名稱(外文):Timing of secondary preventive drugs for acute ischemic stroke in patients with atrial fibrillation
指導教授:蔡憶文蔡憶文引用關係鄭浩民鄭浩民引用關係
指導教授(外文):Yi-Wen TsaiHao-Min Cheng
學位類別:碩士
校院名稱:國立陽明大學
系所名稱:衛生福利研究所
學門:醫藥衛生學門
學類:公共衛生學類
論文種類:學術論文
論文出版年:2020
畢業學年度:109
語文別:中文
論文頁數:192
中文關鍵詞:心房纖維顫動急性缺血性中風口服抗凝血劑出血中風復發
外文關鍵詞:atrial fibrillationacute ischemic strokeoral anticoagulantstimingbleedingstroke recurrence
相關次數:
  • 被引用被引用:0
  • 點閱點閱:65
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
研究背景
口服抗凝血劑可以預防急性缺血性中風患者中風復發及血管栓塞,但卻可能會發生出血副作用,而口服抗凝血劑的療效及安全性會受到急性缺血性中風後的用藥時機影響。台灣目前遵循歐洲心律協會建議的「1-3-6-12天法則」,針對具有心房纖維顫動病史的急性缺血性中風患者,依據中風嚴重度分別給予不同的延後口服抗凝血劑使用建議,然而此建議為國際專家共識意見,未於國內以實證研究加以評估。
目的
本研究分析有心房纖維顫動病史的急性缺血性中風患者在中風復發、血管栓塞及出血的風險,作為評估中風後口服抗凝血劑「1-3-6-12 天法則」在療效及安全性上的實證依據。
研究方法
本研究自台灣健保資料庫中納入了2012年1月1日至2016年12月31日中患有心房纖維顫動且首次發生急性缺血性中風的患者約16,108人,在排除性別不詳,中風住院日即被診斷為出血性中風、死亡或發生觀察事件後,依綜合、療效及安全等三種觀察結果,其樣本數分別為10,956人、11,529人及11,709人,且在各觀察結果下,樣本皆會依據中風嚴重度區分為輕度、中度及重度中風,並於2017年12月31日結束追蹤。其中療效結果包括缺血性中風、心肌梗塞、暫時性缺血發作、全身性栓塞、靜脈血栓栓塞及心因性死亡;安全結果包括出血性中風、腸胃道出血及血尿;綜合結果則涵蓋療效與安全結果。本研究以觀察性研究模仿隨機臨床試驗(RCT),將急性缺血性中風後30天內的每一天用藥皆視為一個RCT研究,視當日用藥者為用藥組,缺血性中風後至當日皆無用藥者為無用藥組,進行1:1傾向分數配對以達到近似隨機分配的效果後,分析用藥組與無用藥組的差異。接著將服藥時機符合指引建議延後使用日數的RCT研究歸類為晚期用藥,未遵循者歸類為早期用藥,以網絡統合分析進行早期與晚期用藥的間接比較。
研究結果
在各中風嚴重度下,口服抗凝血劑不論早或晚期使用,皆能降低中風復發、血管栓塞與出血的綜合風險,以及中風復發與血管栓塞的療效風險,部分能達統計顯著,出血風險則僅重度中風早期使用會顯著增加出血風險(HR:1.67, 95%C.I. 1.30~2.13)。
晚期用藥相對早期用藥,在各中風嚴重度下皆不會顯著減少綜合風險,亦不會提高療效風險。然而在出血風險上,晚期用藥普遍能夠降低出血的保護作用,但僅重度中風患者(HR:0.69, 95%C.I. 0.48~1.01)能接近統計顯著。
結論
台灣目前遵循的口服抗凝血劑延後使用日數建議,雖然並不會增加中風復發及血管栓塞的風險,但亦無法有效降低出血風險。就輕中度中風患者而言,提早用藥不僅具療效且不會產生顯著的出血風險,而重度中風則需進一步評估調整臨床建議。
Background
Oral anticoagulants (OAC) prevent stroke recurrence and vascular embolism among acute ischemic stroke (AIS) patients with atrial fibrillation (AF), but it also increases the risk of hemorrhagic transformation or bleeding. Since the timing of OAC use will influence its efficacy and safety, the recommended initiation time of prescription is crucial. However, in Taiwan stroke prevention guideline “1-3-6-12 day rule” recommendation, the delayed initiation time of OAC use was different from stroke severity and was based on empirical consensus, not empirical evidence. This study will examine whether the recommended time of OAC use in the guideline is opportune.
Objective
To evaluate the composite, efficacy, and safety risk about delaying the use of OAC in the “1-3-6-12 day rule” recommended in Taiwan stroke prevention guidelines.
Methods
We prospectively studied AIS patients with AF from January 1, 2012, to December 31, 2016, in Taiwan’s National Health Insurance Research Database, and ended our follow-up on December 31, 2017. Study samples were stratified by stroke severity into mild, moderate, and severe groups to observe the composite (ischemic stroke, myocardial infarction, transient ischemic attack, systemic embolism, venous thromboembolism, cardiovascular death, hemorrhage stroke, gastrointestinal bleeding, and hematuria), efficacy (ischemic stroke, myocardial infarction, transient ischemic attack, systemic embolism, venous thromboembolism, and cardiovascular death), and safety (hemorrhage stroke, gastrointestinal bleeding, and hematuria) outcome. We divided our observational study into thirty day by day trials after AIS and did 1:1 propensity score matching in each trial to mimic the randomized control trial design. In each trial, users were those who didn’t treat with OAC until the trial day, and non-users were those who had not treated with OAC by the trial day. Moreover, late users were defined as patients who initiated OAC followed the recommendation, early users were those who didn’t follow the recommendation. To compare early users and late users in composite, efficacy, and safety outcome, we utilize network meta-analysis to do the indirect comparison after finishing thirty comparisons of users and non-users.
Results
Both early and late OAC users could reduce composite and efficacy risk in each stroke severity and part of the protection effect are significant. Only early users of severe stroke will increase bleeding risk significantly (HR:1.67, 95%C.I. 1.30~2.13). Late OAC use will not reduce the composite risk or increase the efficacy risk in each sample of stroke severity comparing with early users. In safety risk, late OAC use will reduce bleeding risk in each sample of stroke severity but not statistically significant. The severe group (HR:0.69, 95%C.I. 0.48~1.01) was the only one on the borderline.
Conclusion
The current guidelines on the number of days of delayed OAC use are not effective in reducing hemorrhagic transformation or bleeding risk but maintaining the efficacy of preventing stroke recurrence and vascular embolism. It’s acceptable for mild and moderate stroke to use OAC in early phase due to the prevention effect and not significant bleeding risk. However, further researches are needed to evaluate clinical recommendation in severe stroke.
致謝 i
中文摘要 iii
Abstract v
目錄 vii
圖目錄 ix
表目錄 x
第1章 緒論 1
第1節 研究背景與動機 1
第2節 研究目的與問題 3
第3節 研究重要性 4
第4節 重要名詞定義 5
第2章 文獻探討 6
第1節 心房纖維顫動 6
第2節 藥物預防 13
第3節 口服抗凝血劑用藥評估 30
第4節 文獻總結 38
第3章 研究方法 39
第1節 研究架構 39
第2節 研究假說 40
第3節 研究設計概念 41
第4節 研究設計執行細節 43
第5節 研究樣本及分組 48
第6節 資料來源 51
第7節 資料處理及樣本篩選流程 52
第8節 研究變項之定義與測量 53
第9節 統計分析 61
第4章 研究結果 66
第1節 樣本基本特性 66
第2節 結果的描述性統計 105
第3節 多變項分析 129
第5章 討論與限制 133
第1節 研究結果討論 133
第2節 研究限制 137
第6章 結論與建議 138
第1節 結論 138
第2節 建議 138
參考文獻 139
附錄一 150
附錄二 151
附錄三 169
附錄四 175

圖目錄
圖 1 1 1 1-3-6-12天法則 2
圖 2 1 1 心臟中的電位傳導 8
圖 2 1 2 心房纖維顫動患者的動作電位 9
圖 2 1 3 心房纖維顫動導致缺血性中風的機轉 10
圖 2 2 1 抗血小板藥與抗凝血劑的作用機轉 13
圖 2 3 1 導致中風模型 30
圖 2 3 2 亞洲人非瓣膜性房顫的治療流程圖 32
圖 2 3 3 台灣中風防治指引的「1-3-6-12天法則」 35
圖 3 1 1 研究架構圖一:仿RCT中實驗組與控制組的直接比較 39
圖 3 1 2 研究架構圖二:早期用藥與晚期用藥的間接比較 40
圖 3 3 1 研究設計圖 42
圖 3 4 1 本研究的immortal time bias示意圖 43
圖 3 4 2 輕度中風患者以仿RCT比較早與晚期用藥 45
圖 3 4 3 中度中風患者以仿RCT比較早與晚期用藥 45
圖 3 4 4 重度中風患者以仿RCT比較早與晚期用藥 46
圖 3 6 1 資料庫串檔方式 51
圖 3 7 1 樣本選取流程圖 52
圖 4 2 1 輕度患者早期用藥區間之累積發生率比較(綜合結果) 112
圖 4 2 2 輕度患者晚期用藥區間之累積發生率比較(綜合結果) 112
圖 4 2 3 中度患者早期用藥區間之累積發生率比較(綜合結果) 114
圖 4 2 4 中度患者晚期用藥區間之累積發生率比較(綜合結果) 114
圖 4 2 5 重度患者早期用藥區間之累積發生率比較(綜合結果) 116
圖 4 2 6 重度患者晚期用藥區間之累積發生率比較(綜合結果) 116
圖 4 2 7 輕度患者早期用藥區間之累積發生率比較(療效結果) 118
圖 4 2 8 輕度患者晚期用藥區間之累積發生率比較(療效結果) 118
圖 4 2 9 中度患者早期用藥區間之累積發生率比較(療效結果) 120
圖 4 2 10 中度患者晚期用藥區間之累積發生率比較(療效結果) 120
圖 4 2 11 重度患者早期用藥區間之累積發生率比較(療效結果) 122
圖 4 2 12 重度患者晚期用藥區間之累積發生率比較(療效結果) 122
圖 4 2 13 輕度患者早期用藥區間之累積發生率比較(安全結果) 124
圖 4 2 14 輕度患者晚期用藥區間之累積發生率比較(安全結果) 124
圖 4 2 15 中度患者早期用藥區間之累積發生率比較(安全結果) 126
圖 4 2 16 中度患者晚期用藥區間之累積發生率比較(安全結果) 126
圖 4 2 17 重度患者早期用藥區間之累積發生率比較(安全結果) 128
圖 4 2 18 重度患者晚期用藥區間之累積發生率比較(安全結果) 128

表目錄
表 2 2 1 四篇NOAC藥物隨機臨床試驗的相對風險結果 22
表 2 2 2 NOAC藥物不同觀察結果的風險比值 23
表 2 3 1 CHADS2量表的評分項目、分數及中風機率 31
表 2 3 2 CHA2DS2-VASc量表的評分項目、分數及中風機率 31
表 2 3 3 HAS-BLED量表的評分項目、分數及出血機率 33
表 2 3 4 各指引在缺血性中風次級預防的口服抗凝血劑服用時機差異 34
表 2 3 5 心房纖維顫動患者在急性缺血性中風後不同延後用藥日數的文獻 36
表 3 5 1 研究樣本篩選標準 50
表 3 6 1 資料庫簡介 51
表 3 8 1 研究變項及操作型定義-依變項 56
表 3 8 2 研究變項及操作型定義-自變項和分層變項 57
表 3 8 3 研究變項及操作型定義-控制變項 58
表 4 1 1 輕度中風患者之早期用藥與無用藥的基本特性(綜合結果) 69
表 4 1 2 輕度中風患者之晚期用藥與無用藥的基本特性(綜合結果) 71
表 4 1 3 中度中風患者之早期用藥與無用藥的基本特性(綜合結果) 73
表 4 1 4 中度中風患者之晚期用藥與無用藥的基本特性(綜合結果) 75
表 4 1 5 重度中風患者之早期用藥與無用藥的基本特性(綜合結果) 77
表 4 1 6 重度中風患者之晚期用藥與無用藥的基本特性(綜合結果) 79
表 4 1 7 輕度中風患者之早期用藥與無用藥的基本特性(療效結果) 81
表 4 1 8 輕度中風患者之晚期用藥與無用藥的基本特性(療效結果) 83
表 4 1 9 中度中風患者之早期用藥與無用藥的基本特性(療效結果) 85
表 4 1 10 中度中風患者之晚期用藥與無用藥的基本特性(療效結果) 87
表 4 1 11 重度中風患者之早期用藥與無用藥的基本特性(療效結果) 89
表 4 1 12 重度中風患者之晚期用藥與無用藥的基本特性(療效結果) 91
表 4 1 13 輕度中風患者之早期用藥與無用藥的基本特性(安全結果) 93
表 4 1 14 輕度中風患者之晚期用藥與無用藥的基本特性(安全結果) 95
表 4 1 15 中度中風患者之早期用藥與無用藥的基本特性(安全結果) 97
表 4 1 16 中度中風患者之晚期用藥與無用藥的基本特性(安全結果) 99
表 4 1 17 重度中風患者之早期用藥與無用藥的基本特性(安全結果) 101
表 4 1 18 重度中風患者之晚期用藥與無用藥的基本特性(安全結果) 103
表 4 2 1 輕度中風患者之結果描述性統計(綜合結果) 111
表 4 2 2 中度中風患者之結果描述性統計(綜合結果) 113
表 4 2 3 重度中風患者之結果描述性統計(綜合結果) 115
表 4 2 4 輕度中風患者之結果描述性統計(療效結果) 117
表 4 2 5 中度中風患者之結果描述性統計(療效結果) 119
表 4 2 6 重度中風患者之結果描述性統計(療效結果) 121
表 4 2 7 輕度中風患者之結果描述性統計(安全結果) 123
表 4 2 8 中度中風患者之結果描述性統計(安全結果) 125
表 4 2 9 重度中風患者之結果描述性統計(安全結果) 127
表 4 3 1 Cox比例風險模型中「口服抗凝血劑使用時機」在各中風嚴重度及觀察結果下的風險比值,及其間接比較 131
表 4 3 2 藥物分層後之Cox比例風險模型中「口服抗凝血劑使用時機」在各中風嚴重度及觀察結果下的風險比值,及其間接比較 132
1. Roth, G.A., et al., Global, regional, and national age-sex-specific mortality for 282 causes of death in 195 countries and territories, 1980–2017: a systematic analysis for the Global Burden of Disease Study 2017. The Lancet, 2018. 392(10159): p. 1736-1788.
2. 國民健康署, 腦中風手冊. 2018.
3. Johnson, C.O., et al., Global, regional, and national burden of stroke, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. The Lancet Neurology, 2019. 18(5): p. 439-458.
4. Katan, M. and A. Luft, Global Burden of Stroke. Semin Neurol, 2018. 38(2): p. 208-211.
5. Zhou, Z. and D. Hu, An epidemiological study on the prevalence of atrial fibrillation in the Chinese population of mainland China. J Epidemiol, 2008. 18(5): p. 209-16.
6. Marini, C., et al., Contribution of atrial fibrillation to incidence and outcome of ischemic stroke: results from a population-based study. Stroke, 2005. 36(6): p. 1115-9.
7. Brambatti, M., et al., Temporal relationship between subclinical atrial fibrillation and embolic events. Circulation, 2014. 129(21): p. 2094-9.
8. Chien, K.L., et al., Atrial fibrillation prevalence, incidence and risk of stroke and all-cause death among Chinese. Int J Cardiol, 2010. 139(2): p. 173-80.
9. Lamassa M, D.C.A., Pracucci G, Basile AM, Trefoloni G, Vanni P, Spolveri S, Baruffi MC, Landini G, Ghetti A, Wolfe CD, Inzitari D., Characteristics, Outcome, and Care of Stroke Associated With Atrial Fibrillation in Europe Data From a Multicenter Multinational Hospital–Based Registry (The European Community Stroke Project). Stroke, 2001. 32(2): p. 392–398.
10. Hannon, N., et al., Stroke associated with atrial fibrillation--incidence and early outcomes in the north Dublin population stroke study. Cerebrovasc Dis, 2010. 29(1): p. 43-9.
11. McGrath, E.R., et al., Association of atrial fibrillation with mortality and disability after ischemic stroke. Neurology, 2013. 81(9): p. 825-32.
12. Dulli, D.A., H. Stanko, and R.L. Levine, Atrial fibrillation is associated with severe acute ischemic stroke. Neuroepidemiology, 2003. 22(2): p. 118-23.
13. H. S. Jerrgensen, H.N., J. Reith, H. O. Raaschou, T. S. Olsen, Stroke recurrence: predictors, severity, and prognosis. The Copenhagen Stroke Study. Neurology, 1997. 48(4): p. 891–895.
14. Penado, S., et al., Atrial fibrillation as a risk factor for stroke recurrence. The American Journal of Medicine, 2003. 114(3): p. 206-210.
15. Kimura, K., K. Minematsu, and T. Yamaguchi, Atrial fibrillation as a predictive factor for severe stroke and early death in 15,831 patients with acute ischaemic stroke. J Neurol Neurosurg Psychiatry, 2005. 76(5): p. 679-83.
16. Minna M. Kaarisalo, P.I.-R., Reijo J. Marttila, Veikko Salomaa, Esko Kaarsalo, Kalervo Salmi, Cinzia Sarti, Juhani Sivenius, Jorma Torppa, and Jaakko Tuomilehto, Atrial Fibrillation and Stroke Mortality and Causes of Death After the First Acute Ischemic Stroke. Stroke, 1997. 28(2): p. 311–15.
17. Kernan, W.N., et al., Guidelines for the prevention of stroke in patients with stroke and transient ischemic attack: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke, 2014. 45(7): p. 2160-236.
18. Paciaroni, M., et al., Timing of anticoagulation therapy in patients with acute ischaemic stroke and atrial fibrillation. Thromb Haemost, 2016. 116(3): p. 410-6.
19. Heidbuchel, H., et al., Updated European Heart Rhythm Association Practical Guide on the use of non-vitamin K antagonist anticoagulants in patients with non-valvular atrial fibrillation. Europace, 2015. 17(10): p. 1467-507.
20. What are the different types of stroke? ; Available from: https://www.hopkinsmedicine.org/health/conditions-and-diseases/stroke/types-of-stroke.
21. What are the Symptoms of Atrial Fibrillation (AFib or AF)? 2016; Available from: https://www.heart.org/en/health-topics/atrial-fibrillation/what-are-the-symptoms-of-atrial-fibrillation-afib-or-af.
22. Chugh, S.S., et al., Worldwide epidemiology of atrial fibrillation: a Global Burden of Disease 2010 Study. Circulation, 2014. 129(8): p. 837-847.
23. Tse, H.F., et al., Stroke prevention in atrial fibrillation--an Asian stroke perspective. Heart Rhythm, 2013. 10(7): p. 1082-8.
24. Miyasaka, Y., et al., Secular trends in incidence of atrial fibrillation in Olmsted County, Minnesota, 1980 to 2000, and implications on the projections for future prevalence. Circulation, 2006. 114(2): p. 119-25.
25. Krijthe, B.P., et al., Projections on the number of individuals with atrial fibrillation in the European Union, from 2000 to 2060. Eur Heart J, 2013. 34(35): p. 2746-51.
26. Lee, C.H., et al., Characteristics of hospitalized patients with atrial fibrillation in Taiwan: a nationwide observation. Am J Med, 2007. 120(9): p. 819.e1-7.
27. 國發會, 中華民國人口推估 (2018 至 2065 年). 2018.
28. Types of Arrhythmia. 2015; Available from: https://web.archive.org/web/20150607165144/http://www.nhlbi.nih.gov/health/health-topics/topics/arr/types.
29. What Is Atrial Fibrillation? 2015, American Heart Association.
30. Why Atrial Fibrillation (AF or AFib) Matters. 2016; Available from: https://www.heart.org/en/health-topics/atrial-fibrillation/why-atrial-fibrillation-af-or-afib-matters.
31. Manolio, T.A., et al., Short-term predictors of incident stroke in older adults. The Cardiovascular Health Study. Stroke, 1996. 27(9): p. 1479-86.
32. Wolf, P.A., et al., Epidemiologic assessment of chronic atrial fibrillation and risk of stroke: the Framingham study. Neurology, 1978. 28(10): p. 973-7.
33. Yap, K.B., T.P. Ng, and H.Y. Ong, Low prevalence of atrial fibrillation in community-dwelling Chinese aged 55 years or older in Singapore: a population-based study. J Electrocardiol, 2008. 41(2): p. 94-8.
34. Brambatti, M., et al., Temporal relationship between subclinical atrial fibrillation and embolic events. Circulation, 2014. 129(21): p. 2094-9.
35. Hobbs, F.D., et al., A randomised controlled trial and cost-effectiveness study of systematic screening (targeted and total population screening) versus routine practice for the detection of atrial fibrillation in people aged 65 and over. The SAFE study. Health Technol Assess, 2005. 9(40): p. iii-iv, ix-x, 1-74.
36. Hart, R.G., et al., Stroke with intermittent atrial fibrillation: incidence and predictors during aspirin therapy. Stroke Prevention in Atrial Fibrillation Investigators. J Am Coll Cardiol, 2000. 35(1): p. 183-7.
37. Whiteley, W.N., et al., Targeted use of heparin, heparinoids, or low-molecular-weight heparin to improve outcome after acute ischaemic stroke: an individual patient data meta-analysis of randomised controlled trials. Lancet Neurol, 2013. 12(6): p. 539-45.
38. Wolf, P.A., et al., Duration of atrial fibrillation and imminence of stroke: the Framingham study. Stroke, 1983. 14(5): p. 664-7.
39. Camm, A.J., et al., Real-life observations of clinical outcomes with rhythm- and rate-control therapies for atrial fibrillation RECORDAF (Registry on Cardiac Rhythm Disorders Assessing the Control of Atrial Fibrillation). J Am Coll Cardiol, 2011. 58(5): p. 493-501.
40. Lin, H.J., et al., Stroke severity in atrial fibrillation. The Framingham Study. Stroke, 1996. 27(10): p. 1760-4.
41. Jørgensen, H.S., et al., Stroke recurrence: predictors, severity, and prognosis. The Copenhagen Stroke Study. Neurology, 1997. 48(4): p. 891-5.
42. Toyoda, K., Y. Okada, and S. Kobayashi, Early recurrence of ischemic stroke in Japanese patients: the Japan standard stroke registry study. Cerebrovasc Dis, 2007. 24(2-3): p. 289-95.
43. Penado, S., et al., Atrial fibrillation as a risk factor for stroke recurrence. Am J Med, 2003. 114(3): p. 206-10.
44. Xu, G., et al., Recurrence after ischemic stroke in chinese patients: impact of uncontrolled modifiable risk factors. Cerebrovasc Dis, 2007. 23(2-3): p. 117-20.
45. Wolf, P.A., et al., Impact of atrial fibrillation on mortality, stroke, and medical costs. Arch Intern Med, 1998. 158(3): p. 229-34.
46. Lamassa, M., et al., Characteristics, outcome, and care of stroke associated with atrial fibrillation in Europe: data from a multicenter multinational hospital-based registry (The European Community Stroke Project). Stroke, 2001. 32(2): p. 392-8.
47. Alkhouli, M., et al., Burden of Atrial Fibrillation-Associated Ischemic Stroke in the United States. JACC Clin Electrophysiol, 2018. 4(5): p. 618-625.
48. Saxena, R., et al., Risk of early death and recurrent stroke and effect of heparin in 3169 patients with acute ischemic stroke and atrial fibrillation in the International Stroke Trial. Stroke, 2001. 32(10): p. 2333-7.
49. The International Stroke Trial (IST): a randomised trial of aspirin, subcutaneous heparin, both, or neither among 19435 patients with acute ischaemic stroke. International Stroke Trial Collaborative Group. Lancet, 1997. 349(9065): p. 1569-81.
50. Chen, Z.-M., CAST: randomised placebo-controlled trial of early aspirin use in 20 000 patients with acute ischaemic stroke. The Lancet, 1997. 349(9066): p. 1641-1649.
51. Collaboration, A.T., Collaborative meta-analysis of randomised trials of antiplatelet therapy for prevention of death, myocardial infarction, and stroke in high risk patients. Bmj, 2002. 324(7329): p. 71-86.
52. García Rodríguez, L.A., S. Hernández-Díaz, and F.J. de Abajo, Association between aspirin and upper gastrointestinal complications: systematic review of epidemiologic studies. Br J Clin Pharmacol, 2001. 52(5): p. 563-71.
53. Powers, W.J., et al., Guidelines for the Early Management of Patients With Acute Ischemic Stroke: 2019 Update to the 2018 Guidelines for the Early Management of Acute Ischemic Stroke: A Guideline for Healthcare Professionals From the American Heart Association/American Stroke Association. Stroke, 2019. 50(12): p. e344-e418.
54. A randomised, blinded, trial of clopidogrel versus aspirin in patients at risk of ischaemic events (CAPRIE). CAPRIE Steering Committee. Lancet, 1996. 348(9038): p. 1329-39.
55. Adams, H.P., Jr., et al., Emergency administration of abciximab for treatment of patients with acute ischemic stroke: results of an international phase III trial: Abciximab in Emergency Treatment of Stroke Trial (AbESTT-II). Stroke, 2008. 39(1): p. 87-99.
56. Ciccone, A., et al., Glycoprotein IIb-IIIa inhibitors for acute ischaemic stroke. Cochrane Database Syst Rev, 2014(3): p. Cd005208.
57. Siebler, M., et al., Safety of Tirofiban in acute Ischemic Stroke: the SaTIS trial. Stroke, 2011. 42(9): p. 2388-92.
58. Pancioli, A.M., et al., The combined approach to lysis utilizing eptifibatide and rt-PA in acute ischemic stroke: the CLEAR stroke trial. Stroke, 2008. 39(12): p. 3268-76.
59. Al-Sadat, A., M. Sunbulli, and S. Chaturvedi, Use of intravenous heparin by North American neurologists: do the data matter? Stroke, 2002. 33(6): p. 1574-7.
60. Schmidt, W.P., et al., Determinants of IV heparin treatment in patients with ischemic stroke. Neurology, 2004. 63(12): p. 2407-9.
61. Joe F. Lau, Geoffrey D. Barnes, and M.B. Streiff, Anticoagulation Therapy. 2018: Springer.
62. Dennis, M., et al., European Stroke Organisation (ESO) guidelines for prophylaxis for venous thromboembolism in immobile patients with acute ischaemic stroke. Eur Stroke J, 2016. 1(1): p. 6-19.
63. Aguilar, M.I. and R. Hart, Oral anticoagulants for preventing stroke in patients with non-valvular atrial fibrillation and no previous history of stroke or transient ischemic attacks. Cochrane Database Syst Rev, 2005(3): p. Cd001927.
64. Aguilar, M.I., R. Hart, and L.A. Pearce, Oral anticoagulants versus antiplatelet therapy for preventing stroke in patients with non-valvular atrial fibrillation and no history of stroke or transient ischemic attacks. Cochrane Database Syst Rev, 2007(3): p. Cd006186.
65. Lauffenburger, J.C., et al., Effectiveness and safety of dabigatran and warfarin in real-world US patients with non-valvular atrial fibrillation: a retrospective cohort study. J Am Heart Assoc, 2015. 4(4): p. e001798.
66. Stuart J. Connolly, et al., Dabigatran versus Warfarin in Patients with Atrial Fibrillation. N Engl J Med, 2009. 361(12): p. 1139-1151.
67. Salazar CA, del Aguila D, and C. EG, Direct Thrombin Inhibitors Versus Vitamin K Antagonists for Preventing Cerebral or Systemic Embolism in People With Non-Valvular Atrial Fibrillation. Cochrane Database of Systematic Reviews, 2014(3): p. CD009893.
68. Wann, L.S., et al., 2011 ACCF/AHA/HRS focused update on the management of patients with atrial fibrillation (updating the 2006 guideline): a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. Circulation, 2011. 123(1): p. 104-23.
69. Manesh R. Patel, et al., Rivaroxaban versus Warfarin in Nonvalvular Atrial Fibrillation. N Engl J Med, 2011. 365(10): p. 883-891.
70. Christopher B. Granger, et al., Apixaban versus Warfarin in Patients with Atrial Fibrillation. N Engl J Med, 2011. 365(11): p. 981-992.
71. Giugliano, R.P., et al., Edoxaban versus warfarin in patients with atrial fibrillation. N Engl J Med, 2013. 369(22): p. 2093-104.
72. Chiang, C.E., et al., 2016 Guidelines of the Taiwan Heart Rhythm Society and the Taiwan Society of Cardiology for the management of atrial fibrillation. J Formos Med Assoc, 2016. 115(11): p. 893-952.
73. Ruff, C.T., et al., Comparison of the efficacy and safety of new oral anticoagulants with warfarin in patients with atrial fibrillation: a meta-analysis of randomised trials. Lancet, 2014. 383(9921): p. 955-62.
74. Sterne, J.A., et al., Oral anticoagulants for primary prevention, treatment and secondary prevention of venous thromboembolic disease, and for prevention of stroke in atrial fibrillation: systematic review, network meta-analysis and cost-effectiveness analysis. Health Technol Assess, 2017. 21(9): p. 1-386.
75. Almutairi, A.R., et al., Effectiveness and Safety of Non-vitamin K Antagonist Oral Anticoagulants for Atrial Fibrillation and Venous Thromboembolism: A Systematic Review and Meta-analyses. Clin Ther, 2017. 39(7): p. 1456-1478 e36.
76. Lip, G.Y.H., et al., Effectiveness and Safety of Oral Anticoagulants Among Nonvalvular Atrial Fibrillation Patients. Stroke, 2018. 49(12): p. 2933-2944.
77. Lopez-Lopez, J.A., et al., Oral anticoagulants for prevention of stroke in atrial fibrillation: systematic review, network meta-analysis, and cost effectiveness analysis. BMJ, 2017. 359: p. j5058.
78. Culebras, A. and S.R. Messé, Summary of evidence-based guideline update: Prevention of stroke in nonvalvular atrial fibrillation: Report of the Guideline Development Subcommittee of the American Academy of Neurology. Neurology, 2014. 83(13): p. 1220.
79. Executive Summary The Selection and Use of Essential Medicines 2019. 2019, World Health Organization.
80. Hugh Markus, Anthony Pereira, and G. Cloud, Stroke medicine. 2 ed. 2017.
81. Halkes, P.H., et al., Medium intensity oral anticoagulants versus aspirin after cerebral ischaemia of arterial origin (ESPRIT): a randomised controlled trial. Lancet Neurol, 2007. 6(2): p. 115-24.
82. Mohr, J.P., et al., A comparison of warfarin and aspirin for the prevention of recurrent ischemic stroke. N Engl J Med, 2001. 345(20): p. 1444-51.
83. A randomized trial of anticoagulants versus aspirin after cerebral ischemia of presumed arterial origin. The Stroke Prevention in Reversible Ischemia Trial (SPIRIT) Study Group. Ann Neurol, 1997. 42(6): p. 857-65.
84. Secondary prevention in non-rheumatic atrial fibrillation after transient ischaemic attack or minor stroke. EAFT (European Atrial Fibrillation Trial) Study Group. Lancet, 1993. 342(8882): p. 1255-62.
85. Saxena, R. and P.J. Koudstaal, Anticoagulants Versus Antiplatelet Therapy for Preventing Stroke in Patients With Nonrheumatic Atrial Fibrillation and a History of Stroke or Transient Ischemic Attack. Stroke, 2005. 36(4): p. 914-915.
86. Steffel, J., et al., The 2018 European Heart Rhythm Association Practical Guide on the use of non-vitamin K antagonist oral anticoagulants in patients with atrial fibrillation. Eur Heart J, 2018. 39(16): p. 1330-1393.
87. Seiffge, D.J., et al., Direct oral anticoagulants versus vitamin K antagonists after recent ischemic stroke in patients with atrial fibrillation. Ann Neurol, 2019. 85(6): p. 823-834.
88. Ntaios, G., et al., Nonvitamin-K-antagonist oral anticoagulants in patients with atrial fibrillation and previous stroke or transient ischemic attack: a systematic review and meta-analysis of randomized controlled trials. Stroke, 2012. 43(12): p. 3298-304.
89. Diener, H.C., et al., Non-vitamin-K oral anticoagulants (NOACs) for the prevention of secondary stroke. Expert Opin Pharmacother, 2018. 19(14): p. 1597-1602.
90. Lip, G.Y., K.L. Wang, and C.E. Chiang, Non-vitamin K antagonist oral anticoagulants (NOACs) for stroke prevention in Asian patients with atrial fibrillation: time for a reappraisal. Int J Cardiol, 2015. 180: p. 246-54.
91. Yasaka, M. and G.Y. Lip, Impact of non-vitamin k antagonist oral anticoagulants on intracranial bleeding in Asian patients with non-valvular atrial fibrillation. Circ J, 2014. 78(10): p. 2367-72.
92. Shen, A.Y., et al., Racial/ethnic differences in the risk of intracranial hemorrhage among patients with atrial fibrillation. J Am Coll Cardiol, 2007. 50(4): p. 309-15.
93. Wang, K.L., et al., Non-Vitamin K Antagonist Oral Anticoagulants for Stroke Prevention in Asian Patients With Nonvalvular Atrial Fibrillation: Meta-Analysis. Stroke, 2015. 46(9): p. 2555-61.
94. Chan, Y.H., et al., Effectiveness and Safety of Four Direct Oral Anticoagulants in Asian Patients With Nonvalvular Atrial Fibrillation. Chest, 2019. 156(3): p. 529-543.
95. Kamel, H., et al., Atrial Fibrillation and Mechanisms of Stroke: Time for a New Model. Stroke, 2016. 47(3): p. 895-900.
96. Karthikeyan, G. and J.W. Eikelboom, The CHADS2 score for stroke risk stratification in atrial fibrillation--friend or foe? Thromb Haemost, 2010. 104(1): p. 45-8.
97. Lip, G.Y., et al., Refining clinical risk stratification for predicting stroke and thromboembolism in atrial fibrillation using a novel risk factor-based approach: the euro heart survey on atrial fibrillation. Chest, 2010. 137(2): p. 263-72.
98. Chao, T.F., et al., Using the CHA2DS2-VASc score for refining stroke risk stratification in 'low-risk' Asian patients with atrial fibrillation. J Am Coll Cardiol, 2014. 64(16): p. 1658-65.
99. Guo, Y., et al., Validation of contemporary stroke and bleeding risk stratification scores in non-anticoagulated Chinese patients with atrial fibrillation. Int J Cardiol, 2013. 168(2): p. 904-9.
100. Siu, C.W., et al., Risk of stroke and intracranial hemorrhage in 9727 Chinese with atrial fibrillation in Hong Kong. Heart Rhythm, 2014. 11(8): p. 1401-8.
101. Chao, T.F., et al., Should atrial fibrillation patients with 1 additional risk factor of the CHA2DS2-VASc score (beyond sex) receive oral anticoagulation? J Am Coll Cardiol, 2015. 65(7): p. 635-42.
102. Chao, T.F., et al., Comparisons of CHADS2 and CHA2DS2-VASc scores for stroke risk stratification in atrial fibrillation: Which scoring system should be used for Asians? Heart Rhythm, 2016. 13(1): p. 46-53.
103. Xiong, Q., et al., The CHADS2 and CHA2DS2-VASc scores for predicting ischemic stroke among East Asian patients with atrial fibrillation: A systemic review and meta-analysis. Int J Cardiol, 2015. 195: p. 237-42.
104. January, C.T., et al., 2014 AHA/ACC/HRS guideline for the management of patients with atrial fibrillation: executive summary: a report of the American College of Cardiology/American Heart Association Task Force on practice guidelines and the Heart Rhythm Society. Circulation, 2014. 130(23): p. 2071-104.
105. Uncommon Causes of Stroke. 2018; Available from: https://www.stroke.org/en/about-stroke/stroke-risk-factors/uncommon-causes-of-stroke.
106. Pisters, R., et al., A novel user-friendly score (HAS-BLED) to assess 1-year risk of major bleeding in patients with atrial fibrillation: the Euro Heart Survey. Chest, 2010. 138(5): p. 1093-100.
107. Camm, A.J., et al., 2012 focused update of the ESC Guidelines for the management of atrial fibrillation: an update of the 2010 ESC Guidelines for the management of atrial fibrillation. Developed with the special contribution of the European Heart Rhythm Association. Eur Heart J, 2012. 33(21): p. 2719-47.
108. Skanes, A.C., et al., Focused 2012 update of the Canadian Cardiovascular Society atrial fibrillation guidelines: recommendations for stroke prevention and rate/rhythm control. Can J Cardiol, 2012. 28(2): p. 125-36.
109. Lip, G.Y., Implications of the CHA(2)DS(2)-VASc and HAS-BLED Scores for thromboprophylaxis in atrial fibrillation. Am J Med, 2011. 124(2): p. 111-4.
110. O'Donnell, M.J., et al., Gastrointestinal bleeding after acute ischemic stroke. Neurology, 2008. 71(9): p. 650-5.
111. Misra, U.K., et al., Gastrointestinal bleeding after acute ischemic stroke. Neurology, 2009. 73(2): p. 160-1.
112. Hsu, H.L., et al., Gastrointestinal hemorrhage after acute ischemic stroke and its risk factors in Asians. Eur Neurol, 2009. 62(4): p. 212-8.
113. Davenport, R.J., M.S. Dennis, and C.P. Warlow, Gastrointestinal hemorrhage after acute stroke. Stroke, 1996. 27(3): p. 421-4.
114. Tielleman, T., D. Bujanda, and B. Cryer, Epidemiology and Risk Factors for Upper Gastrointestinal Bleeding. Gastrointest Endosc Clin N Am, 2015. 25(3): p. 415-28.
115. Wasse, H., et al., Risk factors for upper gastrointestinal bleeding among end-stage renal disease patients. Kidney Int, 2003. 64(4): p. 1455-61.
116. Vonbach, P., et al., Risk factors for gastrointestinal bleeding: a hospital-based case-control study. Swiss Med Wkly, 2007. 137(49-50): p. 705-10.
117. Valkhoff, V.E., M.C. Sturkenboom, and E.J. Kuipers, Risk factors for gastrointestinal bleeding associated with low-dose aspirin. Best Pract Res Clin Gastroenterol, 2012. 26(2): p. 125-40.
118. Ariesen, M.J., et al., Risk factors for intracerebral hemorrhage in the general population: a systematic review. Stroke, 2003. 34(8): p. 2060-5.
119. An, S.J., T.J. Kim, and B.W. Yoon, Epidemiology, Risk Factors, and Clinical Features of Intracerebral Hemorrhage: An Update. J Stroke, 2017. 19(1): p. 3-10.
120. Lansberg, M.G., G.W. Albers, and C.A. Wijman, Symptomatic intracerebral hemorrhage following thrombolytic therapy for acute ischemic stroke: a review of the risk factors. Cerebrovasc Dis, 2007. 24(1): p. 1-10.
121. Tanne, D., et al., Markers of increased risk of intracerebral hemorrhage after intravenous recombinant tissue plasminogen activator therapy for acute ischemic stroke in clinical practice: the Multicenter rt-PA Stroke Survey. Circulation, 2002. 105(14): p. 1679-85.
122. Hankey, G.J., Anticoagulant therapy for patients with ischaemic stroke. Nat Rev Neurol, 2012. 8(6): p. 319-28.
123. Smythe, M.A., et al., Timing of Initiation of Oral Anticoagulation after Acute Ischemic Stroke in Patients with Atrial Fibrillation. Pharmacotherapy, 2020. 40(1): p. 55-71.
124. Sandercock, P.A., C. Counsell, and E.J. Kane, Anticoagulants for acute ischaemic stroke. Cochrane Database Syst Rev, 2015. 2015(3): p. Cd000024.
125. Hersi, A.S., et al., Practical perspectives on the use of non-vitamin K antagonist oral anticoagulants for stroke prevention in patients with nonvalvular atrial fibrillation: A view from the Middle East and North Africa. J Saudi Heart Assoc, 2018. 30(2): p. 122-139.
126. 腦中風危險因子防治指引:心房纖維顫動2016. 2016, Taiwan stroke society.
127. Paciaroni, M., et al., Early Recurrence and Cerebral Bleeding in Patients With Acute Ischemic Stroke and Atrial Fibrillation: Effect of Anticoagulation and Its Timing: The RAF Study. Stroke, 2015. 46(8): p. 2175-82.
128. Wilson, D., et al., Early versus late anticoagulation for ischaemic stroke associated with atrial fibrillation: multicentre cohort study. J Neurol Neurosurg Psychiatry, 2019. 90(3): p. 320-325.
129. Paciaroni, M., et al., Early Recurrence and Major Bleeding in Patients With Acute Ischemic Stroke and Atrial Fibrillation Treated With Non-Vitamin-K Oral Anticoagulants (RAF-NOACs) Study. J Am Heart Assoc, 2017. 6(12).
130. Shadi Yaghi, et al., Initiating Oral Anticoagulation 4 to 14 Days After a Cardioembolic Stroke is Not Associated With a Reduction in Ischemic or Hemorrhagic Events: The IAC Multicenter Cohort. Stroke, 2020.
131. Gian Marco De Marchis, et al., Early versus late start of direct oral anticoagulants after an ischemic stroke linked to atrial fibrillation: an individual patient data pooled analysis. Stroke, 2020.
132. Seiffge, D.J., et al., Timing of anticoagulation after recent ischaemic stroke in patients with atrial fibrillation. Lancet Neurol, 2019. 18(1): p. 117-126.
133. Åsberg, S., et al., Timing of oral anticoagulant therapy in acute ischemic stroke with atrial fibrillation: study protocol for a registry-based randomised controlled trial. Trials, 2017. 18(1): p. 581.
134. Warach, S., Optimal Delay Time to Initiate Anticoagulation After Ischemic Stroke in Atrial Fibrillation (START).
135. OPTIMAS: OPtimal TIMing of Anticoagulation After Acute Ischaemic Stroke : a Randomised Controlled Trial (OPTIMAS).
136. Early Versus Late Initiation of Direct Oral Anticoagulants in Post-ischaemic Stroke Patients With Atrial fibrillatioN (ELAN): an International, Multicentre, Randomised-controlled, Two-arm, Assessor-blinded Trial (ELAN).
137. Hernan, M.A., et al., Observational studies analyzed like randomized experiments: an application to postmenopausal hormone therapy and coronary heart disease. Epidemiology, 2008. 19(6): p. 766-79.
138. Lévesque, L.E., et al., Problem of immortal time bias in cohort studies: example using statins for preventing progression of diabetes. Bmj, 2010. 340: p. b5087.
139. Agarwal, P., et al., Immortal Time Bias in Observational Studies of Time-to-Event Outcomes: Assessing Effects of Postmastectomy Radiation Therapy Using the National Cancer Database. Cancer Control, 2018. 25(1): p. 1073274818789355.
140. Sung, S.F., et al., Validity of a stroke severity index for administrative claims data research: a retrospective cohort study. BMC Health Serv Res, 2016. 16(1): p. 509.
141. Abdel-Qadir, H., et al., Importance of Considering Competing Risks in Time-to-Event Analyses: Application to Stroke Risk in a Retrospective Cohort Study of Elderly Patients With Atrial Fibrillation. Circ Cardiovasc Qual Outcomes, 2018. 11(7): p. e004580.
142. Fine, J.P. and R.J. Gray, A Proportional Hazards Model for the Subdistribution of a Competing Risk. Journal of the American Statistical Association, 1999. 94(446): p. 496-509.
143. Austin, P.C., D.S. Lee, and J.P. Fine, Introduction to the Analysis of Survival Data in the Presence of Competing Risks. Circulation, 2016. 133(6): p. 601-9.
144. Schwarzer, G., J.R. Carpenter, and G. Rücker, Meta-Analysis with R. 2015: Springer.
145. Rücker, G., Network meta-analysis, electrical networks and graph theory. Res Synth Methods, 2012. 3(4): p. 312-24.
146. Shim, S., et al., Network meta-analysis: application and practice using Stata. Epidemiol Health, 2017. 39: p. e2017047.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊