跳到主要內容

臺灣博碩士論文加值系統

(100.28.2.72) 您好!臺灣時間:2024/06/13 13:41
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:馮志琮
研究生(外文):FENG, CHIH-TSUNG
論文名稱:添加磷基離子液體對傳熱油之阻燃性及熱穩定性之影響
論文名稱(外文):Effects of Flame Retardancy on Heat Transfer Oil Modified with Phosphorus-Based Ionic Liquids
指導教授:徐啟銘徐啟銘引用關係
指導教授(外文):SHU, CHI-MIN
口試委員:易逸波侯宏誼紀人豪
口試委員(外文):I, YET-POLEHOU, HUNG-YICHI, JEN-HAO
口試日期:2021-07-19
學位類別:碩士
校院名稱:國立雲林科技大學
系所名稱:環境與安全衛生工程系
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2021
畢業學年度:109
語文別:中文
論文頁數:87
中文關鍵詞:燃燒行為火災火焰增長率指數預測最佳添加比
外文關鍵詞:Heat transfer oilsIonic liquidsFire retardantAgingDosage optimization
相關次數:
  • 被引用被引用:0
  • 點閱點閱:154
  • 評分評分:
  • 下載下載:26
  • 收藏至我的研究室書目清單書目收藏:0
受限於物質的物理性質如:沸點、熔點等,在常溫的環境下的加工能力有限,「傳熱油 (Heat transfer oils, HTOs)」被用於提高製程的溫度以達所需條件溫度甚至加速製程。在未氮封開式系統作業時,HTOs 在高溫情況下接觸空氣,將加速其氧化、熱裂解等反應,釋出可燃氣體。倘若洩漏將點燃可燃物質、遇點火源或自身溫度超過自燃點溫度而導致火災或爆炸的案例亦不在少數。離子液體 (Ionic liquids, ILs) 具備良好的熱物理性質,近年來亦被投入於改善其它物質的熱物理性質。含磷 ILs 在許多研究中被證實其改善阻燃能力之表現亮眼。本研究將以購自 TOTAL 的 SERIOLA AB 及 1510 作為研究對象,並以含磷離子液體 1-丁基-3-甲基咪唑鎓磷酸二丁酯 (1-Butyl-3-methylimidazolium dibutyl phosphate, [Bmim][DBP]) 及 1-丁基-3-甲基咪唑鎓六氟磷酸鹽 (1-Butyl-3-methylimidazolium hexafluorophosphate, [Bmim][PF6]) 為添加劑,探討混合後之燃燒行為及熱穩定性。
藉同步熱重分析儀 (Simultaneous thermogravimetric analysis, STA) 可得知雖然反應起始溫度 (Onset temperature, To) 並未有明顯變化,但添加 [Bmim][PF6] 後可使總放熱量 (Heat release, ∆H) 降低;藉由熱重分析儀 (Thermogravimetric analyzer, TGA) 可觀察到,添加 ILs 可使 1510 之最大熱失重率 (Maximum thermal gravity loss rate, DTGmax) 從 –22.38 降至 –12.27 及 –12.57 % min–1,也弱化了其熱失重過程;雖然在 UL 94 垂直燃燒及總熱釋放率 (Total heat release rate, THR) 等皆未有明顯差異,但仍能從以錐形量熱儀 (Cone Calorimeter) 分析後所得之火焰增長率指數 (Fire growth rate index, FIGRA) 推測出 AB 在添加 [Bmim][PF6] 後之火焰成長率將降低;最後藉由 Flynn-Wall-Ozawa 模型計算熱動力學基本參數後,預測得出在 AB 油品中 [Bmim][PF6] 之最佳添加比接近 20 mass%。
This is an era of strong and advanced technology. People have discovered and can flexibly use most of the elements and their compounds to generate various materials, making our lives richer and more convenient. As limited by the physical properties of the substance, such as boiling point and melting point, and since the processing ability under normal temperature environment is limited, we chose to use heat transfer oils (HTOs) to increase the local temperature in the process to achieve the required temperature condition even accelerating the process rate.
When operating in a non-nitrogen-sealed open system, HTOs exposed to air at high-temperatures will accelerate their oxidation, generate a thermal cracking reaction, and emit flammable gases. It may also cause prompt vaporization of high-temperature oil due to excessive pressure differences during leakage. Moreover, if colloids or organic acids are generated, they will stick to the oil pipeline, which will not only block the pipeline and affect the service life of HTOs, but also increase the risk of system leakage. After the leakage, igniting flammable substances, meeting ignition sources, or their own temperature exceeding the auto-ignition temperature. Cases that caused fires or explosions have not been uncommon.
In recent years, ionic liquids (ILs) have also been invested in improving the thermophysical properties of other materials, such as oil and electrolytes, the phosphorus-based ILs also be applied as fire retardant in several fields. In many studies, the improvement of fire retardant performance has been outstanding. This project is a recent study to explore the fire hazards of HTOs. The addition of ILs can improve fire-retardant properties. The HTOs after adding ILs were evaluated for density, viscosity, and thermal conductivity.
摘要 i
誌謝 iii
目錄 iv
表目錄 vi
圖目錄 vii
第一章 緒論 1
1.1 研究背景 1
1.2 研究目的 3
第二章 文獻蒐集與回顧 4
2.1 傳熱流體 4
2.2 阻燃劑 (Flame retardant, FR) 5
2.2.1 混合阻燃劑 (Hybrid flame retardants) 製造方法 6
2.2.2 二元混合阻燃劑 (Binary hybrid flame retardants) 8
2.3 離子液體 (Ionic liquids, ILs) 10
2.3.1 陽離子 (Cation) 10
2.3.2 陰離子 (Anion) 11
2.3.3 磷基離子液體 (Phosphorus-based ionic liquid) 13
2.4 熱動力學與預測 (Thermodynamics and prediction) 14
2.4.1 高等熱分析軟體 (Advanced thermal analysis software, AKTS) 14
2.4.2 熱分析軟體—Neo (NETZSCH Kinetics Neo) 15
第三章 實驗設備及研究方法 17
3.1 實驗樣品 17
3.2 實驗流程 20
3.3 實驗設備及原理 21
3.3.1 垂直燃燒法 (UL94 vertical burning test, UL94) 21
3.3.2 錐形量熱儀 (Cone calorimeter) 23
3.3.3 同步熱重分析儀 (Simultaneous thermogravimetric analysis, STA) 25
3.3.4 熱重分析儀 (Thermogravimetric analyzer, TGA) 28
3.3.5 傅立葉轉換紅外線光譜儀 (Fourier-transform infrared spectroscopy, FT-IR) 30
第四章 結果與討論 32
4.1 DSC 放熱過程分析 33
4.2 熱重分析結果 36
4.3 UL 94 垂直燃燒測試 40
4.4 CONE 量熱測試 49
4.5 恆溫反應之實驗與預測曲線比較 54
4.6 AB 與 [Bmim][PF6] 在不同混合比例下之熱流實驗與預測 61
第五章 結論與建議 64
5.1 結論 64
5.2 建議 65
參考文獻 66
A. Dasari, Z.Z. Yu, G.P. Cai, Y.W. Mai, Recent developments in the fire retardancy of polymeric materials, Prog. Polym. Sci. 38(9)(2013) 1357–1387.
A.S.L. Gouveia, L.C. Tomé, I.M. Marrucho, Density, viscosity, and refractive index of ionic liquid mixtures containing cyano and amino acid-based anions. J. Chem. Eng. Data. 61(2015) 83–93.
B. Messerschmidt, P.V. Hees, Influence of delay times and response times on heat release measurements. Fire Mater 24(2000) 121–130.
B. Wu, R. Reddy, R. Rogers, Novel ionic liquid thermal storage for solar thermal electric power systems. Sol. Eng. (2001) 445–452.
B. Xu, X. Wu, W. Ma, L. Qian, F. Xin, Y. Qiu, Synthesis and characterization of a novel organic-inorganic hybrid char-forming agent and its flame-retardant application in polypropylene composites. J. Anal. Appl. Pyrol. 134(2018) 231–242.
B. Yu, X. Wang, X.D. Qian, W.Y. Xing, H.Y. Yang, L.Y. Ma, Y. Lin, S.H. Jiang, L. Song, Y. Hu, S.M. Lo, Functionalized graphene oxide/phosphoramide oligomer hybrids flame retardant prepared via in situ polymerization for improving the fire safety of polypropylene. RSC Adv. 4(60)(2014) 31782–31794.
C. Len, A.B. Morgan, G. Marlair, Revisiting Physico-Chemical Hazards of Ionic Liquids. Sep. Purif. Technol. 97, 228–234.
C. Liu, T. Chen, C.H. Yuan, Y. Chang, G.R. Chen, B.R. Zeng, Y.T. Xu, W.A. Luo, L.Z. Dai, Highly transparent and flame-retardant epoxy composites based on a hybrid multi-element containing POSS derivative. RSC Adv. 7(73)(2017): 46139–46147.
C. Lv, H. Wu, W. Lin, J.B. Illerup, A.P. Karcz, S. Ye, A.J. Damø, Characterization of elemental sulfur in chalcopyrite leach residues using simultaneous thermal analysis. Hydrometallurgy 188(2019) 22–30.
D. Yu, W.Q. Liu, Y.F. Liu, Synthesis, Thermal properties, and flame retardance of phosphorus-containing epoxy-silica hybrid resins. Polym. Compos. 31(2)(2010) 334–339.
D.-H. Yoo, K.S. Hong, H.-S. Yang, Study of thermal conductivity of nanofluids for the application of heat transfer fluids. Thermochim. Acta. 455(2007) 66–69.
E. Çakmakçı, Allylamino diphenylphosphine oxide and POSS containing flame retardant photocured hybrid coatings. Prog. Org. Coat. 105(2017) 37–47.
F. Laoutid, L. Bonnaud, M. Alexandre, J.M. Lopez-Cuesta, P. Dubois, New prospects in flame retardant polymer materials: from fundamentals to nanocomposites, Mater. Sci. Eng. R 63(3)(2009) 100–125.
F.H. Hurley, T.P. WIer Jr., Electrodeposition of metals from fused quaternary ammonium salts. J. Electrochem. Soc. 98(1951) 203.
Fire Testing Technology, iCone mini and iCone classic brochure, (2016) West Sussex, UK.
G.J. Duggan, S.J. Grayson, S. Kumar, New fire classifications and fire test methods for the European railway industry: flame retardants 2004, (2004) Interscience Communications, London, UK.
H. H. Abou El Naga, A. E. M. Salem, Testing the thermooxidation of lubricating oils via differential thermal analysis, J. Therm. Anal. Calorim. 32(1987) 1401–1413.
H.-C. Jiang, W.-C. Lin, M. Hua, X.-H. Pan, C.-M. Shu, J.-C. Jiang. Difunctional effects of [Bmim][DBP] on curing process and flame retardancy of epoxy resin, J. Therm. Anal. Calorim. 137(2019) 1707–1717.
H.L. Ngo, K. LeCompte, L. Hargens, A.B. McEwen, Thermal properties of imidazolium ionic liquids. Thermochim. Acta. 357(2000) 97–102.
H.Y. Ma, P.A. Song, Z.P. Fang, Flame retarded polymer nanocomposites: development, trend and future perspective, Sci. China Chem. 54(2)(2011) 302–313.
J. Alongi, Z. Han, S. Bourbigot, Intumescence: tradition versus novelty. A comprehensive review, Prog. Polym. Sci. 51(2015) 28–73.
J. Singh, Heat transfer fluids and systems for process and energy applications, (1985) CRC Press, Boca Raton, Florida, USA.
J. Wang, J. He, H. Chen, Assessment of groundwater contamination risk using hazard quantification, a modified DRASTIC model and groundwater value, Beijing Plain, China. Sci. Total Environ. 432(2012) 216–226.
J.J. Liu, R.K.K. Yuen, N.N. Hong, Y. Hu, The influence of mesoporous SiO2-graphene hybrid improved the flame retardancy of epoxy resins. Polym. Advan. Technol. 29(5)(2018) 1478–1486.
J.M. Crosthwaite, M.J. Muldoon, J.K. Dixon, J.L. Anderson, J.F. Brennecke, Phase transition and decomposition temperatures, heat capacities and viscosities of pyridinium ionic liquids. J. Chem. Thermodyn. 37(2005) 559–568.
K. Oster, P. Goodrich, J. Jacquemin, C. Hardacre, A. P. C. Ribeiro, A. Elsinawi, A new insight into pure and water-saturated quaternary phosphoniumbased carboxylate ionic liquids: Density, heat capacity, ionic conductivity, thermogravimetric analysis, thermal conductivity and viscosity. J. Chem. Thermodyn. 121(2018) 97–111.
K. Vignarooban, Xinhai Xu, A. Arvay, K. Hsu, A.M. Kannan, Heat transfer fluids for concentrating solar power systems – A review. Appl. Energy 146(2015) 383–396.
K. Wu, S. Xu, X.-Y. Tian, H.-Y. Zeng, J. Hua, Y.-H. Guo, J. Jian, Renewable lignin-based surfactant modified layered double hydroxide and its application in polypropylene as flame retardant and smoke suppression. Int. J. Biol. Macromol. 178(2021) 580–590.
K.T. Paul, Cone calorimeter: Initial experiences of calibration and use. Fire Saf. J. 22(1)(1994) 67–87.
L. Costes, F. Laoutid, S. Brohez, P. Dubois, Bio-based flame retardants: when nature meets fire protection, Mater. Sci. Eng. R 117(2017) 1–25.
M. Norouzi, Y. Zare, P. Kiany, Nanoparticles as effective flame retardants for natural and synthetic textile polymers: application, mechanism, and optimization, Polym. Rev. 55(3)(2015) 531–560.
M. Smiglak, W.M. Reichert, J.D. Holbrey, J.S. Wilkes, L. Sun, J.S. Thrasher, K. Kirichenko, S. Singh, A.R. Katritzky, R.D. Rogers, Combustible ionic liquids by design: is laboratory safety another ionic liquid myth? Chem. Commun. (2006) 2554–2556.
M. Werrel, J.H. Deubel, S. Krüger, A. Hofmann, U. Krause, The calculation of the heat release rate by oxygen consumption in a controlled – atmosphere cone calorimeter, Fire Mater 38(2)(2013) 204–226.
M. Wójcik-Bania, Influence of the addition of organo-montmorillonite nanofiller on cross-linking of polysiloxanes – FTIR studies. Spectrochim. Acta A Mol. Biomol. Spectrosc. 252(2021) 119491.
M.E. Van Valkenburg, R.L. Vaughn, M. Williams, J.S. Wilkes, Thermochemistry of ionic liquid heat-transfer fluids. Thermochim. Acta 425(2005) 181–188.
M.J. Earle, J.M.S.S. Esperança, M.A. Gilea, J.N.C. Lopes, L.P.N. Rebelo, J.W. Magee, K.R. Seddon, J.A. Widegren, The distillation and volatility of ionic liquids. Nature 439(2006) 831–834.
N.N. Hong, L. Song, B.B. Wang, A.A. Stec, T.R. Hull, J. Zhan, Y. Hu, Co-precipitation synthesis of reduced graphene oxide/NiAl-layered double hydroxide hybrid and its application in flame retarding poly(methyl methacrylate). Mater. Res. Bull. 49(2014) 657–664.
N.V. Plechkova, K.R. Seddon, Applications of ionic liquids in the chemical industry. Chem. Soc. Rev. 37 (1)(2008) 123–150.
PerkinElmer, Inc., Frontier Optica FT-IR – System Technical Specifications, (2010) Waltham, Massachusetts, USA.
PerkinElmer, Inc., Introducing the NEW PerkinElmer Spectrum 100 – FT-IR and FT-NIR Spectrometers, (2015) Waltham, Massachusetts, USA.
PerkinElmer, Inc., TGA 8000 Thermogravimetric Analyzer Specification Sheet, (2015) Waltham, Massachusetts, USA.
Q. Duan, T. Jiang, C. Xue, H. Liu, F. Liu, M. Alee, A. Ali, L. Chen, L. Yu, Preparation and characterization of starch/enteromorpha/nano-clay hybrid composites. Int. J. Biol. Macromol. 150(2020) 16–22.
R. Chauhan, R. Kumar, P.K. Diwan, V. Sharma, Thermogravimetric analysis and chemometric based methods for soil examination: Application to soil forensics. Forensic Chem. 17(2020) 100191.
R. Sonnier, L. Dumazert, S. Livi, T.K.L. Nguyen, J. Duchet-Rumeau, H. Vahabi, P. Laheurte, Flame retardancy of phosphorus-containing ionic liquid based epoxy networks, Polym. Degrad. Stab. 134(2016) 186–193.
R. Takagi, Y. Sakai, D.T. Duong, Bis(trifluoromethanesulfonimide) (BSI): Acidity and application to hydrofunctionalization as a Brønsted acid catalyst. Tetrahedron 85(2021) 132037.
R. Wang, D.X. Zhuo, Z.X. Weng, L.X. Wu, X.Y. Cheng, Y. Zhou, J.L. Wang, B.W. Xuan, A novel nanosilica/graphene oxide hybrid and its flame retarding epoxy resin with simultaneously improved mechanical, thermal conductivity, and dielectric properties. J. Mater. Chem. A 3(18)(2015) 9826–9836.
R.K. Singh, T. Patil, A.N. Sawarkar, Pyrolysis of garlic husk biomass: Physico-chemical characterization, thermodynamic and kinetic analyses. Bioresour. Technol. Rep. 12(2020) 100558.
S. Liu, Y. Huang, X.-H. Xu, F.-L. Qing, Fluorosulfonylation of arenediazonium tetrafluoroborates with Na2S2O5 and N-fluorobenzenesulfonimide. J. Fluor. Chem. 240(2020) 109653.
S. Nazaré, B. Kandola, R.A. Horrocks, Use of cone calorimetry to quantify the burning hazard of apparel fabrics. Fire Mater 26(2002) 191–199.
S. Qiu, Y. Zhou, X. Zhou, T. Zhang, C. Wang, R.K.K. Yuen, W. Hu, Y. Hu, Air-stable polyphosphazene-functionalized few-layer black phosphorene for flame retardancy of epoxy resins. Small 15 (10)(2019) 1805175.
S. Zhang, N. Sun, X. He, X. Lu, X. Zhang, Physical properties of ionic liquids: database and evaluation. J. Phys. Chem. Ref. Data. 35(2006) 1475–1517.
S.G. Rao, T.M. Mohan, T.V. Krishna, K. Narendra, B.S. Rao, Thermophysical properties of 1-butyl-3-methylimidazolium tetrafluoroborate and N-methyl-2-pyrrolidinone as a function of temperature. J. Mol. Liq. 211(2015) 1009–1017.
S.H. Jiang, Y. Hu, Z. Gui, Y.Y. Dong, X. Wang, K.Q. Zhou, S.M. Lo, Enhanced thermal properties and flame retardancy of a novel transparent poly(methyl methacrylate)-based hybrid prepared by the sol-gel method. Ind. Eng. Chem. Res. 51(28)(2012) 9447–9455.
S.-H. Liu, Y.-R. Wang, C.-L Xiong, M. Das, Thermal safety assessment for solid organic peroxides. J. Loss Prev. Process. Ind. 68(2020) 104292.
S.L. Qiu, B. Zou, H.B. Sheng, W.W. Guo, J.L. Wang, Y.Y. Zhao, W. Wang, R.K.K. Yuen, Y.C. Kan, Y. Hu, Electrochemically exfoliated functionalized black phosphorene and its polyurethane acrylate nanocomposites: synthesis and applications. ACS Appl. Mater. Interfaces 11(14)(2019) 13652–13664.
T. Huang, W. Zhao, X. Zhang, X. Nie, J. Chen, W. Xiong, Synthesis and characterization of diimidazole-based hexafluorophosphate ionic liquids. J. Mol. Liq. 320(2020) 114465.
T. Ye, J. Li, Effect of anion of polyoxometalate based organic-inorganic hybrid material on intumescent flame retardant polypropylene. Polym. Advan. Technol. 27(9)(2016) 1211–1219.
T. Zhang, Z.J. Du, W. Zou, H.Q. Li, C. Zhang, The flame retardancy of blob-like multi-walled carbon nanotubes/silica nanospheres hybrids in poly (methyl methacrylate). Polym. Degrad. Stabil. 97(9)(2012) 1716–1723.
TOTAL Lubricants Taiwan, SERIOLA 1510 – 14-09-2012 (supersedes 04-07-2012), (2012) Taipei, Taiwan.
TOTAL Lubricants Taiwan, SERIOLA AB – 30-09-2017, (2017) Taipei, Taiwan.
Underwriters Laboratories, Tests for Flammability of Plastic Materials for Parts in Devices and Appliances, (2014) Sixth Edition, Northbrook, Illinois, USA.
W. Cai, T. Cai, L. He, F. Chu, X. Mu, L. Han, Y. Hu, B. Wang, W. Hu, Natural antioxidant functionalization for fabricating ambient-stable black phosphorus nanosheets toward enhancing flame retardancy and toxic gases suppression of polyurethane. J. Hazard. Mater. 387(2020) 121971.
W. Cai, Y. Hu, Y. Pan, X. Zhou, F. Chu, L. Han, X. Mu, Z. Zhuang, X. Wang, W. Xing, Self-assembly followed by radical polymerization of ionic liquid for interfacial engineering of black phosphorus nanosheets: enhancing flame retardancy, toxic gas suppression and mechanical performance of polyurethane. J. Colloid Interf. Sci. 561(2020) 32–45.
W.H. Chen, Y.S. Liu, P.J. Liu, C.G. Xu, Y. Liu, Q. Wang, The preparation and application of a graphene-based hybrid flame retardant containing a long-chain phosphaphenanthrene. Sci. Rep. 7(2017) 8759.
W.Q. Jin, L. Yuan, G.Z. Liang, A.J. Gu, Multifunctional cyclotriphosphazene/hexagonal boron nitride hybrids and their flame retarding bismaleimide resins with high thermal conductivity and thermal stability. ACS Appl. Mater. Interfaces 6(17)(2014) 14931–14944.
www.ChineseStandard.net, GB, GB/T, GBT - Product Catalog. Translated English of Chinese Standard (All national standards GB, GB/T, GBT, GBZ): Product catalog-China National Standard: GB; GB/T; GBT, (2018) Novena, Singapore.
X. Mei, Z. Yue, Q. Ma, H. Dunya, B.K., Mandal, Synthesis and electrochemical properties of new dicationic ionic liquids, J. Mol. Liq. 272(2018) 1001–1018.
X. Wang, E.N. Kalali, J.T. Wan, D.Y. Wang, Carbon-family materials for flame retardant polymeric materials, Prog. Polym. Sci. 69(2017) 22–46.
X. Wang, L. Song, H.Y. Yang, W.Y. Xing, H.D. Lu, Y. Hu, Cobalt oxide/graphene composite for highly efficient CO oxidation and its application in reducing the fire hazards of aliphatic polyesters. J. Mater. Chem. 22(8)(2012) 3426–3431.
X. Wang, M. Quintero Romero, X.Q. Zhang, R. Wang, D.Y. Wang, Intumescent multilayer hybrid coating for flame retardant cotton fabrics based on layer-by-layer assembly and sol-gel process. RSC Adv. 5(14)(2015) 10647–10655.
X. Wang, S. Zhou, W.Y. Xing, B. Yu, X.M. Feng, L. Song, Y. Hu, Self-assembly of Ni-Fe layered double hydroxide/graphene hybrids for reducing fire hazard in epoxy composites. J. Mater. Chem. A 1(13)(2013) 4383–4390.
X. Wang, W. Guo, W. Cai, J. Wang, L. Song, Y. Hu, Recent advances in construction of hybrid nano-structures for flame retardant polymers application. Appl. Mater. Today 20(2020) 100762.
X. Wang, W. Xing, X. Feng, B. Yu, L. Song, Y. Hu, Functionalization of graphene with grafted polyphosphamide for flame retardant epoxy composites: synthesis, flammability and mechanism. Polym. Chem. 5(4)(2014) 1145–1154.
X. Wang, W.Y. Xing, X.M. Feng, B. Yu, H.D. Lu, L. Song, Y. Hu, The effect of metal oxide decorated graphene hybrids on the improved thermal stability and the reduced smoke toxicity in epoxy resins. Chem. Eng. J. 250(2014) 214–221.
X.L. Chen, J.L. Zhuo, W.K. Song, C.M. Jiao, Y. Qian, S.X. Li, Flame retardant effects of organic inorganic hybrid intumescent flame retardant based on expandable graphite in silicone rubber composites. Polym. Advan. Technol. 25(12) (2014) 1530–1537.
X.Y. Li, Z.Z. Wang, L.X. Wu, Preparation of a silica nanospheres/graphene oxide hybrid and its application in phenolic foams with improved mechanical strengths, friability and flame retardancy. RSC Adv. 5(121)(2015) 99907–99913.
Y. Cao, Y.Q. Ju, F.H. Liao, X.X. Jin, X. Dai, J.W. Li, X.L. Wang, Improving the flame retardancy and mechanical properties of poly(lactic acid) with a novel nanorod-shaped hybrid flame retardant. RSC Adv. 6(18)(2016) 14852–14858.
Y. Shi, B. Yu, L. Duan, Z. Gui, B. Wang, Y. Hu, R.K. Yuen, Graphitic carbon nitride/phosphorus-rich aluminum phosphinates hybrids as smoke suppressants and flame retardants for polystyrene. J. Hazard. Mater. 332(2017) 87–96.
Y. Tan, Z.B. Shao, X.F. Chen, J.W. Long, L. Chen, Y.Z. Wang, Novel multifunctional organic inorganic hybrid curing agent with high flame-retardant efficiency for epoxy resin, ACS Appl. Mater. Interfaces 7(32)(2015) 17919–17928.
Y. Wang, J. Jow, K. Su, J. Zhang, Development of the unsteady upward fire model to simulate polymer burning under UL94 vertical test conditions, Fire Saf. J. 54(2012) 1–13.
Y. Xuan, Q. Li, Heat transfer enhancement of nanofluids. Int. J. Heat Fluid Flow. 21(2000) 58–64.
Y. Zhou, J. Huang, J. Wang, F. Chu, Z. Xu, W. Hu, Y. Hu, Rationally designed functionalized black phosphorus nanosheets as new fire hazard suppression material for polylactic acid. Polym. Degrad. Stabil. 178(2020) 109194.
Y.J. Li, F. Wu, R.J. Chen, Synthesis and characterization of mixing soft-segmented waterborne polyurethane polymer electrolyte with room temperature ionic liquid. Chin. Chem. Lett. 20 (5)(2009) 519–522.
Y.-J. Xu, L. Chen, W.-H. Rao, M. Qi, D.-M. Guo, W. Liao, Y.-Z. Wang, Latent curing epoxy system with excellent thermal stability, flame retardance and dielectric property, Chem. Eng. Technol. 347(2018) 223–232.
Y.J. Xu, L. Chen, W.H. Rao, M. Qi, D.M. Guo, W. Liao, Y.Z. Wang, Latent curing epoxy system with excellent thermal stability, flame retardance and dielectric property. Chem. Eng. J. 347(2018) 223–232.
Y.-J. Xu, X.-H. Shi, J.-H. Lu, M. Qi, D.-M. Guo, L. Chen, Y.-Z. Wang, Novel phosphorus-containing imidazolium as hardener for epoxy resin aiming at controllable latent curing behavior and flame retardancy, Compos. B. Eng. 184(2020) 107673.
Y.L. Liu, C.S. Wu, Y.S. Chiu, W.H. Ho, Preparation, thermal properties, and flame retardance of epoxy-silica hybrid resins. J. Polym. Sci. Pol. Chem. 41(15)(2003) 2354–2367.
Y.L. Ren, Y. Zhang, J.Y. Zhao, X.L. Wang, Q. Zeng, Y.T. Gu, Phosphorus-doped organic-inorganic hybrid silicon coating for improving fire retardancy of polyacrylonitrile fabric. J. Sol-Gel Sci. Technol. 82(1)(2017) 280–288.
Y.-M. Lu, S.H. Liu, T. Wu, B. Zhang, C.-L. Chiang, Peculiar effect of acylamino and cyan groups on thermal behavior of 2-(1-cyano-1-methylethyl)azocarboxamide. J. Loss Prev. Process. Ind. 69(2021) 104379.
Y.-Q. Shi, T. Fu, Y.-J. Xu, D.-F. Li, X.-L. Wang, Y.-Z. Wang, Novel phosphorus-containing halogen-free ionic liquid toward fire safety epoxy resin with well-balanced comprehensive performance, Chem. Eng. Technol. 354(2018) 208–219.
Y.Q. Shi, T. Fu, Y.J. Xu, D.F. Li, X.L. Wang, Y.Z. Wang, Novel phosphorus-containing halogen-free ionic liquid toward fire safety epoxy resin with well-balanced comprehensive performance. Chem. Eng. J. 354(2018) 208–219.
Z. Qu, K. Wu, E. Jiao, W. Chen, Z. Hu, C. Xu, J. Shi, S. Wang, Z. Tan, Surface functionalization of few-layer black phosphorene and its flame retardancy in epoxy resin. Chem. Eng. J. 382(2020) 122991.
Z. Qu, K. Wu, W. Meng, B. Nan, Z. Hu, C.A. Xu, Z. Tan, Q. Zhang, H. Meng, J. Shi, Surface coordination of black phosphorene for excellent stability, flame retardancy and thermal conductivity in epoxy resin. Chem. Eng. J. 397(2020) 125416.
Z.F. Zhang, W.H. Wu, M.J. Zhang, J.M. Qu, L. Shi, H.Q. Qu, J.Z. Xu, Hydrothermal synthesis of 4ZnO center dot B2O3 center dot H2O/RGO hybrid material and its flame retardant behavior in flexible PVC and magnesium hydroxide composites. Appl. Surf. Sci. 425(2017) 896–904.
Z.H. Wang, P. Wei, Y. Qian, J.P. Liu, The synthesis of a novel graphene-based inorganic-organic hybrid flame retardant and its application in epoxy resin. Compos. Part B 60(2014) 341–349.
Z.M. Bai, S.D. Jiang, G. Tang, Y. Hu, L. Song, R.K.K. Yuen, 2014. Enhanced thermal properties and flame retardancy of unsaturated polyester-based hybrid materials containing phosphorus and silicon. Polym. Advan. Technol. 25(2)(2014) 223–232.
陳映融,金屬誘導咪唑硝酸鹽離子液體熱穩定性之量測偏差,(2018) 碩士論文,國立雲林科技大學,雲林縣,台灣。
葉峰閩,量熱技術結合熱動力學模型來評估混合在潤滑油中鋰基鹽之熱性能,(2018) 碩士論文,國立雲林科技大學,雲林縣,台灣。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top