跳到主要內容

臺灣博碩士論文加值系統

(44.221.73.157) 您好!臺灣時間:2024/06/20 20:25
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃韋銘
研究生(外文):HUANG, WEI-MING
論文名稱:疏水性聚苯胺/奈米碳管複合材料於氨氣感測器之研究
論文名稱(外文):Hydrophobic polyaniline/carbon nanotube composites for ammonia sensor
指導教授:王詩涵王詩涵引用關係
指導教授(外文):WANG, SHIH-HAN
口試委員:周學韜葛明德
口試委員(外文):ZHOU, XUE-TAOGE, MING-DE
口試日期:2019-07-29
學位類別:碩士
校院名稱:國立雲林科技大學
系所名稱:化學工程與材料工程系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2021
畢業學年度:109
語文別:中文
論文頁數:67
中文關鍵詞:聚苯胺奈米碳管濕度氨氣感測器
外文關鍵詞:Polyanilinecarbon nanotubehumidityammonia sensor
相關次數:
  • 被引用被引用:0
  • 點閱點閱:182
  • 評分評分:
  • 下載下載:18
  • 收藏至我的研究室書目清單書目收藏:0
人體呼出的氨氣是作為肝腎疾病之指標,一般正常人呼出的氨氣濃度較低,且人體呼出氣體種類較為複雜,感測時容易受到其他氣體及濕度影響,需要開發高靈敏度和高選擇性的感測材料應用於偵測低濃度氨氣。
本研究使用化學聚合法製備聚苯胺/奈米碳管複合材料,用於開發室溫型化學感測器,並在室溫下感測氨氣範圍為0.025 -75 ppm,感測極限0.025 ppm,由於會受到干擾氣體影響,檢測一氧化氮、二氧化氮、一氧化碳、二氧化碳和二氧化硫進行選擇性之鑑定,實驗結果得知材料對氨氣具有高選擇性。
在受到濕度環境的影響下,感測材料會受到水氣的影響讓感測結果受到極大影響,為了改善此問題並進行材料表面改質,因此本研究將PANI/CNT加入不同種界面活性劑使材料表面呈現疏水之特性,並經過一連串的感測實驗結果得知,聚苯胺/奈米碳管/TX-100的複合材料克服了濕度的影響讓感測出的數據穩定,另外此複合材料在室溫下感測氨氣具有高靈敏度、選擇性和穩定度,適合應用於偵測人體呼出氨氣之濃度。

The exhaled ammonia gas concentration could be an indicator of liver and kidney related diseases. In general, the concentration of ammonia gas exhaled by a normal person is in the range of 250-3000 ppb, and the composition is also complicate. In order to detect the lower concentration of ammonia in exhaled gas, it is necessary to develop high sensitivity, selective and stable materials to detect ammonia.
The polyaniline /carbon nanotube composite materials was synthesized utilized by chemical polymerization route. The composite could be detect ammonia concentration in the range of 0.025 -75 ppm at room temperature, and the lower sensing limit was 0.025 ppm. The potential inference gases such as nitrogen monoxide, nitrogen dioxide, carbon monoxide, carbon dioxide and sulfur dioxide were evaluated. The experimental results demonstrated the highly selectivity to ammonia gas.
The humidity effect also discussed. In order to overcome this problem, the sensing material was modified by various kinds of the surfactants to form hydrophobic surface. The hydrophobic composite showed highly sensitive and stable in humid environment at room temperature. In this study, the hydrophobic polyaniline/carbon nanotube was successfully developed for human exhaled ammonia detection.

摘要 i
ABSTRACT ii
目錄 iii
表目錄 v
圖目錄 vi
第一章、前言 1
1-1研究背景 1
1-2研究動機與目的 3
第二章、文獻回顧 4
2-1 感測材料 4
2-1-1導電高分子 4
2-1-2聚苯胺的特性 7
2-1-3奈米碳材 10
2-2 表面活性劑介紹 12
2-3 化學感測器介紹 14
2-3-1半導體化學感測器 15
2-3-2 電化學式感測器 20
2-3-3 光化學感測器 22
2-3-4 表面聲波感測器 24
第三章、實驗方法與步驟 25
3-1實驗架構 25
3-2實驗藥品與儀器 26
3-2-1電化學分析儀(Electrochemical Analyzer) 27
3-2-2接觸角量測儀 (contact angle meter) 27
3-2-3傅立葉轉換紅外線光譜儀 (Fourier-transform Infrared Spectrophotometer)-型號: NEXUS 470 28
3-2-4掃描式電子顯微鏡(SEM) 28
3-3感測元件之製備 29
3-3-1配置不同濃度PANI / CNT合成方式 29
3-3-2界面活性劑修飾 30
3-4氣體感測器實驗架構 31
3-4-1濕度控制 32
第四章、結果與討論 33
4-1材料結構分析 33
4-1-1 SEM材料分析 33
4-1-2 接觸角測試 35
4-1-3 FT-IR分析 39
4-2氣體感測結果 40
4-2-1 不同比例之PANI/CNT 40
4-2-2 界面活性劑的影響 42
4-2-3 濕度效應 44
4-2-4 溫度效應 48
4-2-5 穩定性 49
4-2-6 選擇性 50
4-3感測機制 51
第五章、結論 53
第六章、未來工作建議 54
參考文獻 55

論文參考文獻
[1]M. M. Adeva, G. Souto, N. Blanco, and C. Donapetry, "Ammonium metabolism in humans," Metabolism, vol. 61, no. 11, pp. 1495-1511, 2012/11/01/ 2012.
[2]D. Kwak, Y. Lei, and R. Maric, "Ammonia gas sensors: A comprehensive review," Talanta, vol. 204, pp. 713-730, 2019/11/01/ 2019.
[3]C. Shimamoto, I. Hirata, and K. Katsu, "Breath and blood ammonia in liver cirrhosis," Hepato-gastroenterology, vol. 47, pp. 443-445, 1999.
[4]Simon J Davies, Patrik Španěl, and D. Smith, "Breath analysis of ammonia, volatile organic compounds and deuterated water vapor in chronic kidney disease and during dialysis," Bioanalysis, pp. 843–857, 2014.
[5]M. Sasikumar and N. P. Subiramaniyam, "Microstructure, electrical and humidity sensing properties of TiO2 /polyaniline nanocomposite films prepared by sol–gel spin coating technique," Journal of Materials Science: Materials in Electronics, vol. 29, pp. 7099–7106, 2018.
[6]H. Aydın and F. Yakuphanoglu, "Al-doped ZnO as a multifunctional nanomaterial: Structural, morphological, optical and low-temperature gas sensing properties," Journal of Alloys and Compounds, vol. 773, pp. 802-811, 2019.
[7]C.Q. Zhou and X. X. Gong, "Hydrophobic and high adhesive polyaniline layer of rectangular microtubes fabricated by a modified interfacial polymerization," Applied Surface Science, vol. 379, pp. 124-131, 2016.
[8]Z. Qin and K. Xu, "Enhanced room-temperature NH3 gas sensing by 2D SnS2 with sulfur vacancies synthesized by chemical exfoliation," pp. 771-779, 2018.
[9]S. S. Desai and S. M.Patange, "Effects of Zn2+-Zr4+ ions on the structural, mechanical, electrical, and optical properties of cobalt ferrites synthesized via the sol–gel route," Journal of Physics and Chemistry of Solids, vol. 133, pp. 171-177, 2019.
[10]Y. Yin and H. Zhang, "Inducement of nanoscale Cu–BTC on nanocomposite of PPy–rGO and its performance in ammonia sensing," Materials Research Bulletin, vol. 99, pp. 152-160, 2018.
[11]X. Tang , Driss Lahem, Jean-Pierre Raskin , Pierre Gérard, N. A. Xin Geng, and M. Debliquy, "A Fast and Room-Temperature Operation Ammonia Sensor Based on Compound of Graphene With Polypyrrole," vol. 18, no. 22, pp. 9088 - 9096, 2018.
[12]D. Zhang, "Facile fabrication of polyaniline/multi-walled carbon nanotubes/molybdenum disulfide ternary nanocomposite and its high-performance ammonia-sensing at room temperature," Sensors and Actuators B: Chemical, vol. 258, pp. 895-905, 2018.
[13]D.Nicolas-Debarnot and F.Poncin-Epaillard, "Polyaniline as a new sensitive layer for gas sensors," Analytica Chimica Acta, vol. 475, pp. 1-15, 2003.
[14]王景暉, "聚苯胺-銅奈米粒子修飾石墨烯之複合材料於氨氣感測之應用," 碩士論文,義守大學化學工程學系暨生物技術與化學工程研究所, 2017.
[15]M. Hakimi, "Fabrication of a Room Temperature Ammonia Gas Sensor Based on Polyaniline With N-Doped Graphene Quantum Dots," IEEE Sensors Journal, vol. 18, no. 6, pp. 2245-2252, 2018.
[16]S. Li and T. S. Wang, "Room temperature high performance NH3 sensor based on GO-rambutan-like polyaniline hollow nanosphere hybrid assembled to flexible PET substrate," Sensors and Actuators B: Chemical, vol. 273, pp. 726-734, 2018.
[17]Y.X. Qin and L.P. Wang, "A high performance sensor based on PANI/ZnTi-LDHs nanocomposite for trace NH3 detection," Organic Electronics, vol. 66, pp. 102-109, 2019.
[18]S. B. Kulkarni and Y. H. Navale, "Hybrid polyaniline-WO3 flexible sensor: A room temperature competence towards NH3 gas," Sensors and Actuators B: Chemical, vol. 288, pp. 279-288, 2019.
[19]F. Schütt and V. Postica, "Single and Networked ZnO–CNT Hybrid Tetrapods for Selective Room-Temperature High-Performance Ammonia Sensors," ACS Applied Materials & Interfaces, vol. 9, pp. 23107-23118, 2017.
[20]S. J. Young and Z. D. Lin, "Ammonia gas sensors with Au-decorated carbon nanotubes," Microsystem Technologies, p. 4, 2018.
[21]蘇靜怡, "以超分子模板合成中孔結構之二氧化錫," vol. 106, 2003.
[22]R. Rastogi, R. Kaushal, S. K. Tripathi, A. L. Sharma, I. Kaur, and L. M. Bharadwaj, "Comparative study of carbon nanotube dispersion using surfactants," Journal of Colloid and Interface Science, vol. 328, no. 2, pp. 421-428, 2008/12/15/ 2008.
[23]R. Khan, "Supported TritonX-100 Polyaniline Nano-Porous Electrically Active Film onto Indium-Tin-Oxide Probe for Sensors Application," Advances in Chemical Engineering and Science, vol. 1, pp. 140-146, 2011.
[24]C.Q. Zhou and X.XGong, "Hydrophobic and high adhesive polyaniline layer of rectangular microtubes fabricated by a modified interfacial polymerization," Applied Surface Science, vol. 379, pp. 124-131, 2016.
[25]W. Shockley, "The Path to the Conception of the Junction Transistor," 1948.
[26]吳泉毅, 楊宗燁, and 林鴻明, "奈米半導體材料之氣體感測性質."
[27]T. N. Ly and S. Park, "Highly sensitive gas sensor using hierarchically self-assembled thin films of graphene oxide and gold nanoparticles," Journal of Industrial and Engineering Chemistry, vol. 67, pp. 417-428, 2018.
[28]P. Dash, "Reduced graphene oxide-CuFe2O4 nanocomposite: A highly sensitive room temperature NH3 gas sensor," Sensors and Actuators B: Chemical, vol. 272, pp. 100-109, 2018.
[29]S. Sharma and A. Kumar, "Excellent room temperature ammonia gas sensing properties of n-MoS2/p-CuO heterojunction nanoworms," Sensors and Actuators B: Chemical, vol. 275, pp. 499-507, 2018.
[30]Z. Deng and G. Meng, "A novel ammonia gas sensors based on p-type delafossite AgAlO2," Journal of Alloys and Compounds, vol. 777, pp. 52-58, 2019.
[31]Q. Nie and Z. Pang, "Facile fabrication of flexible SiO2/PANI nanofibers for ammonia gas sensing at room temperature," Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 537, pp. 532-539, 2018.
[32]M. Yin and Z. Zhu, "Mesoporous NiO as an ultra-highly sensitive and selective gas sensor for sensing of trace ammonia at room temperature," Journal of Alloys and Compounds, vol. 789, pp. 941-947, 2019.
[33]H. Liu and W. Shen, "A high-performance NH3 gas sensor based on TiO2 quantum dot clusters with ppb level detection limit at room temperature," Journal of Materials Science: Materials in Electronics, p. 8, 2018.
[34]K. Mistewicz and M. Nowak, "Ferroelectric SbSI nanowires for ammonia detection at a low temperature," Talanta, vol. 189, pp. 225-232, 2018.
[35]Z. Qin and K. Xu, "Enhanced room-temperature NH3 gas sensing by 2D SnS2 with sulfur vacancies synthesized by chemical exfoliation," Sensors and Actuators B: Chemical, vol. 262, pp. 771-779, 2018.
[36]R. K. Kampara, "Gold functionalized ZnO nanowires as a fast response/recovery ammonia sensor," Applied Surface Science, vol. 449, pp. 244-249, 2018.
[37]B. Sakthivel and G. Nammalvar, "Selective ammonia sensor based on copper oxide/reduced graphene oxide nanocomposite," Journal of Alloys and Compounds, vol. 788, pp. 422-428, 2019.
[38]Y. Zhang and W. Zeng, "Porous MoS2 microspheres decorated with Cu2O nanoparticles for ammonia sensing property," Materials Letters, vol. 241, pp. 223-226, 2019.
[39]S.G. Leonardi and W. Wlodarski, "Ammonia sensing properties of two-dimensional tin disulphide/tin oxides (SnS2/SnO2-x) mixed phases," Journal of Alloys and Compounds, vol. 781, pp. 440-449, 2019.
[40]S. K. Bhardwaj and G. C. Mohanta, "A three-phase copper MOF-graphene-polyaniline composite for effective sensing of ammonia," Analytica Chimica Acta, vol. 1043, pp. 89-97, 2018.
[41]N. T. Brannelly and A. J. Killard, "An electrochemical sensor device for measuring blood ammonia at the point of care," Talanta, vol. 167, pp. 296-301, 2017/05/15/ 2017.
[42]H. F. Zhang and Y. Wang, "Construction of ultrasensitive ammonia sensor using ultrafine Ir decorated hollow graphene nanospheres," Electrochimica Acta, vol. 304, pp. 109-117, 2019.
[43]R. Sharan, M. Roy, A. K. Tyagi, and A. Dutta, "Lanthanum gallate based amperometric electrochemical sensor for detecting ammonia in ppm level: Optimization of electrode compositions," Sensors and Actuators B: Chemical, vol. 258, pp. 454-460, 2018/04/01/ 2018.
[44]施正雄, "化學感測器," 五南圖書出版股份有限公司, pp. 140-143, 2015.
[45]G.E.Buono-Core, "Synthesis and characterization of thin molybdenum oxide films prepared from molybdenum dioxo tropolonate precursors by photochemical metal-organic deposition (PMOD) and its evaluation as ammonia gas sensors," Journal of Non-Crystalline Solids, vol. 387, pp. 21-27, 2014/03/01/ 2014.
[46]C. Castillo, G. Cabello, B. Chornik, Y. Huentupil, and G. E. Buono-Core, "Characterization of photochemically grown Pd loaded WO3 thin films and its evaluation as ammonia gas sensor," Journal of Alloys and Compounds, vol. 825, p. 154166, 2020/06/05/ 2020.
[47]S. H. Wang, "Rayleigh surface acoustic wave sensor for ppb-level nitric oxide gas sensing," Sensors and Actuators A: Physical, vol. 216, pp. 237-242, 2014.
[48]P. Le Maout and J. L. Wojkiewicz, "Polyaniline nanocomposites based sensor array for breath ammonia analysis. Portable e-nose approach to non-invasive diagnosis of chronic kidney disease," Sensors and Actuators B: Chemical, vol. 274, pp. 616-626, 2018.
[49]H. Xu, J. Liu, Y. Chen, J. Tang, and Z. Zhao, "Facile fabrication of superhydrophobic polyaniline structures and their anticorrosive properties," Journal of Applied Polymer Science, vol. 133, no. 47, 2016/12/15 2016.
[50]W. Shao, R. Jamal, F. Xu, A. Ubul, and T. Abdiryim, "The Effect of a Small Amount of Water on the Structure and Electrochemical Properties of Solid-State Synthesized Polyaniline," (in eng), Materials, vol. 5, no. 10, pp. 1811-1825, 2012.
[51]C. Zhou, X. Gong, Y. Qu, and J. Han, "Hydrophobic and high adhesive polyaniline layer of rectangular microtubes fabricated by a modified interfacial polymerization," Applied Surface Science, vol. 379, pp. 124-131, 2016/08/30/ 2016.
[52]J. A. Raj, J. Mathiyarasu, C. Vedhi, and P. Manisankar, "Electrochemical synthesis of nanosize polyaniline from aqueous surfactant solutions," Materials Letters, vol. 64, no. 8, pp. 895-897, 2010/04/30/ 2010.
[53]H. T. Hien, H. T. Giang, N. V. Hieu, T. Trung, and C. V. Tuan, "Elaboration of Pd-nanoparticle decorated polyaniline films for room temperature NH3 gas sensors," Sensors and Actuators B: Chemical, vol. 249, pp. 348-356, 2017/10/01/ 2017.
[54]M. Ding , Y. Tang , P. Gou , M. Reber , and A. Star, "Chemical Sensing with Polyaniline Coated Single-Walled Carbon Nanotubes.," Advanced Materials, vol. 536-540, 2010.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊