跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.170) 您好!臺灣時間:2024/12/06 03:15
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:汪意紘
研究生(外文):Wang, Yi-Hung
論文名稱:蝕刻法製備多孔石墨氈電極用於全釩氧化液流電池之電化學性質研究
論文名稱(外文):Preparation of Porous Graphite Felt as Electrode for Vanadium Redox Flow Battery Application
指導教授:洪逸明
指導教授(外文):Hung, I-Ming
口試委員:洪逸明謝建德王清海王丞浩吳成有
口試委員(外文):Hung, I-MingHsieh, Chien-TeWang, Tsing-HaiWang, Chen-HaoWu, Cheng-Yeou
口試日期:2021-10-22
學位類別:博士
校院名稱:元智大學
系所名稱:化學工程與材料科學學系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2022
畢業學年度:110
語文別:中文
論文頁數:81
中文關鍵詞:全釩氧化液流電池石墨氈蝕刻五氧化二釩
外文關鍵詞:V2O5EtchingGraphite feltVanadium redox flow battery
相關次數:
  • 被引用被引用:0
  • 點閱點閱:146
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
非再生能源的枯竭以及負面影響對於人類文明發展有重大之影響,其中電力是發展的重要關鍵。為達到滿足發展需求亦不造成環境汙染,綠色能源之發展越趨於重要,但因其供電不穩使其成為應用上之一大限制。大型儲能系統的誕生,不但能達到削峰填谷之效亦能達到穩定電網之用途,隨未來綠色能源蓬勃發展同時擔任重要角色。全釩氧化液流電池,具有循環壽命長、可深度放電、零交叉汙染以及設計靈活之優點,但其於能量密度及電極上仍有改善空間。本研究中針對石墨氈電極進行表面改質並使用與活性物質相同之釩氧化物進行改質,使其即便殘留於電極表面,也不會對電池性能造成影響。
藉由熱重分析儀之幫助下,可得知處理溫度約在350oC左右,且藉由場發式電子顯微鏡觀察表面形貌,發現電極表面於活化後具有蝕刻之痕跡。在比表面積之量測下,發現濃度為10mM時比表面積提升了約三倍之多,配合表面分析組成後,在該濃度活化對其表面帶有最多含氧量,因此可證明其表面具有較大之反應面積及活性位點。在經由循環伏安法之分析後,V10-EGF之極化現象明顯降低並在阻抗分析下得知其電荷轉移阻抗縮小了約2.5倍,在單電池充放電後,其活化後之石墨氈電極之電容量較TGF高,且達理論電容使用量約70%。V10-EGF在長時間循環下電容量衰退率僅10%相對於TGF(23%),具有較高之電化學活性。其結果與材料表面分析之結果相呼應並確認此法可有效改善電極之電化學性質,進而提高電池效能。

Large-scale electrical energy storage (ESS) also has attracted attention because wind and sunlight generate energy intermittently. Redox flow batteries are considered one of various large-scale ESS systems because of their advanced characteristics, including extended life, safety, design flexibility, rapid response, low maintenance cost, and decoupled scaling of power and energy.
In this work, a simple and environment friendly method to prepared activated graphite felt for vanadium redox flow battery (VRFB) by deposited the vanadium precursor on the surface of graphite felt and calcined to vanadium oxide. The intermediate material, VO2, will lead to the oxidation of carbon during the calcination. Compared with the normal etching method, this method was simple and without pickling process. The surface of activated graphite felt exists lots of pores and rough after suitable calcination temperature between 350°C and 400oC and the surface area of activated graphite felt reached to 17.11 m2/g. In addition, the polarization of activated graphite felt was decreased and the resistance of charge transfer was reduced (0.27Ω). Per-forming the single cell test at current density of 150 mA/cm2, the utilization of capacity reached to 70% and the capacity retention was 84% after 50 cycles. The above results illustrate the activated graphite felt has potential as electrode for VRFB.

摘要 I
Abstract II
致謝 III
目錄 IV
圖目錄 VII
表目錄 X
第1章、 前言 1
1-1 緒論 1
1-2 液流電池簡介 6
第2章、 文獻回顧 7
2-1 液流電池發展歷史 7
2-1-1 The iron-chromium redox system 7
2-1-2 Zinc/bromine redox flow cells 8
2-1-3 All vanadium redox flow battery(VRB) 8
2-1-4 Bromine/polysulphide flow battery 9
2-1-5 Zinc/cerium redox flow cells 9
2-1-6 The vanadium-bromine redox system 10
2-2 全釩氧化還原液流電池工作原理 12
2-3 全釩氧化還原液流電池關鍵材料 14
2-3-1 電解液 16
2-3-2 離子交換膜 17
2-3-3 雙極板 18
2-3-4 電池電極 19
第3章、 研究動機與目的 30
3-1 研究目的 30
第4章、 實驗方法與步驟 32
4-1 實驗器材 32
4-1-1 化學藥品及材料 32
4-1-2 實驗器材及設備 33
4-2 儀器分析 34
4-2-1 熱重量分析儀(Thermal gravity Analysis, TGA) 34
4-2-2 場發射掃描式電子顯微鏡(Field emission scanning electron microscopy, FE-SEM) 34
4-2-3 比表面積分析儀(BET) 34
4-2-4 X射線光電子能譜儀(XPS) 34
4-2-5 接觸角量測儀(Contact angle) 34
4-2-6 半電池循環伏安測試(Cyclic Voltammetry) 35
4-2-7 交流阻抗分析 35
4-2-8 單電池充放電測試 35
4-3 實驗步驟前處理 36
4-3-1 熱處理 36
4-3-2 V2O5活化石墨氈電極 36
4-3-3 電解液製備 39
4-3-4 半電池測試之極片製作與組裝 39
4-3-5 全電池測試與組裝 39
第5章、 結果與討論 40
5-1-1 電極重量變化分析 40
5-1-2 電極顯微組織分析 43
5-1-3 電極比表面積變化分析 45
5-1-4 電極親水性分析 47
5-1-5 拉曼散射光譜(Raman Spectroscopy) 50
5-1-6 X射線光電子能譜(XPS) 52
5-2 電化學性能分析 57
5-2-1 半電池循環伏安測試(Cyclic Voltammetry) 57
5-2-2 交流阻抗分析(A.C. Impedance) 61
5-2-3 單電池充放電測試(Charge-Discharge) 64
5-2-4 單電池長時間循環測試(Long-term cycle charge-discharge) 71
第6章、 結論 72
第7章、 參考文獻 73
附錄 – 作者簡介及發表著作一覽表 80

[1] The ultimate objective of Convention [京都議定書第二款:目標], 2005 (https://web.archive.org/web/20051028023600/http://unfccc.int/essential_background/convention/background/items/1353.php)
[2] RENEWABLES 2019 GLOBAL STATUS REPORT, 2019 (http://www.ren21.net/gsr-2019/)
[3] Electropaedia-Battery and Energy Technologies (https://www.mpoweruk.com/grid_storage.htm)
[4] M. Skyllas-Kazacos, M. H. Chakrabarti, S. A. Hajimolana, F. S. Mjalli, M. Saleemd, Progress in flow battery research and development, Journal of The Electrochemical Society, 158, 55-79, 2011.
[5] IRENA, Chapter [3] of Perspectives for the energy transition - Investment needs for a low-carbon energy system, International renewable energy agency, IRENA, 2017.
[6] Tesla big battery outsmarts lumbering coal units after Loy Yang trips, 2017 (https://reneweconomy.com.au/tesla-big-battery-outsmarts-lumbering-coal-units-after-loy-yang-trips-70003/)
[7] K. J. Kim, M. S. Park, Y. J. Kim, J. H. Kim, S. X. Doub, M. Skyllas-Kazacos, A technology review of electrodes and reaction mechanisms in vanadium redox flow batteries, J. Mater. Chem. A, 3, 16913-16933, 2015.
[8] 魏辰睿、柯澤豪,活化石墨氈對全釩氧化還原液流電池之要能研究,2012
[9] A. F. F. C. Ponce de León, J. González-García, D. A. Szánto, F. C. Walsh, Redox flow cells for energy conversion, Journal Power Sources, 160, 716-732, 2006.
[10] M. R. M. Skyllas-Kazacos, R. Robins, All-vanadium redox battery, U.S. Patent 4,786,567 A, 1988.
[11] M. S.-K. B. Sun, Chemical modification of graphite electrode material for vanadium redox flow battery application-part II. Acid treatments, Electrochimica Acta, 37, 2459-2465, 1992.
[12] L.H. Thaller, Redox flow cell energy storage systems, NASA TM-79143, DOE/NASA/1002-79/3, 1979.
[13] L. Swette, V. Jalan, Development of electrodes for the NASA iron/chromium redox system and factors affecting their performance, NASA CR-174724, DOE/NASA/0262-1, 1984.
[14] R. F. Gahn, N. H. Hagedorn, J. A. Johnson, Cycling performance of the iron chromium redox energy storage system, NASA TM-87034, NASA, Dept.of Energy, US, 1985.
[15] P. Morrissey, Regenesys: a new energy storage technology, International Journal of Ambient Energy, 21, 213-200, 2000.
[16] M. Skyllas-Kazacos, A. Mousa, M. Kazakos, Metal bromide redox flow cell, PCT Application, PCT/GB2003/001757, 2003.
[17] 吳成有,台灣電力綜合研究所,固態氧化物燃料電池(SOFC)量測評估及釩液流電池(VRB)應用技術研習,2010
[18] U. S. D. O. Energy, Redox flow cell development and demonstration project, NASA TM-790671979.
[19] M. Skyllas-Kazacos, C. Menictas, M. Kazacos, Thermal stability of concentrated V (V) electrolytes in the vanadium redox Cell, Journal of The Electrochemical Society, 143, 86-88, 1996
[20] M. J. Watt-Smith, H. Al-Fetlawi, P. Ridley, R. G. A. Wills, A. A. Shah, F. C. Walsh, The importance of key operational variables and electrolyte monitoring to the performance of an all vanadium redox flow battery, Journal of Chemical Technology and Biotechnology, 88, 126-138, 2013.
[21] C. W. Monroe, A. A. Shinkle, A. E.S. Sleightholme, L. D. Griffith,L. T. Thompson, Degradation mechanisms in the non-aqueous vanadium acetylacetonate redox flow battery, Journal of Power Sources, 206, 490-496, 2012.
[22] 馬振基、謝曉峰、蕭閔謙,新型儲能電池-全釩液流電池的原理與發展現況,化學,第七十卷第三期,37-246頁,2012
[23] M. Skyllas-Kazacos, H. Prifti, A. Parasuraman, S. Winardi, T. M. Lim Membranes for redox flow battery applications, Membranes, 2, 275-306, 2012.
[24] J. Xi, Z. Wu, X. Qiu, L. Chen, Nafion/SiO2 Hybrid membrane for vanadium flow battery, Journal of Power Sources, 166, 531-536, 2007.
[25] W. G. Zhang, J. Y. Xi, Z. H. Li, H. P. Zhou, L. Liu ,Z. H. Wu, X. P. Qiu, Electrochemical activation of graphite felt electrode for VO2+/VO2+ redox couple application, Electrochimica Acta, 89, 429-435, 2013.
[26] B. Sun, M. Skyllas-Kazacos, Modification of graphite electrode materials for vanadium redox flow battery application-I. Thermal treatment, Electrochimica Acta, 37, 1253-1260, 1992.
[27] Z. Zhang, J. Xi, H. Zhou, X. Qiu, KOH etched graphite felt with improved wettability and activity for vanadium flow batteries, Electrochimica Acta, 218, 15-23, 2016.
[28] J. J. Park, J. H. Park, O. O. Park, J. H. Yang, Highly porous graphenated graphite felt electrodes with catalytic defects for high-performance vanadium redox flow batteries produced via NiO/Ni redox reactions, Carbon, 110, 17-26, 2016.
[29] Y. C. Chang, J. Y. Chen, D. M. Kabtamu, G. Y. Lin, N. Y. Hsu, Y. S. Chou, H. J. Wei, C. H. Wang, High efficiency of CO2-activated graphite felt as electrode for vanadium redox flow battery application, Journal of Power Sources, 364, 1-8, 2017.
[30] D. M. Kabtamu, J. Y. Chen, Y. C. Chang, C. H. Wang , Water-activated graphite felt as a high-performance electrode for vanadium redox flow batteries, Journal of Power Sources, 341, 270-279, 2017.
[31] S. Abbas, H. Lee, J. Hwang, A. Mehmood, H. J. Shin, S. Mehboob, J. Y. Lee , H. Y. Ha, A novel approach for forming carbon nanorods on the surface of carbon felt electrode by catalytic etching for high-performance vanadium redox flow battery, Carbon, 128, 31-37, 2018.
[32] Y. Liu, Y. Shen, L. Yu, L. Liu, F. Liang, X. Qiu, J. Xi, Holey-engineered electrodes for advanced vanadium flow batteries, Nano Energy, 43, 55-62, 2018.
[33] H. R. Jiang, W. Shyy, M. C. Wu, R. H. Zhang, T. S. Zhao, A bi-porous graphite felt electrode with enhanced surface area and catalytic activity for vanadium redox flow batteries, Applied Energy, 233-234, 105-113, 2019.
[34] X. Zhou, X. Zhang, Y. Lv, L. Lin, Q. Wu, Nano-catalytic layer engraved carbon felt via copper oxide etching for vanadium redox flow batteries, Carbon, 153, 674-681, 2019.
[35] Q. Wu, X. Zhang, Y. Lv, L. Lin, Y. Liu, X. Zhou, Bio-inspired multiscale-pore-network structured carbon felt with enhanced mass transfer and activity for vanadium redox flow batteries, Journal of Materials. Chemistry. A, 6, 20347-20355, 2018.
[36] R. Wang, Y. Li, Y. L. He, Achieving gradient-pore-oriented graphite felt for vanadium redox flow batteries: meeting improved electrochemical activity and enhanced mass transport from nano- to micro-scale, Journal of Materials. Chemistry. A, 7, 10962-10970, 2019.
[37] C. Gao, N. F. Wang, S. Peng, Y. Lei, X. X. Liang, S. S. Zeng, H. F. Zi, Influence of Fenton's reagent treatment on electrochemical properties of graphite felt for all vanadium redox flow battery, Electrochimica Acta, 88, 193-202, 2013.
[38] X. Wu, H. Xu, Y. Shen, P. Xu, L. Lu, J. Fu, H. Zhao, Treatment of graphite felt by modified Hummers method for thepositive electrode of vanadium redox flow battery, Electrochimica Acta, 138, 264-269, 2014.
[39] Z. He, Y. Jiang, W. Meng, F. Jiang, H. Zhou, Y. Li, J. Zhu, L. Wang, L. Dai, HF/H2O2 treated graphite felt as the positive electrode for vanadium redox flow battery, Applied Surface Science, 423, 111-118, 2017.
[40] H. R. Jiang, W. Shyy, Y. X. Ren, R. H. Zhang, T. S. Zhao, A room-temperature activated graphite felt as the cost-effective, highly active and stable electrode for vanadium redox flow batteries, Applied Energy, 233-234, 544-553, 2019.
[41] Y. Shao, X. Wang, M. Engelhard, C. Wang, S. Dai, J. Liu, Z. Yang, Y. Lin, Nitrogen-doped mesoporous carbon for energy storage in vanadium redox flow batteries, Journal of Power Sources, 195, 4375-4379, 2010.
[42] J. Kim, H. Lim, J. Y. Jyoung, E. S. Lee, J. S. Yi, D. Lee, High electrocatalytic performance of N and O atomic co-functionalized carbon electrodes for vanadium redox flow battery, Carbon, 111, 592-601, 2017.
[43] J. Z. Chen, W. Y. Liao, W. Y. Hsieh, C. C. Hsu, Y. S. Chen, All-vanadium redox flow batteries with graphite felt electrodes treated by atmospheric pressure plasma jets, Journal of Power Sources, 274, 894-898, 2015.
[44] Y. Huang, Q. Deng, X. Wu, S. Wang, N, O Co-doped carbon felt for high-performance all-vanadium redox flow battery, International Journal of Hydrogen Energy, 42, 7177-7185, 2017.
[45] A. B. Shah, Y. Wu, Y. L. Joo, Direct addition of sulfur and nitrogen functional groups to graphite felt electrodes for improving all-vanadium redox flow battery performance, Electrochimica Acta, 297, 905-915, 2019.
[46] J. Kim, H. Lim, J. Y. Jyoung, E. S. Lee, J. S. Yi, D. Lee, Effects of Doping Methods and Kinetic Relevance of N and O AtomicCo-Functionalization on Carbon Electrode for V(IV)/V(V) Redox Reactions in Vanadium Redox Flow Battery, Electrochimica Acta, 245, 724-733, 2017.
[47] D. S. Yang, J. H. Han, J. W. Jeon, J. Y. Lee, D. G. Kim, D. H. Seo, B. G. Kim, T. H. Kim, Y. T. Hong, Multimodal porous and nitrogen-functionalized electrode based on graphite felt modified with carbonized porous polymer skin layer for all-vanadium redox flow battery, Materials Today Energy, 11, 159-165, 2019.
[48] C. Youn, S. A. Song, K. Kim, J. Y. Woo, Y. W. Chang, S. N. Lim, Effect of nitrogen functionalization of graphite felt electrode by ultrasonication on the electrochemical performance of vanadium redox flow battery, Materials Chemistry and Physics, 237, 121873, 2019.
[49] Z. He, Y. Jiang, Y. Li, J. Zhu, H. Zhou, W. Meng, L. Wang, L. Dai, Carbon layer-exfoliated, wettability-enhanced, SO3H-functionalized carbon paper: A superior positive electrode for vanadium redox flow battery, Carbon, 127, 297-304, 2018.
[50] Y. Chung, C. Noh, Y. Kwon, Role of borate functionalized carbon nanotube catalyst for the performance improvement of vanadium redox flow battery, Journal of Power Sources, 438, 227063, 2019.
[51] Y. Shen, H. Xu, P. Xu, X. Xu, Y. Dong, L. Lu, Electrochemical catalytic activity of tungsten trioxide- modifiedgraphite felt toward VO2+/VO2+redox reaction, Electrochimica Acta, 132, 37-41, 2014.
[52] D. M. Kabtamu, Y. C. Chang, G. Y. Lin, A. W. Bayeh, J. Y. Chen, T. H. Wondimu, C. H. Wang, Three-dimensional annealed WO3 nanowire/graphene foam as an electrocatalytic material for all vanadium redox flow batteries, Sustainable Energy Fuels, 1, 2091-2100, 2017.
[53] W. Lee, C. Jo, S. Youk, H. Y. Shin, J. Lee, Y. Chung, Y. Kwon, Mesoporous tungsten oxynitride as electrocatalyst for promoting redox reactions of vanadium redox couple and performance of vanadium redox flow battery, Applied Surface Science, 429, 187-195, 2018.
[54] M. G. Hosseini, S. Mousavihashemi, S. Murcia-Lopez, C. Flox, T. Andreu, J. R. Morante, High-power positive electrode based on synergistic effect of N- and WO3 -decorated carbon felt for vanadium redox flow batteries, Carbon, 136, 444-453, 2018.
[55] A. W. Bayeh, D. M. Kabtamu, Y. C. Chang, G. C. Chen, H. Y. Chen, T. R. Liu, T. H. Wondimu, K. C. Wang, C. H. Wang, Hydrogen-Treated Defect-Rich W18O49 Nanowire-Modified Graphite Felt as High-Performance Electrode for Vanadium Redox Flow Battery, Applied Energy Materials, 2, 2541-2551, 2019.
[56] S. C. Raghu, M. Ulaganathan, T. M. Lim, M. Skyllas-Kazacos, Electrochemical behaviour of titanium/iridium(IV) oxide: Tantalum pentoxide and graphite for application in vanadium redox flow battery, Journal of Power Sources, 238, 103-108, 2013.
[57] C. Yang, H. Wang, S. Lu, C. Wu, Y. Liu, Q. Tan, D. Liang, Y. Xiang, Titanium nitride as an electrocatalyst for V(II)/V(III) redox couples in all-vanadium redox flow batteries, Electrochimica Acta, 182, 834-840, 2015.
[58] L. Wei, T. S. Zhao, L. Zeng, Y. K. Zeng, H. R. Jiang, Highly catalytic and stabilized titanium nitride nanowire array-decorated graphite felt electrodes for all vanadium redox flow batteries, Journal of Power Sources, 341, 318-326, 2017.
[59] Z. He, M. Li, Y. Li, J. Zhu, Y. Jiang, W. Meng, H. Zhou, L.Wang, L. Dai, Flexible electrospun carbon nanofiber embedded with TiO2 as excellent negative electrode for vanadium redox flow battery, Electrochimica Acta, 281, 601-610, 2018.
[60] J. Vázquez-Galván, C. Flox, J. R. Jervis, A. B. Jorge, P. R. Shearing, J. R. Morante, High-power nitrided TiO2 carbon felt as the negative electrode for all-vanadium redox flow batteries, Carbon, 148, 91-104, 2019.
[61] Z. González, A. Sánchez, C. Blanco, M. Granda, R. Menéndez, R. Santamaría, Enhanced performance of a Bi-modified graphite felt as the positive electrode of a vanadium redox flow battery, Electrochemistry Communications, 13, 1379-1382, 2011.
[62] G. Wei, X. Fan, J. Liu, C. Yan, Electrospun carbon nanofibers/electrocatalyst hybrids as asymmetric electrodes for vanadium redox flow battery, Journal of Power Sources, 281, 1-6, 2015.
[63] T. Liu, X. Li, H. Nie, C. Xu, H. Zhang, Investigation on the effect of catalyst on the electrochemical performance of carbon felt and graphite felt for vanadium flow batteries, Journal of Power Sources, 286, 73-81, 2015.
[64] Z. He, L. Dai, S. Liu, L. Wang, C. Li, Mn3O4 anchored on carbon nanotubes as an electrode reaction catalyst of V(IV)/V(V) couple for vanadium redox flow batteries, Electrochimica Acta, 176, 1434-1440, 2015.
[65] A. Ejigu, M. Edwards, D. A. Walsh, Synergistic Catalyst−Support Interactions in a Graphene−Mn3O4 Electrocatalyst for Vanadium Redox Flow Batteries, ACS Catalysis, 5, 7122-7130, 2015.
[66] A. Di Blasi, C. Busaccaa, O. Di Blasia, N. Briguglioa, G. Squadritoa, V. Antonuccia, Synthesis of flexible electrodes based on electrospun carbon nanofibers with Mn3O4 nanoparticles for vanadium redox flow battery application, Applied Energy, 190, 165-171, 2017.
[67] H. Zhou, Y. Shen, J. Xi, X. Qiu, L. Chen, ZrO2‑Nanoparticle-Modified Graphite Felt: Bifunctional Effects on Vanadium Flow Batteries, Applied Materials Interfaces, 8, 15369-15378, 2016.
[68] Z. He. M. Li, Y. Li, C. Li, Z. Yi, J. Zhu, L. Dai, W. Meng, H. Zhou, L. Wang, ZrO2 nanoparticle embedded carbon nanofibers by electrospinning technique as advanced negative electrode materials for vanadium redox flow battery, Electrochimica Acta, 309, 166-176, 2019.
[69] Z. Ge, L. Wang, Z. He, Y. Li, Y. Jiang, W. Meng, L. Dei, Electrocatalytic activity of cobalt phosphide-modified graphite felt toward VO2+/VO2+ redox reaction, Applied Surface Science, 436, 1030-1037, 2018.
[70] Y. Xiang, W. A. Daoud, Investigation of an advanced catalytic effect of cobalt oxide modification on graphite felt as the positive electrode of the vanadium redox flow battery, Journal of Power Sources, 416, 175-183, 2019.
[71] B. Li, M. Gu, Z. Nie, X. Wei, C. Wang, V. Sprenkle, W. Wang, Nanorod Niobium Oxide as Powerful Catalysts for an All Vanadium Redox Flow Battery, Nano Letter, 14, 158-165, 2014.
[72] X. Wu, H. Xu, L. Lu, H. Zhao, J. Fu, Y. Shen, P. Xu, Y. Dong, PbO2-modified graphite felt as the positive electrode for an all-vanadium redox flow battery, Journal of Power Sources, 250, 274-278, 2014.
[73] M. Jing, X. Zhang, X. Fan, L. Zhao, J. Liu, C. Yan, CeO2 embedded electrospun carbon nanofibers as the advanced electrode with high effective surface area for vanadium flow battery, Electrochimica Acta, 215, 57-65, 2016.
[74] C. Busacca, O. Di Blasi, N. Briguglio, M. Ferraro, V. Antonucci, A. Di Blasi, Electrochemical performance investigation of electrospun urchin-like V2O3-CNF composite nanostructure for vanadium redox flow battery, Electrochimica Acta, 230, 174-180, 2017.
[75] Y. Xiang, W. A. Daoud, Cr2O3-modified graphite felt as a novel positive electrode for vanadium redox flow battery, Electrochimica Acta, 290, 176-184, 2018.
[76] N, Yin, J. J. Park, O. O. Park, K. B. Lee, J. H. Yang, Electrocatalytic effect of NiO nanoparticles evenly distributed on a graphite felt electrode for vanadium redox flow batteries, Electrochimica Acta, 278, 226-235, 2018.
[77] Y. S. Hu, X. Liu, J. O. Muller, R. Schlogl, J. Maier, D. S. Su, Synthesis and Electrode Performance of Nanostructured V2O5 by Using a Carbon Tube-in-Tube as a Nanoreactor and an Efficient Mixed- Conducting Network, Angewandte Chemie International Edition , 48, 210-214, 2009.
[78] A. Pan, J.G. Zhang, Z. Nie, G. Z. Cao, B.W. Arey, G. S. Li, S. Q. Liang, J. Liu, Facile synthesized nanorod structured vanadium pentoxide for high-rate lithium batteries, Journal of Materials. Chemistry, 20, 9193-9199, 2010.
[79] J. Shin, H. Jung, Y. Kim, J. Kim, Carbon-coated V2O5 nanoparticles with enhanced electrochemical performance as a cathode material for lithium ion batteries, Journal of Alloys and Compounds, 589, 322-329, 2014.
[80] M. Beaula Ruby Kamalam, B.K. Balachander, K. Sethuraman, Solvothermal Synthesis and Characterization of Reduced Graphene oxide/ Vanadium Pentoxide Hybrid nanostructures, Materials Today: Proceedings, 3, 2132-2140, 2016.
[81] B. Yan, X. Li, Z. Bai, Y. Zhao, L. Dong, X. Song, D. Li, C. Langford, X. Sun, Crumpled reduced graphene oxide conformally encapsulated hollow V2O5 nano/microsphere achieving brilliant lithium storage performance, Nano Energy, 24, 32-44, 2016.
[82] B. G. Liu, J. H. Peng, R. D. Wan, L. B. Zhang, S. H. Guo, S. M. Zhang, Optimization of preparing V2O5 by calcination from ammonium metavanadate using response surface methodology, Transactions of Nanoferrous Metals Society of China, 21, 673-678, 2011.

電子全文 電子全文(網際網路公開日期:20270111)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top