|
[1] The ultimate objective of Convention [京都議定書第二款:目標], 2005 (https://web.archive.org/web/20051028023600/http://unfccc.int/essential_background/convention/background/items/1353.php) [2] RENEWABLES 2019 GLOBAL STATUS REPORT, 2019 (http://www.ren21.net/gsr-2019/) [3] Electropaedia-Battery and Energy Technologies (https://www.mpoweruk.com/grid_storage.htm) [4] M. Skyllas-Kazacos, M. H. Chakrabarti, S. A. Hajimolana, F. S. Mjalli, M. Saleemd, Progress in flow battery research and development, Journal of The Electrochemical Society, 158, 55-79, 2011. [5] IRENA, Chapter [3] of Perspectives for the energy transition - Investment needs for a low-carbon energy system, International renewable energy agency, IRENA, 2017. [6] Tesla big battery outsmarts lumbering coal units after Loy Yang trips, 2017 (https://reneweconomy.com.au/tesla-big-battery-outsmarts-lumbering-coal-units-after-loy-yang-trips-70003/) [7] K. J. Kim, M. S. Park, Y. J. Kim, J. H. Kim, S. X. Doub, M. Skyllas-Kazacos, A technology review of electrodes and reaction mechanisms in vanadium redox flow batteries, J. Mater. Chem. A, 3, 16913-16933, 2015. [8] 魏辰睿、柯澤豪,活化石墨氈對全釩氧化還原液流電池之要能研究,2012 [9] A. F. F. C. Ponce de León, J. González-García, D. A. Szánto, F. C. Walsh, Redox flow cells for energy conversion, Journal Power Sources, 160, 716-732, 2006. [10] M. R. M. Skyllas-Kazacos, R. Robins, All-vanadium redox battery, U.S. Patent 4,786,567 A, 1988. [11] M. S.-K. B. Sun, Chemical modification of graphite electrode material for vanadium redox flow battery application-part II. Acid treatments, Electrochimica Acta, 37, 2459-2465, 1992. [12] L.H. Thaller, Redox flow cell energy storage systems, NASA TM-79143, DOE/NASA/1002-79/3, 1979. [13] L. Swette, V. Jalan, Development of electrodes for the NASA iron/chromium redox system and factors affecting their performance, NASA CR-174724, DOE/NASA/0262-1, 1984. [14] R. F. Gahn, N. H. Hagedorn, J. A. Johnson, Cycling performance of the iron chromium redox energy storage system, NASA TM-87034, NASA, Dept.of Energy, US, 1985. [15] P. Morrissey, Regenesys: a new energy storage technology, International Journal of Ambient Energy, 21, 213-200, 2000. [16] M. Skyllas-Kazacos, A. Mousa, M. Kazakos, Metal bromide redox flow cell, PCT Application, PCT/GB2003/001757, 2003. [17] 吳成有,台灣電力綜合研究所,固態氧化物燃料電池(SOFC)量測評估及釩液流電池(VRB)應用技術研習,2010 [18] U. S. D. O. Energy, Redox flow cell development and demonstration project, NASA TM-790671979. [19] M. Skyllas-Kazacos, C. Menictas, M. Kazacos, Thermal stability of concentrated V (V) electrolytes in the vanadium redox Cell, Journal of The Electrochemical Society, 143, 86-88, 1996 [20] M. J. Watt-Smith, H. Al-Fetlawi, P. Ridley, R. G. A. Wills, A. A. Shah, F. C. Walsh, The importance of key operational variables and electrolyte monitoring to the performance of an all vanadium redox flow battery, Journal of Chemical Technology and Biotechnology, 88, 126-138, 2013. [21] C. W. Monroe, A. A. Shinkle, A. E.S. Sleightholme, L. D. Griffith,L. T. Thompson, Degradation mechanisms in the non-aqueous vanadium acetylacetonate redox flow battery, Journal of Power Sources, 206, 490-496, 2012. [22] 馬振基、謝曉峰、蕭閔謙,新型儲能電池-全釩液流電池的原理與發展現況,化學,第七十卷第三期,37-246頁,2012 [23] M. Skyllas-Kazacos, H. Prifti, A. Parasuraman, S. Winardi, T. M. Lim Membranes for redox flow battery applications, Membranes, 2, 275-306, 2012. [24] J. Xi, Z. Wu, X. Qiu, L. Chen, Nafion/SiO2 Hybrid membrane for vanadium flow battery, Journal of Power Sources, 166, 531-536, 2007. [25] W. G. Zhang, J. Y. Xi, Z. H. Li, H. P. Zhou, L. Liu ,Z. H. Wu, X. P. Qiu, Electrochemical activation of graphite felt electrode for VO2+/VO2+ redox couple application, Electrochimica Acta, 89, 429-435, 2013. [26] B. Sun, M. Skyllas-Kazacos, Modification of graphite electrode materials for vanadium redox flow battery application-I. Thermal treatment, Electrochimica Acta, 37, 1253-1260, 1992. [27] Z. Zhang, J. Xi, H. Zhou, X. Qiu, KOH etched graphite felt with improved wettability and activity for vanadium flow batteries, Electrochimica Acta, 218, 15-23, 2016. [28] J. J. Park, J. H. Park, O. O. Park, J. H. Yang, Highly porous graphenated graphite felt electrodes with catalytic defects for high-performance vanadium redox flow batteries produced via NiO/Ni redox reactions, Carbon, 110, 17-26, 2016. [29] Y. C. Chang, J. Y. Chen, D. M. Kabtamu, G. Y. Lin, N. Y. Hsu, Y. S. Chou, H. J. Wei, C. H. Wang, High efficiency of CO2-activated graphite felt as electrode for vanadium redox flow battery application, Journal of Power Sources, 364, 1-8, 2017. [30] D. M. Kabtamu, J. Y. Chen, Y. C. Chang, C. H. Wang , Water-activated graphite felt as a high-performance electrode for vanadium redox flow batteries, Journal of Power Sources, 341, 270-279, 2017. [31] S. Abbas, H. Lee, J. Hwang, A. Mehmood, H. J. Shin, S. Mehboob, J. Y. Lee , H. Y. Ha, A novel approach for forming carbon nanorods on the surface of carbon felt electrode by catalytic etching for high-performance vanadium redox flow battery, Carbon, 128, 31-37, 2018. [32] Y. Liu, Y. Shen, L. Yu, L. Liu, F. Liang, X. Qiu, J. Xi, Holey-engineered electrodes for advanced vanadium flow batteries, Nano Energy, 43, 55-62, 2018. [33] H. R. Jiang, W. Shyy, M. C. Wu, R. H. Zhang, T. S. Zhao, A bi-porous graphite felt electrode with enhanced surface area and catalytic activity for vanadium redox flow batteries, Applied Energy, 233-234, 105-113, 2019. [34] X. Zhou, X. Zhang, Y. Lv, L. Lin, Q. Wu, Nano-catalytic layer engraved carbon felt via copper oxide etching for vanadium redox flow batteries, Carbon, 153, 674-681, 2019. [35] Q. Wu, X. Zhang, Y. Lv, L. Lin, Y. Liu, X. Zhou, Bio-inspired multiscale-pore-network structured carbon felt with enhanced mass transfer and activity for vanadium redox flow batteries, Journal of Materials. Chemistry. A, 6, 20347-20355, 2018. [36] R. Wang, Y. Li, Y. L. He, Achieving gradient-pore-oriented graphite felt for vanadium redox flow batteries: meeting improved electrochemical activity and enhanced mass transport from nano- to micro-scale, Journal of Materials. Chemistry. A, 7, 10962-10970, 2019. [37] C. Gao, N. F. Wang, S. Peng, Y. Lei, X. X. Liang, S. S. Zeng, H. F. Zi, Influence of Fenton's reagent treatment on electrochemical properties of graphite felt for all vanadium redox flow battery, Electrochimica Acta, 88, 193-202, 2013. [38] X. Wu, H. Xu, Y. Shen, P. Xu, L. Lu, J. Fu, H. Zhao, Treatment of graphite felt by modified Hummers method for thepositive electrode of vanadium redox flow battery, Electrochimica Acta, 138, 264-269, 2014. [39] Z. He, Y. Jiang, W. Meng, F. Jiang, H. Zhou, Y. Li, J. Zhu, L. Wang, L. Dai, HF/H2O2 treated graphite felt as the positive electrode for vanadium redox flow battery, Applied Surface Science, 423, 111-118, 2017. [40] H. R. Jiang, W. Shyy, Y. X. Ren, R. H. Zhang, T. S. Zhao, A room-temperature activated graphite felt as the cost-effective, highly active and stable electrode for vanadium redox flow batteries, Applied Energy, 233-234, 544-553, 2019. [41] Y. Shao, X. Wang, M. Engelhard, C. Wang, S. Dai, J. Liu, Z. Yang, Y. Lin, Nitrogen-doped mesoporous carbon for energy storage in vanadium redox flow batteries, Journal of Power Sources, 195, 4375-4379, 2010. [42] J. Kim, H. Lim, J. Y. Jyoung, E. S. Lee, J. S. Yi, D. Lee, High electrocatalytic performance of N and O atomic co-functionalized carbon electrodes for vanadium redox flow battery, Carbon, 111, 592-601, 2017. [43] J. Z. Chen, W. Y. Liao, W. Y. Hsieh, C. C. Hsu, Y. S. Chen, All-vanadium redox flow batteries with graphite felt electrodes treated by atmospheric pressure plasma jets, Journal of Power Sources, 274, 894-898, 2015. [44] Y. Huang, Q. Deng, X. Wu, S. Wang, N, O Co-doped carbon felt for high-performance all-vanadium redox flow battery, International Journal of Hydrogen Energy, 42, 7177-7185, 2017. [45] A. B. Shah, Y. Wu, Y. L. Joo, Direct addition of sulfur and nitrogen functional groups to graphite felt electrodes for improving all-vanadium redox flow battery performance, Electrochimica Acta, 297, 905-915, 2019. [46] J. Kim, H. Lim, J. Y. Jyoung, E. S. Lee, J. S. Yi, D. Lee, Effects of Doping Methods and Kinetic Relevance of N and O AtomicCo-Functionalization on Carbon Electrode for V(IV)/V(V) Redox Reactions in Vanadium Redox Flow Battery, Electrochimica Acta, 245, 724-733, 2017. [47] D. S. Yang, J. H. Han, J. W. Jeon, J. Y. Lee, D. G. Kim, D. H. Seo, B. G. Kim, T. H. Kim, Y. T. Hong, Multimodal porous and nitrogen-functionalized electrode based on graphite felt modified with carbonized porous polymer skin layer for all-vanadium redox flow battery, Materials Today Energy, 11, 159-165, 2019. [48] C. Youn, S. A. Song, K. Kim, J. Y. Woo, Y. W. Chang, S. N. Lim, Effect of nitrogen functionalization of graphite felt electrode by ultrasonication on the electrochemical performance of vanadium redox flow battery, Materials Chemistry and Physics, 237, 121873, 2019. [49] Z. He, Y. Jiang, Y. Li, J. Zhu, H. Zhou, W. Meng, L. Wang, L. Dai, Carbon layer-exfoliated, wettability-enhanced, SO3H-functionalized carbon paper: A superior positive electrode for vanadium redox flow battery, Carbon, 127, 297-304, 2018. [50] Y. Chung, C. Noh, Y. Kwon, Role of borate functionalized carbon nanotube catalyst for the performance improvement of vanadium redox flow battery, Journal of Power Sources, 438, 227063, 2019. [51] Y. Shen, H. Xu, P. Xu, X. Xu, Y. Dong, L. Lu, Electrochemical catalytic activity of tungsten trioxide- modifiedgraphite felt toward VO2+/VO2+redox reaction, Electrochimica Acta, 132, 37-41, 2014. [52] D. M. Kabtamu, Y. C. Chang, G. Y. Lin, A. W. Bayeh, J. Y. Chen, T. H. Wondimu, C. H. Wang, Three-dimensional annealed WO3 nanowire/graphene foam as an electrocatalytic material for all vanadium redox flow batteries, Sustainable Energy Fuels, 1, 2091-2100, 2017. [53] W. Lee, C. Jo, S. Youk, H. Y. Shin, J. Lee, Y. Chung, Y. Kwon, Mesoporous tungsten oxynitride as electrocatalyst for promoting redox reactions of vanadium redox couple and performance of vanadium redox flow battery, Applied Surface Science, 429, 187-195, 2018. [54] M. G. Hosseini, S. Mousavihashemi, S. Murcia-Lopez, C. Flox, T. Andreu, J. R. Morante, High-power positive electrode based on synergistic effect of N- and WO3 -decorated carbon felt for vanadium redox flow batteries, Carbon, 136, 444-453, 2018. [55] A. W. Bayeh, D. M. Kabtamu, Y. C. Chang, G. C. Chen, H. Y. Chen, T. R. Liu, T. H. Wondimu, K. C. Wang, C. H. Wang, Hydrogen-Treated Defect-Rich W18O49 Nanowire-Modified Graphite Felt as High-Performance Electrode for Vanadium Redox Flow Battery, Applied Energy Materials, 2, 2541-2551, 2019. [56] S. C. Raghu, M. Ulaganathan, T. M. Lim, M. Skyllas-Kazacos, Electrochemical behaviour of titanium/iridium(IV) oxide: Tantalum pentoxide and graphite for application in vanadium redox flow battery, Journal of Power Sources, 238, 103-108, 2013. [57] C. Yang, H. Wang, S. Lu, C. Wu, Y. Liu, Q. Tan, D. Liang, Y. Xiang, Titanium nitride as an electrocatalyst for V(II)/V(III) redox couples in all-vanadium redox flow batteries, Electrochimica Acta, 182, 834-840, 2015. [58] L. Wei, T. S. Zhao, L. Zeng, Y. K. Zeng, H. R. Jiang, Highly catalytic and stabilized titanium nitride nanowire array-decorated graphite felt electrodes for all vanadium redox flow batteries, Journal of Power Sources, 341, 318-326, 2017. [59] Z. He, M. Li, Y. Li, J. Zhu, Y. Jiang, W. Meng, H. Zhou, L.Wang, L. Dai, Flexible electrospun carbon nanofiber embedded with TiO2 as excellent negative electrode for vanadium redox flow battery, Electrochimica Acta, 281, 601-610, 2018. [60] J. Vázquez-Galván, C. Flox, J. R. Jervis, A. B. Jorge, P. R. Shearing, J. R. Morante, High-power nitrided TiO2 carbon felt as the negative electrode for all-vanadium redox flow batteries, Carbon, 148, 91-104, 2019. [61] Z. González, A. Sánchez, C. Blanco, M. Granda, R. Menéndez, R. Santamaría, Enhanced performance of a Bi-modified graphite felt as the positive electrode of a vanadium redox flow battery, Electrochemistry Communications, 13, 1379-1382, 2011. [62] G. Wei, X. Fan, J. Liu, C. Yan, Electrospun carbon nanofibers/electrocatalyst hybrids as asymmetric electrodes for vanadium redox flow battery, Journal of Power Sources, 281, 1-6, 2015. [63] T. Liu, X. Li, H. Nie, C. Xu, H. Zhang, Investigation on the effect of catalyst on the electrochemical performance of carbon felt and graphite felt for vanadium flow batteries, Journal of Power Sources, 286, 73-81, 2015. [64] Z. He, L. Dai, S. Liu, L. Wang, C. Li, Mn3O4 anchored on carbon nanotubes as an electrode reaction catalyst of V(IV)/V(V) couple for vanadium redox flow batteries, Electrochimica Acta, 176, 1434-1440, 2015. [65] A. Ejigu, M. Edwards, D. A. Walsh, Synergistic Catalyst−Support Interactions in a Graphene−Mn3O4 Electrocatalyst for Vanadium Redox Flow Batteries, ACS Catalysis, 5, 7122-7130, 2015. [66] A. Di Blasi, C. Busaccaa, O. Di Blasia, N. Briguglioa, G. Squadritoa, V. Antonuccia, Synthesis of flexible electrodes based on electrospun carbon nanofibers with Mn3O4 nanoparticles for vanadium redox flow battery application, Applied Energy, 190, 165-171, 2017. [67] H. Zhou, Y. Shen, J. Xi, X. Qiu, L. Chen, ZrO2‑Nanoparticle-Modified Graphite Felt: Bifunctional Effects on Vanadium Flow Batteries, Applied Materials Interfaces, 8, 15369-15378, 2016. [68] Z. He. M. Li, Y. Li, C. Li, Z. Yi, J. Zhu, L. Dai, W. Meng, H. Zhou, L. Wang, ZrO2 nanoparticle embedded carbon nanofibers by electrospinning technique as advanced negative electrode materials for vanadium redox flow battery, Electrochimica Acta, 309, 166-176, 2019. [69] Z. Ge, L. Wang, Z. He, Y. Li, Y. Jiang, W. Meng, L. Dei, Electrocatalytic activity of cobalt phosphide-modified graphite felt toward VO2+/VO2+ redox reaction, Applied Surface Science, 436, 1030-1037, 2018. [70] Y. Xiang, W. A. Daoud, Investigation of an advanced catalytic effect of cobalt oxide modification on graphite felt as the positive electrode of the vanadium redox flow battery, Journal of Power Sources, 416, 175-183, 2019. [71] B. Li, M. Gu, Z. Nie, X. Wei, C. Wang, V. Sprenkle, W. Wang, Nanorod Niobium Oxide as Powerful Catalysts for an All Vanadium Redox Flow Battery, Nano Letter, 14, 158-165, 2014. [72] X. Wu, H. Xu, L. Lu, H. Zhao, J. Fu, Y. Shen, P. Xu, Y. Dong, PbO2-modified graphite felt as the positive electrode for an all-vanadium redox flow battery, Journal of Power Sources, 250, 274-278, 2014. [73] M. Jing, X. Zhang, X. Fan, L. Zhao, J. Liu, C. Yan, CeO2 embedded electrospun carbon nanofibers as the advanced electrode with high effective surface area for vanadium flow battery, Electrochimica Acta, 215, 57-65, 2016. [74] C. Busacca, O. Di Blasi, N. Briguglio, M. Ferraro, V. Antonucci, A. Di Blasi, Electrochemical performance investigation of electrospun urchin-like V2O3-CNF composite nanostructure for vanadium redox flow battery, Electrochimica Acta, 230, 174-180, 2017. [75] Y. Xiang, W. A. Daoud, Cr2O3-modified graphite felt as a novel positive electrode for vanadium redox flow battery, Electrochimica Acta, 290, 176-184, 2018. [76] N, Yin, J. J. Park, O. O. Park, K. B. Lee, J. H. Yang, Electrocatalytic effect of NiO nanoparticles evenly distributed on a graphite felt electrode for vanadium redox flow batteries, Electrochimica Acta, 278, 226-235, 2018. [77] Y. S. Hu, X. Liu, J. O. Muller, R. Schlogl, J. Maier, D. S. Su, Synthesis and Electrode Performance of Nanostructured V2O5 by Using a Carbon Tube-in-Tube as a Nanoreactor and an Efficient Mixed- Conducting Network, Angewandte Chemie International Edition , 48, 210-214, 2009. [78] A. Pan, J.G. Zhang, Z. Nie, G. Z. Cao, B.W. Arey, G. S. Li, S. Q. Liang, J. Liu, Facile synthesized nanorod structured vanadium pentoxide for high-rate lithium batteries, Journal of Materials. Chemistry, 20, 9193-9199, 2010. [79] J. Shin, H. Jung, Y. Kim, J. Kim, Carbon-coated V2O5 nanoparticles with enhanced electrochemical performance as a cathode material for lithium ion batteries, Journal of Alloys and Compounds, 589, 322-329, 2014. [80] M. Beaula Ruby Kamalam, B.K. Balachander, K. Sethuraman, Solvothermal Synthesis and Characterization of Reduced Graphene oxide/ Vanadium Pentoxide Hybrid nanostructures, Materials Today: Proceedings, 3, 2132-2140, 2016. [81] B. Yan, X. Li, Z. Bai, Y. Zhao, L. Dong, X. Song, D. Li, C. Langford, X. Sun, Crumpled reduced graphene oxide conformally encapsulated hollow V2O5 nano/microsphere achieving brilliant lithium storage performance, Nano Energy, 24, 32-44, 2016. [82] B. G. Liu, J. H. Peng, R. D. Wan, L. B. Zhang, S. H. Guo, S. M. Zhang, Optimization of preparing V2O5 by calcination from ammonium metavanadate using response surface methodology, Transactions of Nanoferrous Metals Society of China, 21, 673-678, 2011.
|