|
[1] Dalal, Navneet, and Bill Triggs. "Histograms of oriented gradients for human detection." 2005 IEEE computer society conference on computer vision and pattern recognition (CVPR'05). Vol. 1. IEEE, 2005. [2] Hearst, M. A., Dumais, S. T., Osuna, E., Platt, J., & Scholkopf, B. (1998). Support vector machines. IEEE Intelligent Systems and their applications, 13(4), 18-28. [3] Girshick, Ross., Donahue, Jeff., Darrell, Trevor., & Malik, Jitendra. (2014). Rich feature hierarchies for accurate object detection and semantic segmentation. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 580-587).. [4] Ren, Shaoqing., He, Kaiming., Girshick, Ross., & Sun, Jian. (2016). Faster r-cnn: Towards real-time object detection with region proposal networks. IEEE transactions on pattern analysis and machine intelligence, 39(6), 1137-1149. [5] Redmon, Joseph., Divvala, Santosh., Girshick, Ross., & Farhadi, Ali. (2016). You only look once: Unified, real-time object detection. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 779-788). [6] Lucey, S., & Chen, Tsuhan. (2004, June). A GMM parts based face representation for improved verification through relevance adaptation. In Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004. (Vol. 2, pp. II-II). IEEE. [7] Xu, Chunyan., Wang, Tianjiang., Gao, Junbin., Cao, Shougang., Tao, Wenbing., & Liu, Fang. (2013). An ordered-patch-based image classification approach on the image Grassmannian manifold. IEEE transactions on neural networks and learning systems, 25(4), 728-737. [8] Yan, Shuicheng., Zhou, Xi., Liu, MingLiu., Hasegawa-Johnson, Mark., & Huang, Thomas. S. (2008, June). Regression from patch-kernel. In 2008 IEEE Conference on Computer Vision and Pattern Recognition (pp. 1-8). IEEE. [9] Anavi, Yaron., Kogan, Ilya., Gelbart, Elad., Geva, Ofer., & Greenspan, Hayit. (2015, August). A comparative study for chest radiograph image retrieval using binary texture and deep learning classification. In 2015 37th annual international conference of the IEEE engineering in medicine and biology society (EMBC) (pp. 2940-2943). IEEE. [10] Wang, Guotai., Li, Wenqi., Zuluaga, Maria. A., Pratt, Rosalind., Patel, Premal. A., Aertsen, Michael., Doel, Tom., David, Anna. L., Deprest, Jan., Ourselin, Sébastien. & Vercauteren, Tom. (2018). Interactive medical image segmentation using deep learning with image-specific fine tuning. IEEE transactions on medical imaging, 37(7), 1562-1573. [11] Hinton, Geoffrey., Vinyals, Oriol., & Dean, Jeff. (2015). Distilling the knowledge in a neural network. arXiv preprint arXiv:1503.02531. [12] Furlanello, Tommaso., Lipton, Zachary. C., Tschannen, Michael., Itti, Laurent., & Anandkumar, Anima. (2018). Born again neural networks. arXiv preprint arXiv:1805.04770. [13] Nie, Xuecheng., Li, Yuncheng., Luo, Linjie., Zhang, Ning., & Feng, Jiashi. (2019). Dynamic kernel distillation for efficient pose estimation in videos. In Proceedings of the IEEE International Conference on Computer Vision (pp. 6942-6950). [14] Zhang, Linfeng., Song, Jiebo., Gao, Anni., Chen, Jingwei., Bao, Chenglong., & Ma, Kaisheng. (2019). Be your own teacher: Improve the performance of convolutional neural networks via self distillation. In Proceedings of the IEEE International Conference on Computer Vision (pp. 3713-3722). [15] Hao, Yu, Yanwei Fu, and Yu-Gang Jiang. "Take Goods from Shelves: A Dataset for Class-Incremental Object Detection." Proceedings of the 2019 on International Conference on Multimedia Retrieval. 2019 [16] Ji, Zhong., Kong, Qiankun., Wang, Haoran., & Pang, Yanwei. (2019, October). Small and Dense Commodity Object Detection with Multi-Scale Receptive Field Attention. In Proceedings of the 27th ACM International Conference on Multimedia (pp. 1349-1357). [17] Zhao, Linyu., Yao, Jian., Du, Hongyu., Zhao, Jinjie., & Zhang, Ruijie. (2019, September). A Unified Object Detection Framework for Intelligent Retail Container Commodities. In 2019 IEEE International Conference on Image Processing (ICIP) (pp. 3891-3895). IEEE. [18] Unay, Devrim., & Gosselin, Bernard. (2005, September). Thresholding-based segmentation and apple grading by machine vision. In 2005 13th European Signal Processing Conference (pp. 1-4). IEEE. [19] Haidar, Abdulhamid., Dong, Haiwei., & Mavridis, Nikolaos. (2012, October). Image-based date fruit classification. In 2012 IV International Congress on Ultra Modern Telecommunications and Control Systems (pp. 357-363). IEEE. [20] Hossain, M. Shamim., Al-Hammadi, Muneer., & Muhammad, Ghulam. (2018). Automatic fruit classification using deep learning for industrial applications. IEEE transactions on industrial informatics, 15(2), 1027-1034. [21] Qin, Xuebin., Zhang, Zichen., Huang, Chenyang., Dehghan, Masood., Zaiane, Osmar. R., & Jagersand, Martin. (2020). U2-Net: Going deeper with nested U-structure for salient object detection. Pattern Recognition, 106, 107404. [22] Irving, Benjamin. (2016). maskSLIC: regional superpixel generation with application to local pathology characterisation in medical images. arXiv preprint arXiv:1606.09518. [23] Achanta, Radhakrishna., Shaji, Appu., Smith, Kevin., Lucchi, Aurélien., Fua, Pascal., & Süsstrunk, Sabine. (2010). Slic superpixels (No. REP_WORK). [24] Yu, Jiahui., Lin, Zhe., Yang, Jimei., Shen, Xin., Lu, Xin., & Huang, Thomas. S. (2018). Generative image inpainting with contextual attention. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 5505-5514).ISO 690 [25] He, Kaiming., Zhang, Xiangyu., Ren, Shaoqing., & Sun, Jian. (2016). Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 770-778). [26] Selvaraju, R. Ramprasaath., Cogswell, Michael., Das, Abhishek., Vedantam, Ramakrishna., Parikh, Devi., & Batra, Dhruv. (2017). Grad-cam: Visual explanations from deep networks via gradient-based localization. In Proceedings of the IEEE international conference on computer vision (pp. 618-626) [27] Chen, Tianqi., & Guestrin, Carlos. (2016, August). Xgboost: A scalable tree boosting system. In Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining (pp. 785-794)
|