|
[1]IEDM 2017 + ISSCC 2018: Intel’s 10nm, Switching to Cobalt Interconnects, https://fuse.wikichip.org/news/525/iedm-2017-isscc-2018-intels-10nm-switching-to-cobalt-interconnects/. [2]D. James, “Update: TSMC’s 5nm CMOS Technology Platform,” Semiconductor Digest, Feb. 2, 2020. [3]D. Prasad, S. S. Teja Nibhanupudi, S. Das, O. Zografos, B. Chehab, S. Sarkar, et al., “Buried Power Rails and Back-side Power Grids: Arm ® CPU Power Delivery Network Design Beyond 5nm,” IEDM, 2019, pp. 19.1.1~19.1.4. [4]A. Yeoh, A. Madhavan, N. Kybert, S. Anand, J. Shin, M. Asoro et al., “Interconnect Stack Using Self-aligned Quad and Double Patterning for 10nm High Volume Manufacturing,” IITC, 2018, pp. 144-147. [5]A. J. Pethe, T. Ghani, M. Bohr, C. Webb, H. Gomez, and A. Cappellani, “Gate Contact Structure over Active Gate and Method to Fabricate Same,” US Patent, US9461143B2, Oct. 4, 2016. [6]Y. Shusterman, M. Sachan, S. S. Roy, R. Freed, and S. Natarajan, “Self-aligned Contact and Contact Over Active Gate Structures,” US Patent Application 20200279773, Sept. 3, 2020. [7]K. Cheng, “Contact Over Active Gate Employing a Stacked Spacer,” US Patent Application 20200066866, Feb. 27, 2020. [8]S. C. Song, J. Xu, N. N. Mojumder, K. Kim, D. Yang, et al., “Holistic Technology Optimization and Key Enablers for 7nm Mobile SoC,” Symposium on VLSI Circuits, 2015, pp. 145-146. [9]K. Miyaguchi, F. M. Bufler, T. Chiarella, P. Matagne, N. Horiguchi, A. D. Keersgieter, et al., “Single and Double Diffusion Breaks in 14nm FinFET and Beyond,” International Conference on Solid State Devices and Materials, Sendai, 2017, pp219-220. [10]R. Xie, K. Y. Lim, M. G. Sung, and R. R.H. Kim, “Single and Double Diffusion Breaks on Integrated Circuit Products Comprised of Finfet Devices,” US Patent, US20170141211A1, May 18, 2017. [11]H. Jagannathan, S. K. Kanakasabapathy, V. K. Paruchuri, and A. Reznicek, “Fin Cut Enabling Single Diffusion Breaks,” US Patent, US 9589845 B1, March 7, 2017. [12] A. Razavieh, et al., “FinFET with Contact Over Active-Gate for 5G Ultra-Wideband Applications,” VLSI Symposium, JFS2.5, 2020. [13]M. Richards, “What to Expect at 5-nm-and-Beyond and What that Means for EDA,” EE Times, March 14, 2018. [14]L. T. Clark, V. Vashishtha, L. Shifren, A. Gujja, S. Sinha, B. Cline, et al., “ASAP7-A 7-nm FinFET Predictive Process Design Kit,” Microelectronics Journal, 53(2016), pp. 105-110. [15]ASAP7 PDK, Design Rule Manual, PDK Release 1p5. [16] V. Vashishtha, M. Vangala, and L. T. Clark, “ASAP7 Predictive Design Kit Development and Cell Design Technology Co-optimization,” ICCAD, pp. 978-984, 2017. [17] Y. D. Chung and R. B. Lin, “Engineering a Standard Cell Library for an Industrial Router with ASAP7 PDK,” ISVLSI 2020, pp. 404-409 [18]C. W. Tai and R. B. Lin, “Morphed Standard Cell Layouts for Pin Length Reduction,” ISVLSI, 2019, pp.94-99. [19]http://www.cerc.utexas.edu/itc99-benchmarks/bench.html. [20]A. Yazdanbakhsh, D. Mahajan, H. Esmaeilzadeh, and P. Lotfi-Kamran, “AxBench: a Multiplatform Benchmark Suite for Approximate Computing,” IEEE Design & Test, vol. 34, no. 2, pp. 60-68, April 2017. [21]https://opencores.org/projects/ orsoc_graphics_accelerator. [22]RV32IM, Github: http://github.com/ultraembedded/riscv. [23]Avalon AES ECB-Core (128, 192, 256 Bit), https://opencores.org/projects/avs_aes.
|