跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.86) 您好!臺灣時間:2024/12/06 16:02
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:彭曹軒
研究生(外文):PENG, TSAO-HSUAN
論文名稱:針對7奈米製程改善6軌標準元件的引腳可接入性
論文名稱(外文):Improving Pin Accessibility of 6-track Standard Cells with 7nm Technology
指導教授:林榮彬林榮彬引用關係
指導教授(外文):LIN, RUNG-BIN
口試委員:曾王道蘇仕傑
口試委員(外文):TSENG, WANG-DAUHSU, SHIH-CHIEH
口試日期:2021-10-28
學位類別:碩士
校院名稱:元智大學
系所名稱:資訊工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2021
畢業學年度:110
語文別:中文
論文頁數:36
中文關鍵詞:雙排高度標準元件多排高度元件標準元件元件庫鰭式場效應電晶體7奈米
外文關鍵詞:double-row-heightmulti-row heightstandard celllibraryFinFETmust join7nm
相關次數:
  • 被引用被引用:0
  • 點閱點閱:234
  • 評分評分:
  • 下載下載:2
  • 收藏至我的研究室書目清單書目收藏:0
本論文研究如何使用基於 ASAP7 PDK 的 7nm FinFET 技術提高標准單元設計的引腳可訪問性。我們設計了五個具有不同引腳佈局的六軌標准單元庫。第一個庫是通過使用商業佈局和佈線工具對底層單元庫進行基準測試,重新設計發現有引腳訪問問題的單元的引腳佈局而獲得的。第二個庫是通過為具有一些難以訪問的引腳的大型單行單元形成雙行高度單元而獲得的。第三個庫是通過採用 must-join 技術獲得的,該技術允許芯片級路由器完成雙行高度單元中內部網絡的一些不完整佈線。第四個庫是通過在具有引腳訪問困難的單元中的某處插入一些虛擬策略門獲得的。第五個庫是通過簡單地從單元庫中刪除具有引腳訪問困難的單元來獲得的。我們的研究發現前四個單元庫在解決引腳訪問問題上有自己的優勢,而第五個單元庫不是一個可行的解決方案。
This thesis studies how to improve pin accessibility of standard cell designs with a 7nm FinFET technology based on ASAP7 PDK. We design five six-track standard cell libraries with varying pin layouts. The first library is obtained by re-designing pin layouts of the cells found to have pin access problems through benchmarking the underlying cell library using a commercial placement and routing tool. The second library is obtained by forming double-row height cells for the large single-row cells which have some difficult-access pins. The third library is obtained by employing must-join technique that allows a chip-level router to complete some incomplete routing of internal nets in double-row height cells. The fourth library is obtained by inserting some dummy ploy gates somewhere in the cells with pin-access difficulty. The fifth library is obtained by simply removing the cells with pin access difficulty from the cell library. Our study finds out that the first four cell libraries have their own edges on addressing pin access problem while the fifth cell library is not a viable solution.
摘 要 iii
ABSTRACT iv
誌 謝 5
Content 6
List of Tables 7
List of Figures 7
Chapter 1. Introduction 8
1.1 Background 8
1.2 Scope of the Work and Contribution 9
1.3 Thesis Organization 10
Chapter 2. ASAP7 PDK and ASAP7L 10
2.1 ASAP7 PDK and ASAP7L 10
Chapter 3. Method and design 14
3.1 XPD6L_M 14
3.2 XPD6L_DR 15
3.3 XPD6L_DRM 19
3.4 XPD6L+ 22
3.5 XPD6L_Ex 22
Chapter 4. Experimental Results 23
4.1 Benchmark Circuits and Design Flow 23
4.2 Experimental Setup 24
4.2.1 Without Violations, test the core Utilization limits of each circuit 25
4.2.2 Power Stripe Planning 25
4.2.3 Two Ways of Pin Landing 26
4.3 Experiment results for each circuit 27
4.3.1 B19電路 27
4.4.1 Riscv電路 29
4.5.1 Neural Network電路 30
4.6.1 Aes電路 31
4.7.1 Gpu電路 32
Chapter 5. Conclusion and Future Works 32
References 33


[1]IEDM 2017 + ISSCC 2018: Intel’s 10nm, Switching to Cobalt Interconnects, https://fuse.wikichip.org/news/525/iedm-2017-isscc-2018-intels-10nm-switching-to-cobalt-interconnects/.
[2]D. James, “Update: TSMC’s 5nm CMOS Technology Platform,” Semiconductor Digest, Feb. 2, 2020.
[3]D. Prasad, S. S. Teja Nibhanupudi, S. Das, O. Zografos, B. Chehab, S. Sarkar, et al., “Buried Power Rails and Back-side Power Grids: Arm ® CPU Power Delivery Network Design Beyond 5nm,” IEDM, 2019, pp. 19.1.1~19.1.4.
[4]A. Yeoh, A. Madhavan, N. Kybert, S. Anand, J. Shin, M. Asoro et al., “Interconnect Stack Using Self-aligned Quad and Double Patterning for 10nm High Volume Manufacturing,” IITC, 2018, pp. 144-147.
[5]A. J. Pethe, T. Ghani, M. Bohr, C. Webb, H. Gomez, and A. Cappellani, “Gate Contact Structure over Active Gate and Method to Fabricate Same,” US Patent, US9461143B2, Oct. 4, 2016.
[6]Y. Shusterman, M. Sachan, S. S. Roy, R. Freed, and S. Natarajan, “Self-aligned Contact and Contact Over Active Gate Structures,” US Patent Application 20200279773, Sept. 3, 2020.
[7]K. Cheng, “Contact Over Active Gate Employing a Stacked Spacer,” US Patent Application 20200066866, Feb. 27, 2020.
[8]S. C. Song, J. Xu, N. N. Mojumder, K. Kim, D. Yang, et al., “Holistic Technology Optimization and Key Enablers for 7nm Mobile SoC,” Symposium on VLSI Circuits, 2015, pp. 145-146.
[9]K. Miyaguchi, F. M. Bufler, T. Chiarella, P. Matagne, N. Horiguchi, A. D. Keersgieter, et al., “Single and Double Diffusion Breaks in 14nm FinFET and Beyond,” International Conference on Solid State Devices and Materials, Sendai, 2017, pp219-220.
[10]R. Xie, K. Y. Lim, M. G. Sung, and R. R.H. Kim, “Single and Double Diffusion Breaks on Integrated Circuit Products Comprised of Finfet Devices,” US Patent, US20170141211A1, May 18, 2017.
[11]H. Jagannathan, S. K. Kanakasabapathy, V. K. Paruchuri, and A. Reznicek, “Fin Cut Enabling Single Diffusion Breaks,” US Patent, US 9589845 B1, March 7, 2017.
[12] A. Razavieh, et al., “FinFET with Contact Over Active-Gate for 5G Ultra-Wideband Applications,” VLSI Symposium, JFS2.5, 2020.
[13]M. Richards, “What to Expect at 5-nm-and-Beyond and What that Means for EDA,” EE Times, March 14, 2018.
[14]L. T. Clark, V. Vashishtha, L. Shifren, A. Gujja, S. Sinha, B. Cline, et al., “ASAP7-A 7-nm FinFET Predictive Process Design Kit,” Microelectronics Journal, 53(2016), pp. 105-110.
[15]ASAP7 PDK, Design Rule Manual, PDK Release 1p5.
[16] V. Vashishtha, M. Vangala, and L. T. Clark, “ASAP7 Predictive Design Kit Development and Cell Design Technology Co-optimization,” ICCAD, pp. 978-984, 2017.
[17] Y. D. Chung and R. B. Lin, “Engineering a Standard Cell Library for an Industrial Router with ASAP7 PDK,” ISVLSI 2020, pp. 404-409
[18]C. W. Tai and R. B. Lin, “Morphed Standard Cell Layouts for Pin Length Reduction,” ISVLSI, 2019, pp.94-99.
[19]http://www.cerc.utexas.edu/itc99-benchmarks/bench.html.
[20]A. Yazdanbakhsh, D. Mahajan, H. Esmaeilzadeh, and P. Lotfi-Kamran, “AxBench: a Multiplatform Benchmark Suite for Approximate Computing,” IEEE Design & Test, vol. 34, no. 2, pp. 60-68, April 2017.
[21]https://opencores.org/projects/ orsoc_graphics_accelerator.
[22]RV32IM, Github: http://github.com/ultraembedded/riscv.
[23]Avalon AES ECB-Core (128, 192, 256 Bit), https://opencores.org/projects/avs_aes.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top