跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.170) 您好!臺灣時間:2024/12/07 19:46
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張尚哲
研究生(外文):CHANG,SHANG-CHE
論文名稱:陣列天線遠近場聚焦多波束輻射之龍伯透鏡波束成型電路應用
論文名稱(外文):Applications of 2-D Luneburg Lens Beamformer for Antenna Arrays to Radiate Near- and Far-field Focused Multi-Beams
指導教授:陳念偉周錫增
指導教授(外文):CHEN,NAN-WEICHOU,HSI-TSENG
口試委員:陳念偉周錫增段世中黃能添蕭才文
口試委員(外文):CHEN,NAN-WEICHOU,HSI-TSENGTUAN,SHIH-CHUNGHUANG,NENG-TIENHSIAO,TSAI-WEN
口試日期:2020-12-11
學位類別:博士
校院名稱:元智大學
系所名稱:電機工程學系乙組
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2021
畢業學年度:109
語文別:中文
論文頁數:101
中文關鍵詞:龍伯透鏡波束成型電路陣列天線圓柱陣列天線多波束輻射近場聚焦輻射
外文關鍵詞:luneburg lensbeamforming networkantenna arraycircular antenna arraymultibeam radiationnear-field focus radiation
相關次數:
  • 被引用被引用:2
  • 點閱點閱:233
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文提出了兩種架構的設計流程與實現,第一種架構為二維龍伯透鏡波束成型電路之韋瓦第圓柱陣列天線;第二種架構為二維龍伯透鏡波束成型電路之近場聚焦陣列天線。分別藉由精準的設計陣列天線、功率分配器、近場聚焦功率分配器、龍伯透鏡波束成型電路與龍伯透鏡近場聚焦波束成型電路來完成上述兩種架構。第一種架構可在涵蓋角度內進行波束掃描;第二種架構則於特定距離產生近場聚焦並可水平切換控制。兩種架構均成功於設計理論基礎下完成電磁模擬與實測驗證。在模擬部分,使用Ansys HFSS電磁模擬軟體去計算天線的S參數與輻射場型,實測以向量網路分析儀量測S參數,並在超寬頻無反射實驗室進行幅射場型驗證。
This paper presents the design process and realize two architectures. The first architecture is multi-beam radiations from circular periodic array of vivaldi antennas excited by an integrated 2-D luneburg lens beamforming network, and the second architecture is 2-D luneburg lens beamforming network for planar phased array of antennas to radiate near-field focused multi-beams. In the first architecture, it can scan within the coverage angle, the second architecture can focus at a specific distance in near-field and horizontal switching the focus point. To accomplish this design, will need passive components including the antenna array, power divider, near-field focused power divider, luneburg lens beamforming network and near-field focused luneburg lens beamforming network. We use the Ansys HFSS electromagnetic simulation software to calculate the S-parameter and radiation pattern. The S-parameter is measured by the vector network analyzer, and verifiy the radiation pattern by the ultra-wideband non-reflective laboratory.
書名頁 i
論文口試委員審定書 ii
中文摘要 iii
英文摘要 iv
誌謝 v
目錄 vi
表目錄 viii
圖目錄 ix
第一章 緒論 1
1.1 研究動機 1
1.2 文獻探討 1
1.3 章節介紹 3
第二章 陣列天線設計與分析 4
2.1 概述 4
2.2 陣列天線基本原理 5
2.2.1 二維陣列天線 8
2.2.2 聚焦陣列天線 9
2.3 功率分配器基本原理 11
2.3.1 威爾京生功率分配器 12
2.3.2 T型功率分配器 13
2.4 一分八T型功率分配器設計與分析 15
2.5 陣列天線設計與分析 23
2.5.1 概述 23
2.5.2 TSA基本天線單元設計介紹 23
2.5.3 韋瓦第陣列天線設計 25
2.5.4 近場聚焦陣列天線設計 36
第三章 龍伯透鏡波束成型電路設計與分析 42
3.1 龍伯透鏡概述 42
3.2 龍伯透鏡波束成型電路 49
3.2.1 龍伯透鏡波束成型電路架構 49
3.2.2 龍伯透鏡波束成型電路理論分析 49
3.2.3 龍伯透鏡波束成型電路電磁模擬與分析 52
3.3 龍伯透鏡近場聚焦波束成型電路 63
3.3.1 龍伯透鏡近場聚焦波束成型電路架構 63
3.3.2 龍伯透鏡近場聚焦波束成型電路理論 63
3.3.3 龍伯透鏡近場聚焦波束成型電路電磁模擬與分析 70
第四章 陣列天線與龍伯透鏡波束成型電路整合及量測 80
4.1 龍伯透鏡波束成型電路之圓柱陣列天線 81
4.2 龍伯透鏡波束成型電路之近場聚焦陣列天線 88
第五章 結論 95
參考文獻 97

[1]W. Hong et al., “Multibeam antenna technologies for 5G wireless communications,” IEEE Trans. Antennas Propag., vol. 65, no. 12, pp. 6231–6249, Dec. 2017.
[2]Jacomb-Hood and E. Lier, “Multibeam active phased arrays for communications satellites,” IEEE Microw. Mag., vol. 1, no. 4, pp. 40–47, Apr. 2000.
[3]Y. M. Cheng, P. Chen, W. Hong, T. Djerafi, and K. Wu, “Substrateintegrated-waveguide beamforming networks and multibeam antenna arrays for low-cost satellite and mobile systems,” IEEE Antennas Propag. Mag., vol. 53, no. 6, pp. 18–30, Dec. 2011.
[4]K. Tekkouk, J. Hirokawa, R. Sauleau, M. Ettorre, M. Sano, and M. Ando, “Dual-layer ridged waveguide slot array fed by a Butler matrix with sidelobe control in the 60-GHz band,” IEEE Trans. Antennas Propag., vol. 63, no. 9, pp. 3857–3867, Sep. 2015.
[5]W. Lee, J. Kim, and Y. J. Yoon, “Compact two-layer Rotman lens-fed microstrip antenna array at 24 GHz,” IEEE Trans. Antennas Propag., vol. 59, no. 2, pp. 460–466, Feb. 2011.
[6]N. Jastram and D. S. Filipovic, “Design of a wide band millimeter wave micromachined Rotman lens,” IEEE Trans. Antennas Propag., vol. 63, no. 6, pp. 2790–2796, Jun. 2015.
[7]Q.-L. Yang, Y.-L. Ban, K. Kang, C.-Y.-D. Sim, and G. Wu, “SIW multibeam array for 5G mobile devices,” IEEE Access, vol. 4, pp. 2788–2796, 2016.
[8]X. Ding and B.-Z. Wang, “Research on a millimeter-wave phased array with wide-angle scanning performance,” IEEE Trans. Antennas Propag., vol. 61, no. 10, pp. 5319–5324, Oct. 2013.
[9]T.Q.Ho, C. A. Hewett, L. N. Hunt, and T. G. Ready, “Lattice spacing effect on scan loss for bat-wing phased array antennas,” in Proc. IEEE/ACES Int. Conf.WirelessCommun. Appl.Comput. Electromagn., 2005, pp. 245–248.
[10]D. M. Pozar and D. H. Schaubert, “Scan blindness in infinite phased arrays of printed dipoles,” IEEE Trans. Antennas Propag., vol. AP-32, no. 6, pp. 602–620, Jun. 1984.
[11]Y. Fu and N. Yuan, “Elimination of scan blindness in phased array of microstrip patches using electromagnetic bandgap materials,” IEEE Antennas Wireless Propag. Lett., vol. 3, pp. 64–65, 2004.
[12]J. Sanford, “A Luneburg lens update,” IEEE Antennas Propag. Mag., vol. 37, no. 1, pp. 76–79, Feb. 1995.
[13]M. Casaletti, F. Caminita, and S. Maci, “A Luneburg lens designed by using a variable artificial surface,” in Proc. IEEE Antennas Propag. Soc. Int. Symp., Jul. 2010, pp. 1–4.
[14]B. Fuchs, L. L. Coq, O. Lafond, S. Rondineau, and M. Himdi, “Design optimization of multishell Luneburg lenses,” IEEE Trans. Antennas Propag., vol. 55, no. 2, pp. 283–289, Feb. 2007.
[15]H. J. Fan, X. Liang, J. Geng, R. H. Jin, and X. Zhou, “Switched multibeam circular array with a reconfigurable network,” IEEE Trans. Antennas Propag., vol. 64, no. 7, pp. 3228–3233, Jul. 2016.
[16]V. Basavarajappa, A. Pellon, I. Montesinos-Ortego, B. B. Exposito, L. Cabria, and J. Basterrechea, “Millimeter-wave multi-beam waveguide lens antenna,” IEEE Trans. Antennas Propag., vol. 67, no. 8, pp. 5646–5651, Aug. 2019.
[17]Manoochehri, A. Darvazehban, M. A. Salari, A. Emadeddin, and D. Erricolo, “A parallel plate ultrawideband multibeam microwave lens antenna,” IEEE Trans. Antennas Propag., vol. 66, no. 9, pp. 4878–4883, Sep. 2018.
[18]C. Hua, X. Wu, N. Yang, and W. Wu, “Air-filled parallel-plate cylindrical modified Luneberg lens antenna for multiple-beam scanning at millimeter-wave frequencies,” IEEE Trans. Microw. Theory Techn., vol. 61, no. 1, pp. 436–443, Jan. 2013.
[19]Aldo Petosa, Dielectric resonator antenna handbook, Norwood, MA: Artech House 2007
[20]P. Nepa and A. Buffi, “Near-field-focused microwave antennas: Nearfield shaping and implementation.,” IEEE Antennas Propag. Mag.,vol. 59, no. 3, pp. 42–53, Jun. 2017.
[21]Buffi, A. A. Serra, P. Nepa, H.-T. Chou, and G. Manara,“A focused planar microstrip array for 2.4 GHz RFID readers,” IEEE Trans. Antennas Propag., vol. 58, no. 5, pp. 1536–1544, May 2010.
[22]H.-T. Chou, N.-N. Wang, H.-H. Chou, and J.-H. Qiu, “An effective synthesis of planar array antennas for producing near-field contoured patterns,” IEEE Trans. Antennas Propag., vol. 59, no. 9, pp. 3224–3233, Sep. 2011.
[23]H.-T. Chou, M.-Y. Lee, and C.-T. Yu, “Subsystem of phased array antennas with adaptive beam steering in the near-field RFID applications,” IEEE Antennas Wireless Propag. Lett., vol. 14, pp. 1746–1749, 2015.
[24]H.-T. Chou and C.-T. Yu, “Design of phased array antennas with beam switching capability in the near-field focus applications,” IET Microw., Antennas Propag., vol. 9, no. 11, pp. 1120–1127, Aug. 2015.
[25]S. H. Zainud-Deen, H. A. Malhat, and K. H. Awadalla, “Near-field focusing dielectric resonator antenna array for fixed RFID readers,” Int. J. Radio Freq. Identific. Wireless Sensor Netw., vol. 1, no. 2, pp. 1–12, 2011.
[26]M. Bogosanovic and A. G. Williamson, “Microstrip antenna array with a beam focused in the near-field zone for application in noncontact microwave industrial inspection,” IEEE Trans. Instrum. Meas., vol. 56, no. 6, pp. 2186–2195, Dec. 2007.
[27]D. R. Reid and G. S. Smith, “A comparison of the focusing properties of a Fresnel zone plate with a doubly-hyperbolic lens for application in a free-space, focused-beam measurement system,” IEEE Trans. Antennas Propag., vol. 57, no. 2, pp. 499–507, Feb. 2009.
[28]M. B. Perotoni and C. Junqueira, “X-band printed Fresnel zone plate antenna: Design, simulation, and field measurements,” Microw. Opt. Technol. Lett., vol. 57, no. 11, pp. 2604–2609, Nov. 2015.
[29]K. D. Stephan, J. B. Mead, D. M. Pozar, L. Wang, and J. A. Pearce“A near field focused microstrip array for a radiometric temperature sensor,” IEEE Trans. Antennas Propag., vol. 55, no. 4, pp. 1199–1203, Apr. 2007.
[30]Razavi, R. Maaskant, J. Yang, and M. Viberg, “Optimal aperture distribution for near-field detection of foreign objects in lossy media,”in Proc. IEEE-APS Topical Conf. Antennas Propag. Wireless Commun.(APWC), Palm Beach, Aruba, Aug. 2014, pp. 659–662.
[31]F. Tofigh, J. Nourinia, M. Azarmanesh, and K. M. Khazaei, “Near-field focused array microstrip planar antenna for medical applications,” IEEE Antennas Wireless Propag. Lett., vol. 13, pp. 951–954, 2014.
[32]Buffi, A. Serra, P. Nepa, G. Manara, and M. Luise, “Near field focused microstrip arrays for gate access control systems,” in Proc. IEEE Antennas Propag. Soc. Int. Symp., Jun. 2009, pp. 1–4.
[33]J. O. McSpadden, F. E. Little, M. B. Duke, and A. Ignatiev, “An inspace wireless energy transmission experiment,” in Proc. 31st Intersoc.Energy Convers. Eng., vol. 1, Aug. 1996, pp. 468–473.
[34]Y. Jiang, W. Geyi, and H. Sun, “A new focused antenna array with circular polarization,” Microw. Opt. Technol. Lett., vol. 57, no. 12, pp. 2936–2939, Dec. 2015.
[35]L. Shan and W. Geyi, “Optimal design of focused antenna arrays,” IEEE Trans. Antennas Propag., vol. 62, no. 11, pp. 5565–5571, Nov. 2014.
[36]X.-Y. Wang, G.-M. Yang, and W. Geyi, “A new design of focused antenna arrays,” Microw. Opt. Technol. Lett., vol. 56, no. 10, pp. 2464–2468, Oct. 2014.
[37]J. Fenn, “Evaluation of adaptive phased array antenna, far-field nulling performance in the near-field region,” IEEE Trans. Antennas Propag., vol. 38, no. 2, pp. 173–185, Feb. 1990.
[38]H.-T. Chou and Z.-C. Tsai, “Near-field focus radiation of multibeam phased array of antennas realized by using modified Rotman lens beamformer,” IEEE Trans. Antennas Propag., vol. 66, no. 12, pp. 6618–6628, Dec. 2018.
[39]Y. F. Wu, Y. J. Cheng, and Z. X. Huang, “Ka-band near-field-focused 2-D steering antenna array with a focused Rotman lens,” IEEE Trans. Antennas Propag., vol. 66, no. 10, pp. 5204–5213, Oct. 2018.
[40]P. S. Yedavalli, T. Riihonen, X. Wang, and J. M. Rabaey, “Far-field RF wireless power transfer with blind adaptive beamforming for Internet of Things devices,” IEEE Access, vol. 5, pp. 1743–1752, 2017.
[41]P. D. H. Re, S. K. Podilchak, S. Rotenberg, G. Goussetis, and J. Lee, “Circularly polarized retrodirective antenna array for wireless power transmission,” IEEE Trans. Antennas Propag., to be published. [Online]. Available:http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8897126&isnumber=4907023
[42]P.-F. Li, S.-W. Qu, S. Yang, Y. Liu, and Q. Xue, “Near-field focused array antenna with frequency-tunable focal distance,” IEEE Trans. Antennas Propag., vol. 66, no. 7, pp. 3401–3410, Jul. 2018.
[43]C. Hua, X. Wu, N. Yang, and W. Wu, “Air-filled parallel-plate cylindrical modified Luneberg lens antenna for multiple-beam scanning at millimeter-wave frequencies,” IEEE Trans. Microw. Theory Techn., vol. 61, no. 1, pp. 436–443, Jan. 2013.
[44]H.-T. Chou and Z.-D. Yan, “Parallel-plate Luneburg lens antenna for broadband multibeam radiation at millimeter-wave frequencies with design optimization,” IEEE Trans. Antennas Propag., vol. 66, no. 11, pp. 5794–5804, Nov. 2018.
[45]C. Mateo-Segura, A. Dyke, H. Dyke, S. Haq, and Y. Hao, “Flat Luneburg lens via transformation optics for directive antenna applications,” IEEE Trans. Antennas Propag., vol. 62, no. 4, pp. 1945–1953, Apr. 2014.
[46]W.L. Stutzman and G.A. Thiele, Antenna Theory and Design, 2nd ed. New York:Wiley, 1998
[47]Aldo Petosa, Dielectric resonator antenna handbook, Norwood, MA: Artech House 2007
[48]D. M. Pozar, Microwave Engineering, 2nd ed. New York: Wiley, 1998
[49]Gibson. P.J, “The Vivaldi aerial,” Proc. 9th European Microwave Conf., Brighton, UK, 1979, pp. 101-5.
[50]Yngvesson et al, “The tapered slot antenna – A new integrated element formillimeter-wave applications,” IEEE Transactions on Microwave Theory and Techniques, vol. 37, no. 2, February 1989, pp. 365-374.
[51]Amena Kauser Syeda, “Design of a Wideband Vivaldi Antenna Array and Performance Enhancement of Small Vivaldi Arrays Using
[52]H.-T. Chou, S.-C. Chang, and H.–J. Huang, “Multibeam Radiations From Circular Periodic Array of Vivaldi Antennas Excited by an Integrated 2-D Luneburg Lens Beamforming Network” IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS, VOL. 19, NO. 9, SEPTEMBER 2020
[53]H.-T. Chou, S.-C. Chang, and H.–J. Huang, “Two-dimensional Luneburg lens beamforming network for planar phased array of antennas to radiate near-field focused multi-beams,” IEEE Trans. Antennas Propag., to be published, doi: 10.1109/TAP.2020.2986860.
[54]SMA Jack 2 Hole Flange With Round Contact, SMA862H2-0000. Accessed: Dec. 2019. [Online]. Available: http://www.jyebao.com.tw/product/detail/id/8654.html

電子全文 電子全文(網際網路公開日期:20260114)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top