|
[1]W. Hong et al., “Multibeam antenna technologies for 5G wireless communications,” IEEE Trans. Antennas Propag., vol. 65, no. 12, pp. 6231–6249, Dec. 2017. [2]Jacomb-Hood and E. Lier, “Multibeam active phased arrays for communications satellites,” IEEE Microw. Mag., vol. 1, no. 4, pp. 40–47, Apr. 2000. [3]Y. M. Cheng, P. Chen, W. Hong, T. Djerafi, and K. Wu, “Substrateintegrated-waveguide beamforming networks and multibeam antenna arrays for low-cost satellite and mobile systems,” IEEE Antennas Propag. Mag., vol. 53, no. 6, pp. 18–30, Dec. 2011. [4]K. Tekkouk, J. Hirokawa, R. Sauleau, M. Ettorre, M. Sano, and M. Ando, “Dual-layer ridged waveguide slot array fed by a Butler matrix with sidelobe control in the 60-GHz band,” IEEE Trans. Antennas Propag., vol. 63, no. 9, pp. 3857–3867, Sep. 2015. [5]W. Lee, J. Kim, and Y. J. Yoon, “Compact two-layer Rotman lens-fed microstrip antenna array at 24 GHz,” IEEE Trans. Antennas Propag., vol. 59, no. 2, pp. 460–466, Feb. 2011. [6]N. Jastram and D. S. Filipovic, “Design of a wide band millimeter wave micromachined Rotman lens,” IEEE Trans. Antennas Propag., vol. 63, no. 6, pp. 2790–2796, Jun. 2015. [7]Q.-L. Yang, Y.-L. Ban, K. Kang, C.-Y.-D. Sim, and G. Wu, “SIW multibeam array for 5G mobile devices,” IEEE Access, vol. 4, pp. 2788–2796, 2016. [8]X. Ding and B.-Z. Wang, “Research on a millimeter-wave phased array with wide-angle scanning performance,” IEEE Trans. Antennas Propag., vol. 61, no. 10, pp. 5319–5324, Oct. 2013. [9]T.Q.Ho, C. A. Hewett, L. N. Hunt, and T. G. Ready, “Lattice spacing effect on scan loss for bat-wing phased array antennas,” in Proc. IEEE/ACES Int. Conf.WirelessCommun. Appl.Comput. Electromagn., 2005, pp. 245–248. [10]D. M. Pozar and D. H. Schaubert, “Scan blindness in infinite phased arrays of printed dipoles,” IEEE Trans. Antennas Propag., vol. AP-32, no. 6, pp. 602–620, Jun. 1984. [11]Y. Fu and N. Yuan, “Elimination of scan blindness in phased array of microstrip patches using electromagnetic bandgap materials,” IEEE Antennas Wireless Propag. Lett., vol. 3, pp. 64–65, 2004. [12]J. Sanford, “A Luneburg lens update,” IEEE Antennas Propag. Mag., vol. 37, no. 1, pp. 76–79, Feb. 1995. [13]M. Casaletti, F. Caminita, and S. Maci, “A Luneburg lens designed by using a variable artificial surface,” in Proc. IEEE Antennas Propag. Soc. Int. Symp., Jul. 2010, pp. 1–4. [14]B. Fuchs, L. L. Coq, O. Lafond, S. Rondineau, and M. Himdi, “Design optimization of multishell Luneburg lenses,” IEEE Trans. Antennas Propag., vol. 55, no. 2, pp. 283–289, Feb. 2007. [15]H. J. Fan, X. Liang, J. Geng, R. H. Jin, and X. Zhou, “Switched multibeam circular array with a reconfigurable network,” IEEE Trans. Antennas Propag., vol. 64, no. 7, pp. 3228–3233, Jul. 2016. [16]V. Basavarajappa, A. Pellon, I. Montesinos-Ortego, B. B. Exposito, L. Cabria, and J. Basterrechea, “Millimeter-wave multi-beam waveguide lens antenna,” IEEE Trans. Antennas Propag., vol. 67, no. 8, pp. 5646–5651, Aug. 2019. [17]Manoochehri, A. Darvazehban, M. A. Salari, A. Emadeddin, and D. Erricolo, “A parallel plate ultrawideband multibeam microwave lens antenna,” IEEE Trans. Antennas Propag., vol. 66, no. 9, pp. 4878–4883, Sep. 2018. [18]C. Hua, X. Wu, N. Yang, and W. Wu, “Air-filled parallel-plate cylindrical modified Luneberg lens antenna for multiple-beam scanning at millimeter-wave frequencies,” IEEE Trans. Microw. Theory Techn., vol. 61, no. 1, pp. 436–443, Jan. 2013. [19]Aldo Petosa, Dielectric resonator antenna handbook, Norwood, MA: Artech House 2007 [20]P. Nepa and A. Buffi, “Near-field-focused microwave antennas: Nearfield shaping and implementation.,” IEEE Antennas Propag. Mag.,vol. 59, no. 3, pp. 42–53, Jun. 2017. [21]Buffi, A. A. Serra, P. Nepa, H.-T. Chou, and G. Manara,“A focused planar microstrip array for 2.4 GHz RFID readers,” IEEE Trans. Antennas Propag., vol. 58, no. 5, pp. 1536–1544, May 2010. [22]H.-T. Chou, N.-N. Wang, H.-H. Chou, and J.-H. Qiu, “An effective synthesis of planar array antennas for producing near-field contoured patterns,” IEEE Trans. Antennas Propag., vol. 59, no. 9, pp. 3224–3233, Sep. 2011. [23]H.-T. Chou, M.-Y. Lee, and C.-T. Yu, “Subsystem of phased array antennas with adaptive beam steering in the near-field RFID applications,” IEEE Antennas Wireless Propag. Lett., vol. 14, pp. 1746–1749, 2015. [24]H.-T. Chou and C.-T. Yu, “Design of phased array antennas with beam switching capability in the near-field focus applications,” IET Microw., Antennas Propag., vol. 9, no. 11, pp. 1120–1127, Aug. 2015. [25]S. H. Zainud-Deen, H. A. Malhat, and K. H. Awadalla, “Near-field focusing dielectric resonator antenna array for fixed RFID readers,” Int. J. Radio Freq. Identific. Wireless Sensor Netw., vol. 1, no. 2, pp. 1–12, 2011. [26]M. Bogosanovic and A. G. Williamson, “Microstrip antenna array with a beam focused in the near-field zone for application in noncontact microwave industrial inspection,” IEEE Trans. Instrum. Meas., vol. 56, no. 6, pp. 2186–2195, Dec. 2007. [27]D. R. Reid and G. S. Smith, “A comparison of the focusing properties of a Fresnel zone plate with a doubly-hyperbolic lens for application in a free-space, focused-beam measurement system,” IEEE Trans. Antennas Propag., vol. 57, no. 2, pp. 499–507, Feb. 2009. [28]M. B. Perotoni and C. Junqueira, “X-band printed Fresnel zone plate antenna: Design, simulation, and field measurements,” Microw. Opt. Technol. Lett., vol. 57, no. 11, pp. 2604–2609, Nov. 2015. [29]K. D. Stephan, J. B. Mead, D. M. Pozar, L. Wang, and J. A. Pearce“A near field focused microstrip array for a radiometric temperature sensor,” IEEE Trans. Antennas Propag., vol. 55, no. 4, pp. 1199–1203, Apr. 2007. [30]Razavi, R. Maaskant, J. Yang, and M. Viberg, “Optimal aperture distribution for near-field detection of foreign objects in lossy media,”in Proc. IEEE-APS Topical Conf. Antennas Propag. Wireless Commun.(APWC), Palm Beach, Aruba, Aug. 2014, pp. 659–662. [31]F. Tofigh, J. Nourinia, M. Azarmanesh, and K. M. Khazaei, “Near-field focused array microstrip planar antenna for medical applications,” IEEE Antennas Wireless Propag. Lett., vol. 13, pp. 951–954, 2014. [32]Buffi, A. Serra, P. Nepa, G. Manara, and M. Luise, “Near field focused microstrip arrays for gate access control systems,” in Proc. IEEE Antennas Propag. Soc. Int. Symp., Jun. 2009, pp. 1–4. [33]J. O. McSpadden, F. E. Little, M. B. Duke, and A. Ignatiev, “An inspace wireless energy transmission experiment,” in Proc. 31st Intersoc.Energy Convers. Eng., vol. 1, Aug. 1996, pp. 468–473. [34]Y. Jiang, W. Geyi, and H. Sun, “A new focused antenna array with circular polarization,” Microw. Opt. Technol. Lett., vol. 57, no. 12, pp. 2936–2939, Dec. 2015. [35]L. Shan and W. Geyi, “Optimal design of focused antenna arrays,” IEEE Trans. Antennas Propag., vol. 62, no. 11, pp. 5565–5571, Nov. 2014. [36]X.-Y. Wang, G.-M. Yang, and W. Geyi, “A new design of focused antenna arrays,” Microw. Opt. Technol. Lett., vol. 56, no. 10, pp. 2464–2468, Oct. 2014. [37]J. Fenn, “Evaluation of adaptive phased array antenna, far-field nulling performance in the near-field region,” IEEE Trans. Antennas Propag., vol. 38, no. 2, pp. 173–185, Feb. 1990. [38]H.-T. Chou and Z.-C. Tsai, “Near-field focus radiation of multibeam phased array of antennas realized by using modified Rotman lens beamformer,” IEEE Trans. Antennas Propag., vol. 66, no. 12, pp. 6618–6628, Dec. 2018. [39]Y. F. Wu, Y. J. Cheng, and Z. X. Huang, “Ka-band near-field-focused 2-D steering antenna array with a focused Rotman lens,” IEEE Trans. Antennas Propag., vol. 66, no. 10, pp. 5204–5213, Oct. 2018. [40]P. S. Yedavalli, T. Riihonen, X. Wang, and J. M. Rabaey, “Far-field RF wireless power transfer with blind adaptive beamforming for Internet of Things devices,” IEEE Access, vol. 5, pp. 1743–1752, 2017. [41]P. D. H. Re, S. K. Podilchak, S. Rotenberg, G. Goussetis, and J. Lee, “Circularly polarized retrodirective antenna array for wireless power transmission,” IEEE Trans. Antennas Propag., to be published. [Online]. Available:http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8897126&isnumber=4907023 [42]P.-F. Li, S.-W. Qu, S. Yang, Y. Liu, and Q. Xue, “Near-field focused array antenna with frequency-tunable focal distance,” IEEE Trans. Antennas Propag., vol. 66, no. 7, pp. 3401–3410, Jul. 2018. [43]C. Hua, X. Wu, N. Yang, and W. Wu, “Air-filled parallel-plate cylindrical modified Luneberg lens antenna for multiple-beam scanning at millimeter-wave frequencies,” IEEE Trans. Microw. Theory Techn., vol. 61, no. 1, pp. 436–443, Jan. 2013. [44]H.-T. Chou and Z.-D. Yan, “Parallel-plate Luneburg lens antenna for broadband multibeam radiation at millimeter-wave frequencies with design optimization,” IEEE Trans. Antennas Propag., vol. 66, no. 11, pp. 5794–5804, Nov. 2018. [45]C. Mateo-Segura, A. Dyke, H. Dyke, S. Haq, and Y. Hao, “Flat Luneburg lens via transformation optics for directive antenna applications,” IEEE Trans. Antennas Propag., vol. 62, no. 4, pp. 1945–1953, Apr. 2014. [46]W.L. Stutzman and G.A. Thiele, Antenna Theory and Design, 2nd ed. New York:Wiley, 1998 [47]Aldo Petosa, Dielectric resonator antenna handbook, Norwood, MA: Artech House 2007 [48]D. M. Pozar, Microwave Engineering, 2nd ed. New York: Wiley, 1998 [49]Gibson. P.J, “The Vivaldi aerial,” Proc. 9th European Microwave Conf., Brighton, UK, 1979, pp. 101-5. [50]Yngvesson et al, “The tapered slot antenna – A new integrated element formillimeter-wave applications,” IEEE Transactions on Microwave Theory and Techniques, vol. 37, no. 2, February 1989, pp. 365-374. [51]Amena Kauser Syeda, “Design of a Wideband Vivaldi Antenna Array and Performance Enhancement of Small Vivaldi Arrays Using [52]H.-T. Chou, S.-C. Chang, and H.–J. Huang, “Multibeam Radiations From Circular Periodic Array of Vivaldi Antennas Excited by an Integrated 2-D Luneburg Lens Beamforming Network” IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS, VOL. 19, NO. 9, SEPTEMBER 2020 [53]H.-T. Chou, S.-C. Chang, and H.–J. Huang, “Two-dimensional Luneburg lens beamforming network for planar phased array of antennas to radiate near-field focused multi-beams,” IEEE Trans. Antennas Propag., to be published, doi: 10.1109/TAP.2020.2986860. [54]SMA Jack 2 Hole Flange With Round Contact, SMA862H2-0000. Accessed: Dec. 2019. [Online]. Available: http://www.jyebao.com.tw/product/detail/id/8654.html
|