跳到主要內容

臺灣博碩士論文加值系統

(44.201.92.114) 您好!臺灣時間:2023/04/01 15:15
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:劉泓毅
研究生(外文):LIU,HONG-YI
論文名稱:利用鰭片進行橫向式熱電元件散熱改善
論文名稱(外文):Improved Heat Dissipation of Transverse Thermoelectric Device by Using Fins
指導教授:林昭任林昭任引用關係
指導教授(外文):LIN,ZHAO-REN
口試委員:林棕斌陳建忠
口試日期:2022-08-15
學位類別:碩士
校院名稱:國立中正大學
系所名稱:化學工程研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2022
畢業學年度:110
語文別:中文
論文頁數:139
中文關鍵詞:電流輔助熱壓橫向式熱電元件散熱改善鰭片
外文關鍵詞:Current-assisted hot pressingTransverse thermoelectric deviceImproved Heat DissipationFin
相關次數:
  • 被引用被引用:0
  • 點閱點閱:98
  • 評分評分:
  • 下載下載:17
  • 收藏至我的研究室書目清單書目收藏:0
本研究是利用鎳片上電鍍鈷薄膜作為擴散阻擋層且在Bi0.5Sb1.5Te3粉漿上添加0.05 wt.% Ag與0.02 wt.% APP於側向熱壓系統來製作橫向式熱電元件,電流輔助熱壓條件為溫度340℃、壓力137 MPa下熱壓10分鐘後,再以300A/cm2電流密度輔助熱壓5分鐘熱壓。
然而橫向式熱電元件會比縱向式熱電元件有一個致命的缺點是橫向式熱電元件的元件內部冷熱端溫差較低造成熱電元件的電性較差,結果顯示,在自然對流下量測12組橫向式熱電元件,元件熱源溫度控制於38 ℃,元件暴露於室溫環境為28 ℃,元件冷熱端溫差為0.8℃且電壓為32μV,由於冷熱端的低溫差造成元件電性太小,所以必須對橫向式熱電元件進行散熱改善。且承接實驗室用散熱膏進行橫向式熱電元件熱改善,並在自然對流環境下量測,元件冷熱端溫差為1.0℃且電壓為37μV可發現利用熱輻射造成冷熱端溫差與輸出性能上升幅度不佳。
本研究也利用散熱鰭片讓橫向式熱電元件進行散熱改善,其原理為在熱電元件上增加與空氣的散熱面積,再藉由熱對流把元件上的熱帶走。由結果顯示,在鰭片為1公分,間距為2層熱電元件,並在自然對流環境下量測,元件冷熱端溫差為2.25℃且電壓為79μV可發現在自然對流環境下,利用熱對流造成冷熱端溫差與輸出性能上升幅度非常佳,可使元件的開路電壓上升2.47倍。

In this study, used plating Co film on Ni sheet is used as a diffusion barrier and Bi0.5Sb1.5Te3 slurry was added with 0.05 wt.% Ag and 0.02 wt.% APP to fabricate transverse thermoelectric device in the transverse hot pressure system, hot pressing at 137MPa and 340 ℃ for 10 min, and subsequently current-assisted hot pressing at current density of 300A/cm2 for 5 min.
However, the transverse thermoelectric device has a fatal disadvantage compared with the traditional longitudinal thermoelectric device. The lower temperature difference between the hot and cold ends of the transverse thermoelectric device results in poor electrical properties of the thermoelectric device. The temperature of the heat source part is controlled at 38 ℃, the device is exposed to room temperature at 28 ℃, the temperature difference between the cold and hot ends of the device is 0.8 ℃, and the voltage is 32 μV. Improved heat dissipation and undertake the thermal improvement of the transverse thermoelectric device with the thermal paste in the laboratory, and measure it in the natural convection environment. The temperature difference between the cold and hot ends of the device is 1.0℃ and the voltage is 37μV. It can be found that the temperature difference between the hot and cold ends caused by thermal radiation and the output performance increase is not good.
In this study, heat dissipation fins are used to improve the heat dissipation of the lateral thermoelectric device. The principle is to increase the heat dissipation area with the air on the thermoelectric device, and then use the heat convection to remove the heat on the device. The results show that when the fins are 1 cm and the spacing is two layers of thermoelectric device, and measured in a natural convection environment, the temperature difference between the hot and cold ends of the element is 2.25°C and the voltage is 79μV. It can be found that in a natural convection environment, the use of thermal convection causes, the temperature difference between the cold and hot ends and the output performance increase are very good, which can increase the open circuit voltage of the component by 2.47 times.

中文摘要 I
Abstract III
目錄 V
圖目錄 IX
表目錄 XIV
符號對照表 XV
第一章 緒論 1
第二章 文獻回顧 4
2.1 熱電元件分類 4
2.2 橫向熱電元件材料的選擇 6
2.3 橫向型熱電性質與熱電優值 10
2.4由熱電優值比較橫向行熱電元件與縱向行熱電元件 13
2.5 橫向型熱電元件效能 15
2.6 橫向式熱電元件電性量測系統 16
2.7本實驗熱電元件的運用系統與缺點 18
2.8熱傳的三大機制 20
2.8.1熱對流 20
2.8.2熱傳遞 21
2.8.3熱輻射 22
2.9介面熱組 23
2.10熱電元件冷端改善 25
2.10.1 元件冷端之熱輻射改善 26
2.10.2 元件冷端之熱對流改善 27
2.10.2.1 鰭片長度 28
2.10.2.2 鰭片間距 30
2.10.2.3 鰭片形狀 32
2.11 本實驗室製程於元件上製作鰭片的優勢 33
2.12 數值模擬 35
2.13 有限元素法 36
2.13.1 模擬溫度場的公式推導 38
2.14 研究與動機 42
第三章 實驗方法與步驟 43
3.1 實驗藥品 43
3.2 實驗設備 44
3.3 分析儀器 45
3.4實驗步驟 46
3.4.1粉末研磨 46
3.4.2粉末清洗 47
3.4.3鎳片電鍍鈷前處理 48
3.4.4漿料配置與試片塗布 50
3.4.5電流輔助熱壓橫向型熱電元件 51
3.4.6橫向型熱電鰭片的設計 54
3.4.7橫向型熱電元件量測 57
3.4.8橫向型熱電元件內電阻量測 58
第四章 結果與討論 63
4.1橫向熱電元件厚度與角度的最佳選擇 63
4.1.1 12組橫向熱電元件的探討 66
4.2 12組橫向熱電元件熱傳改善的探討 68
4.2.1 12組橫向熱電元件有鰭片與無鰭片熱傳模擬的探討 71
4.3 12組熱電元件上鰭片不同長度的探討 84
4.3.1 12組熱電元件上鰭片不同長度溫度模擬的探討 88
4.4 12組熱電元件上鰭片不同密度的探討 94
4.4.1 12組熱電元件上鰭片不同密度溫度模擬的探討 97
4.5 鰭片不同形狀對元件散熱影響 103
4.5.1 在固定鰭片長度與間距下不同鰭片形狀對元件散熱影響 103
4.5.2 在固定鰭片截面積下不同鰭片形狀對元件散熱影響 105
4.6 不同位子散熱薄膜塗佈對元件散熱影響 107
4.6.1 不同位子散熱薄膜塗佈對元件的溫度與熱流模擬 110
第五章 結論與未來展望 113
5.1 結論 113
5.2 未來展望 115
參考文獻 116


[1]N. T. Hung, A. RT Nugraha, and R. Saito, "Thermoelectric properties of carbon nanotubes," Energies, vol. 12, no. 23, p. 4561, 2019.
[2]B. Yang, H. Ahuja, and T. N. Tran, "Thermoelectric technology assessment: application to air conditioning and refrigeration," HVAc&R Research, vol. 14, no. 5, pp. 635-653, 2008.
[3]M. Grayson, Q. Shao, B. Cui, Y. Tang, X. Yan, and C. Zhou, "Introduction to (p× n)-Type Transverse Thermoelectrics," Bringing Thermoelectricity into Reality, pp. 81-100, 2018.
[4]V. Badin et al., "ANISOTROPIC SYNTHETIC THERMOELEMENTS AND THEIR MAXIMUM CAPABILITIES," Semiconductors, vol. 8, no. 4, pp. 478-481, 1974.
[5]F. Gascoin, J. Rasmussen, and G. J. Snyder, "High temperature thermoelectric properties of Mo3Sb7− xTex for x= 1.6 and 1.5," Journal of alloys and compounds, vol. 427, no. 1-2, pp. 324-329, 2007.
[6]H. Goldsmid, "Application of the transverse thermoelectric effects," Journal of electronic materials, vol. 40, no. 5, pp. 1254-1259, 2011.
[7]A. Kyarad and H. Lengfellner, "Al–Si multilayers: A synthetic material with large thermoelectric anisotropy," Applied physics letters, vol. 85, no. 23, pp. 5613-5615, 2004.
[8]K. Takahashi, T. Kanno, A. Sakai, H. Tamaki, H. Kusada, and Y. Yamada, "Bifunctional thermoelectric tube made of tilted multilayer material as an alternative to standard heat exchangers," Scientific reports, vol. 3, no. 1, pp. 1-5, 2013.
[9]A. Sakai et al., "Breaking the trade-off between thermal and electrical conductivities in the thermoelectric material of an artificially tilted multilayer," Scientific reports, vol. 4, no. 1, pp. 1-6, 2014.
[10]C. Reitmaier, F. Walther, and H. Lengfellner, "Transverse thermoelectric devices," Applied Physics A, vol. 99, no. 4, pp. 717-722, 2010.
[11]T. Kanno, A. Sakai, K. Takahashi, A. Omote, H. Adachi, and Y. Yamada, "Tailoring effective thermoelectric tensors and high-density power generation in a tubular Bi0. 5Sb1. 5Te3/Ni composite with cylindrical anisotropy," Applied Physics Letters, vol. 101, no. 1, p. 011906, 2012.
[12]S. A. Ali and S. Mazumder, "Computational Modeling of Transverse Peltier Coolers," in Heat Transfer Summer Conference, 2013, vol. 55478: American Society of Mechanical Engineers, p. V001T01A036.
[13]H. Liu, X. Zhao, T. Zhu, Y. Song, and F. Wang, "Thermoelectric properties of Gd, Y co-doped Ca3Co4O9+ δ," Current Applied Physics, vol. 9, no. 2, pp. 409-413, 2009.
[14]R. Funahashi et al., "Thermoelectric properties of CaMnO 3 system," in 2007 26th International Conference on Thermoelectrics, 2007: IEEE, pp. 124-128.
[15]S. Funahashi, T. Nakamura, K. Kageyama, and H. Ieki, "Monolithic oxide–metal composite thermoelectric generators for energy harvesting," Journal of Applied Physics, vol. 109, no. 12, p. 124509, 2011.
[16]D. K. C. MacDonald, Thermoelectricity: an introduction to the principles. Courier Corporation, 2006.
[17]C. Crawford, "Transverse thermoelectric effect," 2014.
[18]W. Huber, S. Li, A. Ritzer, D. Bäuerle, H. Lengfellner, and W. Prettl, "Transverse seebeck effect in Bi2Sr2CaCu2O8," Applied Physics A, vol. 64, no. 5, pp. 487-489, 1997.
[19]D. J. Esch, "Transverse Thermoelectric Properties of Cu/Mg2Si and Ni/Mg2Si Artificially Anisotropic Materials," 2015.
[20]J. Xiang et al., "Large transverse thermoelectric figure of merit in a topological Dirac semimetal," Science China Physics, Mechanics & Astronomy, vol. 63, no. 3, pp. 1-7, 2020.
[21]X. Chen, "Harvesting transverse thermoelectricity in topological semimetals," ed: Science China Press, 2020.
[22]T. Kanno, K. Takahashi, A. Sakai, H. Tamaki, H. Kusada, and Y. Yamada, "Detection of thermal radiation, sensing of heat flux, and recovery of waste heat by the transverse thermoelectric effect," Journal of electronic materials, vol. 43, no. 6, pp. 2072-2080, 2014.
[23]C. Reitmaier, F. Walther, and H. Lengfellner, "Power generation by the transverse Seebeck effect in Pb–Bi2Te3 multilayers," Applied Physics A, vol. 105, no. 2, pp. 347-349, 2011.
[24]B. S. Mann, "Transverse thermoelectric effects for cooling and heat flux sensing," Virginia Tech, 2006.
[25]薛皓文, "自製側向熱壓系統於 電流輔助橫向熱電元件之研究," 碩士, 化學工程研究所, 國立中正大學, 嘉義縣, 2018. [Online]. Available: https://hdl.handle.net/11296/9na74d
[26]陳文修, "橫向型熱電元件製作與熱傳分析," 碩士, 化學工程研究所, 國立中正大學, 嘉義縣, 2021. [Online]. Available: https://hdl.handle.net/11296/zrmb7k
[27]T. L. Bergman, A. S. Lavine, F. P. Incropera, and D. P. DeWitt, Introduction to heat transfer. John Wiley & Sons, 2011.
[28]S. W. Churchill and H. H. Chu, "Correlating equations for laminar and turbulent free convection from a vertical plate," International journal of heat and mass transfer, vol. 18, no. 11, pp. 1323-1329, 1975.
[29]A. Majumdar and P. Reddy, "Role of electron–phonon coupling in thermal conductance of metal–nonmetal interfaces," Applied Physics Letters, vol. 84, no. 23, pp. 4768-4770, 2004.
[30]H. Aoki, N. Shioya, M. Ikeda, and Y. Kimura, "Development of ultra thin plate-type heat pipe with less than 1 mm thickness," in 2010 26th Annual IEEE Semiconductor Thermal Measurement and Management Symposium (SEMI-THERM), 2010: IEEE, pp. 217-222.
[31]F. Brito, J. Martins, E. Hançer, N. Antunes, and L. Gonçalves, "Thermoelectric exhaust heat recovery with heat pipe-based thermal control," Journal of Electronic Materials, vol. 44, no. 6, pp. 1984-1997, 2015.
[32]Y. Liu, Z. Shi, G. Wang, Y. Yan, and Y. Zhang, "Experimental Investigation for a Novel Prototype of a Thermoelectric Power Generator With Heat Pipes," Frontiers in Energy Research, vol. 9, p. 744366, 2021.
[33]X. Mu et al., "Excellent transverse power generation and cooling performances of artificially tilted thermoelectric film devices," Nano Energy, vol. 66, p. 104145, 2019.
[34]R. Prabhakar, "Scalable Carbon Nanotube Networks Embedded in Elastomers and their use in Transverse Thermoelectric Power Generation," University of Cincinnati, 2019.
[35]王韋評, "紅外線塗料影響冰箱性能之研究," 碩士, 工業教育學系, 國立臺灣師範大學, 台北市, 2016. [Online]. Available: https://hdl.handle.net/11296/9a6hyx
[36]彭以撒, "藉由高分子複合塗膜於熱電元件之熱傳改善來提升發電性能," 碩士, 化學工程研究所, 國立中正大學, 嘉義縣, 2018. [Online]. Available: https://hdl.handle.net/11296/uj693k
[37]S. Lee, "Optimum design and selection of heat sinks," IEEE Transactions on Components, Packaging, and Manufacturing Technology: Part A, vol. 18, no. 4, pp. 812-817, 1995.
[38]J.-Y. Jang, Y.-C. Tsai, and C.-W. Wu, "A study of 3-D numerical simulation and comparison with experimental results on turbulent flow of venting flue gas using thermoelectric generator modules and plate fin heat sink," Energy, vol. 53, pp. 270-281, 2013.
[39]J. P. Holman, "Heat transfer," ed: McGraw Hill Higher Education, 2010.
[40]Y.-C. Liu, S. Wongwises, W.-J. Chang, and C.-C. Wang, "Airside performance of fin-and-tube heat exchangers in dehumidifying conditions–Data with larger diameter," International journal of heat and mass transfer, vol. 53, no. 7-8, pp. 1603-1608, 2010.
[41]J. Dong, J. Chen, Z. Chen, W. Zhang, and Y. Zhou, "Heat transfer and pressure drop correlations for the multi-louvered fin compact heat exchangers," Energy Conversion and Management, vol. 48, no. 5, pp. 1506-1515, 2007.
[42]K.-S. Yang, C.-M. Chiang, Y.-T. Lin, K.-H. Chien, and C.-C. Wang, "On the heat transfer characteristics of heat sinks: Influence of fin spacing at low Reynolds number region," International journal of heat and mass transfer, vol. 50, no. 13-14, pp. 2667-2674, 2007.
[43]M. Dogan, M. Sivrioglu, and O. Yılmaz, "Numerical analysis of natural convection and radiation heat transfer from various shaped thin fin-arrays placed on a horizontal plate-a conjugate analysis," Energy conversion and management, vol. 77, pp. 78-88, 2014.
[44]W.-X. Chu, Y.-C. Lin, C.-Y. Chen, and C.-C. Wang, "Experimental and numerical study on the performance of passive heat sink having alternating layout," International Journal of Heat and Mass Transfer, vol. 135, pp. 822-836, 2019.
[45]A. Kyarad and H. Lengfellner, "Transverse peltier effect in tilted Pb–Bi 2 Te 3 multilayer structures," Applied physics letters, vol. 89, no. 19, p. 192103, 2006.
[46]M. S. Ellison and E. Corona, "Plastic collapse analysis of T-beams under bending," Journal of engineering mechanics, vol. 124, no. 8, pp. 818-825, 1998.
[47]H. M. Mourad and M. Y. Younan, "The effect of modeling parameters on the predicted limit loads for pipe bends subjected to out-of-plane moment loading and internal pressure," J. Pressure Vessel Technol., vol. 122, no. 4, pp. 450-456, 2000.
[48]H. M. Mourad and M. Y. Younan, "Nonlinear analysis of pipe bends subjected to out-of-plane moment loading and internal pressure," J. Pressure Vessel Technol., vol. 123, no. 2, pp. 253-258, 2001.
[49]N. Ye and T. Moan, "Improving fatigue life for aluminium cruciform joints by weld toe grinding," Fatigue & Fracture of Engineering Materials & Structures, vol. 31, no. 2, pp. 152-163, 2008.
[50]莊凱翰, "旋轉葉片受溫度影響下之疲勞分析," 碩士, 機械工程系所, 國立交通大學, 新竹市, 2015. [Online]. Available: https://hdl.handle.net/11296/99cn6p
[51]X.-l. Zang, X.-t. Li, and F.-s. Du, "Head and tail shape control in vertical-horizontal rolling process by FEM," Journal of Iron and Steel Research, International, vol. 16, no. 5, pp. 35-42, 2009.
[52]X. Shangwu, J. Rodrigues, and P. Martins, "Three-dimensional simulation of flat rolling through a combined finite element–boundary element approach," Finite elements in analysis and design, vol. 32, no. 4, pp. 221-233, 1999.
[53]E. E. Antonova and D. C. Looman, "Finite elements for thermoelectric device analysis in ANSYS," in ICT 2005. 24th International Conference on Thermoelectrics, 2005., 2005: IEEE, pp. 215-218.
[54]C.-H. Cheng, S.-Y. Huang, and T.-C. Cheng, "A three-dimensional theoretical model for predicting transient thermal behavior of thermoelectric coolers," International Journal of Heat and Mass Transfer, vol. 53, no. 9-10, pp. 2001-2011, 2010.
[55]W. Xiaowei and L. Tiecai, "A 3-D electromagnetic thermal coupled analysis of permanent magnet brushless DC motor," in 2011 First International Conference on Instrumentation, Measurement, Computer, Communication and Control, 2011: IEEE, pp. 15-18.
[56]Y. Huai, R. V. Melnik, and P. B. Thogersen, "Computational analysis of temperature rise phenomena in electric induction motors," Applied Thermal Engineering, vol. 23, no. 7, pp. 779-795, 2003.
[57]M. Chen, L. A. Rosendahl, and T. Condra, "A three-dimensional numerical model of thermoelectric generators in fluid power systems," International Journal of Heat and Mass Transfer, vol. 54, no. 1-3, pp. 345-355, 2011.
[58]T. Kanno, S. Yotsuhashi, A. Sakai, K. Takahashi, and H. Adachi, "Enhancement of transverse thermoelectric power factor in tilted Bi/Cu multilayer," Applied physics letters, vol. 94, no. 6, p. 061917, 2009.
[59]C. Dreßler, A. Bochmann, T. Schulz, T. Reimann, J. Töpfer, and S. Teichert, "Transversal oxide-metal thermoelectric device for low-power energy harvesting," Energy Harvesting and Systems, vol. 2, no. 1, pp. 25-35, 2015.
[60]S. S. Rao, The finite element method in engineering. Butterworth-heinemann, 2017.
[61]G. E. Myers, "Analytical methods in conduction heat transfer," 1971.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top