跳到主要內容

臺灣博碩士論文加值系統

(44.192.94.177) 您好!臺灣時間:2024/07/21 18:34
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃振傑
研究生(外文):HUANG, JHEN-JIE
論文名稱:開發陣列式共振波導光柵增強粒子電漿 共振生物感測器以垂直入射進行多工檢測
論文名稱(外文):Development of resonant waveguide grating enhanced particle plasmon resonance biosensor in arrayed format using vertical incidence for multiplex detection.
指導教授:周禮君周禮君引用關係
指導教授(外文):Chau, Lai-Kwan
口試委員:周禮君王少君張國恩許佳振
口試委員(外文):Chau, LAI-KWANWang, SHAU-CHUNCHANG, GUO-ENHSU, CHIA CHEN
口試日期:2022-07-05
學位類別:碩士
校院名稱:國立中正大學
系所名稱:化學暨生物化學研究所
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2022
畢業學年度:110
語文別:中文
論文頁數:92
中文關鍵詞:共振波導光柵金奈米粒子粒子電漿共振垂直入射多工檢測生物感測器
外文關鍵詞:resonant waveguide gratinggold nanoparticlesparticle plasmon resonancevertical incidencemultiplex detectionbiosensor
相關次數:
  • 被引用被引用:0
  • 點閱點閱:107
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究中,我們的感測平台是基於共振波導光柵 (RWG) 來增強
粒子電漿共振 (PPR) 的效應,結合了這兩種效應的原理開發出一款
新型的生物感測器。傳統的 RWG-PPR 感測平台,需仰賴調整入射
光與光柵晶片夾角來達到最佳共振波長後進行檢測,雖然可達到較
好的靈敏度,但是卻不利於方便使用。因此我們的目標是開發出一
個新的平台,使入射到光柵晶片光之間的夾角在垂直角時即可達到
最佳共振波長進行檢測。
在這項研究中,我們使用了 532 nm LED 做為光源,光在垂直方
向入射至共振波導晶片 (RWG),我們透過在 RWG 晶片上的 9 個區
間內填入不同折射率的蔗糖水溶液的來探討該款晶片的多工性能及
靈敏性,並將平台的感測條件進行最佳化。
經由實驗測試,我們可看到陣列式共振波導光柵晶片的訊號改變
與環境折射率呈現線性關係,我們定義感測靈敏度 (Sensor
Resolution, SR) 為一倍的系統雜訊值除以靈敏度,經計算所得到的
感測靈敏度 (Sensor Resolution, SR) 為 1.33 × 10-5 RIU。
II
在 IgG 生化測試部分,我們將 mouse IgG 修飾在 RWG 晶片後,
在每一格中加入不同濃度的 goat anti mouse IgG 後進行檢測,得到其
偵測極限 LOD = 1.56 × 10-8 g/mL。
我們將 RWG 生化感測器應用於檢測 C 反應蛋白 (C reactive
protein, CRP),藉由在 RWG 晶片上修飾 aptamer 後,在每一格中填
入不同濃度的 CRP 以建立檢量線,其感測範圍為 1 ×10-8 ~ 2×10-6
g/mL,偵測極限 LOD = 4.20 × 10-8 g/mL,檢測時間為 40 分鐘。
陣列式共振波導光柵晶片未來可實現應用在多工檢測上進行多工
測試的潛力,並有低成本、可即時偵測的優勢。


In this study, a novel biosensing platform based on the enhancement of
particle plasmon resonance (PPR) effect by resonant waveguide grating
(RWG) is demonstrated. The traditional RWG-PPR platform relies on
adjusting the incident angle between the light source and the grating chip
to achieve the optimal resonance wavelength for detection. Although it can
achieve good sensitivity, it is not convenient to use.
Therefore, we aim to develop a new platform so that the incident light to
the grating chip is in the vertical direction to achieve the optimal resonance
wavelength for detection. In this research, we used a 532 nm LED source
light incident on a resonant waveguide grating (RWG) chip at a vertical
direction. We investigated the multiplexing performance and sensitivity of
the arrayed chip by filling 9 wells with sucrose solutions of different
refractive indexes in the chip. The results show that the sensor response is
linearly related to the refractive index of the solution in the RWG chip, and
the sensor resolution achieved is 1.33 × 10-5 RIU, which is defined as the
system noise divided by sensing slope.
In the IgG biotest, we used mouse IgG and modified it on the RWG chip
by covalent attachment. After filling in different concentrations of goat
anti-mouse IgG in each well for detection, the limit of detection was
determined to be 1.56 × 10-8 g/mL.
We applied the RWG biosensor to the detection of C reactive protein
(CRP). After modifying the aptamer for CRP on the RWG chip, we filled
each well with different concentrations of CRP for the construction of a
calibration curve. From which, the linear range was 1×10-8 ~ 2×10-6 g/mL,
the limit of detection was determined to be 4.20 × 10-8 g/mL and the
detection time was 40 minutes.
The arrayed format resonant waveguide grating (RWG) chip offers the
potential in multiplex detection.
摘要 I
Abstract III
致謝 IV
總目錄 V
圖目錄 VIII
表目錄 IX
第一章 緒論 1
1-1 前言 1
1-2 共振波導光柵生物感測器文獻回顧 2
1-3 文獻總結 6
1-4 研究動機 6
1-5 共振波導光柵 (Resonant Waveguide Grating, RWG) 8
1-5.1 共振波導光柵簡介 8
1-5.2 GMR 共振條件與共振位置 12
1-6 粒子電漿共振 (Particle Plasmon Resonance, PPR) 14
1-7 生物感測器 (Biosensor) 16
1-8 C 反應蛋白 (C Reactive Protein, CRP) 17
第二章 實驗設備、藥品、方法 20
2-1 實驗設備 20
2-2 藥品 21
2-3 共振波導光柵製程 22
2-3.1 光柵軟膜製作 22
2-3.2 製備 DR1 保護層 23
2-3.3 使用奈米壓印機進行光柵晶片壓印 24
2-4 陣列式共振波導光柵製程 25
2-4.1 製作陣列式 PDMS 軟膜 26
2-4.2 晶片膠帶製備 28
2-4.3 陣列式共振波導光柵晶片封裝 29
2-5 金奈米粒子合成 31
2-6 垂直入射式波導共振生物感測系統架設 32
2-7 垂直入射式波導共振生物感測系統感測能力測試 35
2-8 IgG biotest 檢測策略 37
2-9 IgG 修飾方法 39
2-10 CRP biotest 檢測策略 40
2-11 CRP aptamer 修飾方法 41
第三章 實驗結果與討論 42
3-1 數據處理與計算 42
3-1.1 正規化 (Normalized) 訊號變化量 42
3-1.2 感測解析度 (Sensor Resolution, SR) 42
3-1.3 偵測極限 (Limit of detection, LOD) 43
3-2 SU8 晶片製作與鑑定 44
3-2 穿透光譜量測 47
3-3 金奈米粒子合成與鑑定 48
3-4 陣列式共振波導光柵單格感測解析度測試 51
3-5 垂直入射式共振波導光柵感測系統折射率靈敏度測試 52
3-6 垂直入射式波導模態共振生物感測系統 IgG 生化分子檢測 54
3-7 CRP 標準溶液即時量測 58
3-8 垂直入射式波導模態共振生物感測系統 CRP 標準溶液檢測 59
3-9 添加 CRP 標準溶液之 20 倍稀釋人類血清回收率結果 61
3-10添加 CRP 標準溶液之 100 倍稀釋人類血清回收率結果 67
第四章 結論與未來展望 74
附錄 76
附錄ㄧ 探討入射角度與訊號強度之關係 76
第五章 參考文獻 78

1.王哲晧. 奈米壓印技術製作光柵並結合上金奈米粒子應用於波導模
態共振生化感測器. 國立中正大學, 嘉義縣, 2014. https://hdl.handle.net/11296/7n44gn.
2.葉諭昇. 結合奈米金粒子與共振波導光柵結構提升折射率變化感測
度. 國立中正大學, 嘉義縣, 2015. https://hdl.handle.net/11296/7zw78n. 3.彭嚴右. 以粒子電漿共振提升光柵波導式生物感測器表面靈敏度之
研究. 國立中正大學, 嘉義縣, 2020. https://hdl.handle.net/11296/66eq32.
4.林建佑. 導模共振光柵增益上轉換螢光之陣列型生醫感測器. 國立
中正大學, 嘉義縣, 2020. https://hdl.handle.net/11296/t5hx7p.
5.Lin, S. F.; Wang, C. M.; Tsai, Y. L.; Ding, T. J.; Yang, T. H.; Chen, W. Y.; Yeh, S. F.; Chang, J. Y. A model for fast predicting and optimizing the sensitivity of surface-relief guided mode resonance sensors. Sensors and Actuators B: Chemical 2013, 176, 1197-1203.
6.林玟瑜. 串聯波導模態增益奈米電漿生物感測器與基質輔助雷射脫 附游離質譜法之整合平台開發. 國立中正大學, 嘉義縣, 2017.
https://hdl.handle.net/11296/m6s4gu.
7.Hong, Y.; Huh, Y.-M.; Yoon, D. S.; Yang, J. Nanobiosensors based on localized surface plasmon resonance for biomarker detection. Journal of Nanomaterials 2012, 2012.
8.Chen, Y.; Liu, J.; Yang, Z.; Wilkinson, J. S.; Zhou, X. Optical biosensors based on refractometric sensing schemes: A review. Biosensors and Bioelectronics 2019, 144, 111693.
9.Tillett, W. S.; Francis Jr, T. Serological reactions in pneumonia with a non-protein somatic fraction of pneumococcus. The Journal of experimental medicine 1930, 52 (4), 561.
10.Castell, J. V.; Gómez‐lechón, M. J.; David, M.; Fabra, R.; Trullenque, R.; Heinrich, P. C. Acute‐phase response of human hepatocytes: regulation of acute‐phase protein synthesis by interleukin‐6. Hepatology 1990, 12 (5), 1179-1186.
11.Pepys, M. B.; Hirschfield, G. M. C-reactive protein: a critical update. The Journal of clinical investigation 2003, 111 (12), 1805-1812. 12.Black, S.; Kushner, I.; Samols, D. C-reactive protein. Journal of Biological Chemistry 2004, 279 (47), 48487-48490.
13.Huang, C.-J.; Lin, H.-I.; Shiesh, S.-C.; Lee, G.-B. Integrated microfluidic system for rapid screening of CRP aptamers utilizing systematic evolution of ligands by exponential enrichment (SELEX). Biosensors and bioelectronics 2010, 25 (7), 1761-1766.
14.Walter, J.-G.; Eilers, A.; Alwis, L. S. M.; Roth, B. W.; Bremer, K. SPR biosensor based on polymer multi-mode optical waveguide and nanoparticle signal enhancement. Sensors 2020, 20 (10), 2889.
15.呂金翰. 結合上轉換螢光奈米粒子和低折射率導模共振光柵結構 之高靈敏度陣列型生醫感測器. 國立中正大學, 嘉義縣, 2019.
https://hdl.handle.net/11296/5b6v4n.
16.Centi, S.; Bonel Sanmartin, L.; Tombelli, S.; Palchetti, I.; Mascini, M. Detection of C Reactive Protein (CRP) in Serum by an Electrochemical Aptamer‐Based Sandwich Assay. Electroanalysis: An International Journal Devoted to Fundamental and Practical Aspects of Electroanalysis 2009, 21 (11), 1309-1315.
17.Bernard, E. D.; Nguyen, K. C.; DeRosa, M. C.; Tayabali, A. F.; Aranda-Rodriguez, R. Development of a bead-based aptamer/antibody detection system for C-reactive protein. Analytical biochemistry 2015, 472, 67-74.
18.Wang, W.; Mai, Z.; Chen, Y.; Wang, J.; Li, L.; Su, Q.; Li, X.; Hong, X. A label-free fiber optic SPR biosensor for specific detection of C- reactive protein. Scientific reports 2017, 7 (1), 1-8.
19.Barshilia, D.; Chau, L.-K.; Chang, G.-E. Low-cost planar waveguide- based optofluidic sensor for real-time refractive index sensing. Optics Express 2020, 28 (19), 27337-27345. Jun, W.; Changhe, Z.; Junjie, Y.; Hongchao, C.; Shubin, L.; Wei, J. Polarization-Independent Absorber Based on a Cascaded Metal–Dielectric Grating Structure. IEEE Photonics Technology Letters 2014, 26 (9), 949-952. DOI: 10.1109/lpt.2014.2311045.
20.Kenaan, A.; Li, K.; Barth, I.; Johnson, S.; Song, J.; Krauss, T. F. Guided mode resonance sensor for the parallel detection of multiple protein biomarkers in human urine with high sensitivity. Biosens Bioelectron 2020, 153, 112047. DOI: 10.1016/j.bios.2020.112047 From NLM Medline.
21.Ku, Y.-F.; Li, H.-Y.; Hsieh, W.-H.; Chau, L.-K.; Chang, G.-E. Enhanced sensitivity in injection-molded guided-mode-resonance sensors via low-index cavity layers. Optics Express 2015, 23 (11), 14850-14859. 22.Liao, Y.-L.; Zhao, Y. An ultra-narrowband absorber with a dielectric- dielectric-metal structure based on guide-mode resonance. Optics Communications 2017, 382, 307-310. DOI: 10.1016/j.optcom.2016.08.008.
23.Liu, I.-C.; Chen, P.-C.; Chau, L.-K.; Chang, G.-E. Optofluidic refractive-index sensors employing bent waveguide structures for low- cost, rapid chemical and biomedical sensing. Optics Express 2018, 26 (1), 273-283.
24.Mattelin, M. A.; Missinne, J.; De Coensel, B.; Van Steenberge, G. Imprinted Polymer-Based Guided Mode Resonance Grating Strain Sensors. Sensors (Basel) 2020, 20 (11). DOI: 10.3390/s20113221 From NLM PubMed-not-MEDLINE.
25.Pandey, V.; Pal, S. Optimization of two-dimensional metal-assisted guided mode resonance based structures for sensing applications in the visible region. Photonics and Nanostructures - Fundamentals and Applications 2021, 43. DOI: 10.1016/j.photonics.2021.100901.
26.Park, D. S.-W.; Young, B. M.; You, B.-H.; Singh, V.; Soper, S. A.; Murphy, M. C. An Integrated, Optofluidic System With Aligned Optical Waveguides, Microlenses, and Coupling Prisms for Fluorescence Sensing. Journal of Microelectromechanical Systems 2020, 29 (4), 600- 609. DOI: 10.1109/jmems.2020.3004374.
27.Pessoni, L.; Veclin, C.; El Hadri, H.; Cugnet, C.; Davranche, M.; Pierson-Wickmann, A.-C.; Gigault, J.; Grassl, B.; Reynaud, S. Soap- and metal-free polystyrene latex particles as a nanoplastic model. Environmental Science: Nano 2019, 6 (7), 2253-2258. DOI: 10.1039/c9en00384c.
28.Sahoo, P. K.; Sarkar, S.; Joseph, J. High sensitivity guided-mode- resonance optical sensor employing phase detection. Sci Rep 2017, 7 (1), 7607. DOI: 10.1038/s41598-017-07843-z From NLM PubMed-not- MEDLINE.
29.Sarkar, S.; Poulose, S.; Sahoo, P. K.; Joseph, J. Flexible and stretchable guided-mode resonant optical sensor: single-step fabrication on a surface engineered polydimethylsiloxane substrate. OSA Continuum 2018, 1 (4). DOI: 10.1364/osac.1.001277.
30.Wang, Q.; Zhang, D.; Huang, Y.; Ni, Z.-j.; Chen, J.; Zhuang, S. A method to accurately control the period of subwavelength planar holographic grating in the fabrication process of guided mode resonance filter. Optik 2011, 122 (18), 1654-1656. DOI: 10.1016/j.ijleo.2010.10.020.
31.Wu, B.; Chen, N.; Wang, Q.; Yang, X.; Wang, K.; Li, W.; Li, Q.; Liu, W.; Fang, H. A simple label-free aptamer-based method for C-reactive protein detection. Analytical Methods 2016, 8 (21), 4177-4180. 32.Yildirim, D. U.; Ghobadi, A.; Soydan, M. C.; Gokbayrak, M.; Toprak, A.; Butun, B.; Ozbay, E. Colorimetric and Near-Absolute Polarization- Insensitive Refractive-Index Sensing in All-Dielectric Guided-Mode Resonance Based Metasurface. The Journal of Physical Chemistry C 2019, 123 (31), 19125-19134. DOI: 10.1021/acs.jpcc.9b04748.
33.Zhang, X. L.; Liu, Y.; Fan, T.; Hu, N.; Yang, Z.; Chen, X.; Wang, Z. Y.; Yang, J. Design and Performance of a Portable and Multichannel SPR Device. Sensors (Basel) 2017, 17 (6). DOI: 10.3390/s17061435 From NLM PubMed-not-MEDLINE.
34.Yang, J. M.; Yang, N. Z.; Chen, C. H.; Huang, C. S. Gradient Waveguide Thickness Guided-Mode Resonance Biosensor. Sensors (Basel) 2021, 21 (2). DOI: 10.3390/s21020376 From NLM Medline. 35.Paulsen, M.; Jahns, S.; Gerken, M. Intensity-based readout of resonant-waveguide grating biosensors: Systems and nanostructures. Photonics and Nanostructures - Fundamentals and Applications 2017, 26, 69-79. DOI: 10.1016/j.photonics.2017.07.003.

電子全文 電子全文(網際網路公開日期:20270728)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊