跳到主要內容

臺灣博碩士論文加值系統

(44.210.99.209) 您好!臺灣時間:2024/04/14 15:37
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:楊芷琴
研究生(外文):YANG, JHIH-CIN
論文名稱:新型穩定含鈍氣的陰離子及自由基陰離子的設計與研究
論文名稱(外文):Theoretical Prediction on the New Types of Noble GasContaining Anions and Radicals
指導教授:胡維平
指導教授(外文):HU, WEI-PING
口試委員:胡景瀚李進榮
口試委員(外文):HU, CHING-HANLEE, CHIN-RONG
口試日期:2022-07-26
學位類別:碩士
校院名稱:國立中正大學
系所名稱:化學暨生物化學研究所
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2022
畢業學年度:110
語文別:中文
論文頁數:126
中文關鍵詞:計算化學鈍氣分子鈍氣自由基陰離子
外文關鍵詞:Computational ChemistryNoble-Gas MoleculesNoble Gas-Containing Radical AnionsAb Initio MethodDensity Functional Theory
相關次數:
  • 被引用被引用:0
  • 點閱點閱:88
  • 評分評分:
  • 下載下載:4
  • 收藏至我的研究室書目清單書目收藏:0
本碩士論文分為三章,主要在研究鈍氣的穩定性。第一章,我們研究了不含鹵素的新型鈍氣陰離子 XNgCN- 及 XNgCCH- 的穩定性及其各種性質。第二章中,設計不含鹵素的鈍氣自由基陰離子 ONgBN-、ONgCC-並比較其分子結構以及穩定性。第三章延伸計算SNgBN-、SNgCC-。
第一章,我們設計了 XNgCN-、XNgCCH- 兩種含鈍氣的陰離子 (X = O, S; Ng = He, Ar, Kr, Xe),利用高階理論計算的結果顯示,當 X = O 且 Ng = Ar, Kr, Xe 時,線性分解能量都起碼在 24.5 kcal/mol 以上,彎曲分解能障都起碼有 19.9 kcal/mol 以上,Ng = Ar 的鈍氣陰離子比較容易因為 intersystem crossing 而分解,鈍氣為 Kr、Xe 的鈍氣陰離子可判定在低溫環境下皆具有熱力學及動力學的穩定性,X = S 時,鈍氣陰離子的線性分解能量略微降低,SArCN- 的線性分解能量僅 9.0 kcal/mol,在穩定邊緣。電荷分析顯示 XNgCN-、XNgCCH- 有 ion-dipole complex 的特質。
第二章的理論計算結果顯示,當 Ng = Ar、Kr、Xe 時,ONgCC- 有一定程度穩定的結合能 (至少 13 kcal/mol),彎曲分解包含 17-43 kcal/mol 的反應能障,而且都有十分高的 D-Q gap (66.8 kcal/mol 以上),ONgBN- 的結合能至少在 40 kcal/mol 以上,彎曲反應的分解能量障礙分別為 9.5、17.5、22.8 kcal/mol,有相當高的 D-Q gap (73.3 kcal/mol 以上)。經由理論計算去預測一系列的 ONgCC- (Ng = Ar、Kr、Xe)、ONgBN- (Ng = Kr、Xe) 為動力學及熱力學穩定含自由基的鈍氣陰離子,我們可以認為上述鈍氣分子在未來有可能在低溫條件下可能可以在實驗條件下被觀測到。
在第三章中,延伸第二章的 ONgCC-、ONgBN- 計算SNgCC-、SNgBN-以第三週期的 S 取代第二週期的 O 後,因 S 的原子半徑較大而 S-Ng 鍵長變長,造成線性分解能降低,以高階理論方法 CCSD(T)/CBS 單點能量表示,SNgCC- (Ng = Kr, Xe)、SNgBN- (Ng = Kr, Xe) 的線性分解能量在 24.0 kcal/mol 以上且彎曲分解能障在 14.9 kcal/mol 以上,在動力學與熱力學上顯示分子於低溫下穩定。
This thesis consists of three chapters, and it is mentioned in the article that the stability of noble gas-containing molecules.
In the first chapter, we designed a new types of noble gascontaining anions without halogen (F, Cl, Br) XNgCN- and XNgCCH- (X = O, S; Ng = He, Ar, Kr, Xe). The results showed that when X = O and Ng = Ar, Kr, Xe, the anions are thermodynamically and kinetically stable with the three-body dissociation energies of 24.5 kcal/mol and two body-dissociation barriers of 19.9 kcal/mol in the gas phase. For Ng = Ar, the anions have a high vulnerability to dissociation through intersystem crossing to the triplet state. When X = S, the three-body dissociation energies of anions decreases slightly. They are found to be stable and these results suggested that the future experimental identification of the XNgCN- and XNgCCH- (X = O, S; Ng = Kr, Xe) is expected under cryogenic conditions. From the electron density analysis, the XNgCN- and XNgCCH- can be classified as ion-dipole complexes.
As shown in the second and third chapters, we using high-level theoretical study on a new type noble gas-containing radicals ONgCC-, ONgBN-, SNgCC- and SNgBN-. There was a finding in the results ONgCC- (Ng = Ar, Kr, Xe) are stable with the three-body dissociation energies of 13-65.7 kcal/mol and two body-dissociation barriers of 17-43 kcal/mol; over and above that the D-Q gaps of all the radicals were above 66.8 kcal/mol. The linear and bending dissociaiotn energies of ONgBN- were found to be higher than 40.0 and 9.5 kcal/mol. These results suggested that the future experimental identification of the ONgCC-(Ng = Ar、Kr、Xe) ONgBN-(Ng = Kr、Xe) SNgCC- (Ng = Kr, Xe) and SNgBN- (Ng = Kr, Xe) radicals are found to be stable to against unimolecular dissociation at low temperature.

目錄 IV
中文摘要 6
Abstract 8
第一章 Theoretical Prediction on the Noble Gas-Containing Anions XNgCN- and XNgCCH- (X = O, S; Ng = He, Ar, Kr and Xe) 10
摘要 10
1.1前言 11
1.2計算方法 13
1.3結果與討論 16
1.4結論 32
1.5參考文獻 33
第二章 Theoretical Prediction on the New Types of Noble Gas-Containing Radicals ONgCC- and ONgBN- (Ng = Ar, Kr, Xe) 68
摘要 68
2.1前言 69
2.2計算方法 71
2.3結果與討論 73
2.4結論 79
2.5參考文獻 80
第三章 Theoretical Prediction on the New Types of Noble Gas-Containing Radicals SNgCC- and SNgBN- (Ng = Ar, Kr, Xe) 97
摘要 97
3.1前言 98
3.2計算方法 100
3.3結果與討論 102
3.4結論 108
3.5參考文獻 109

1.Gribbin, J. Science, A History 1543-2001, 2003.
2.Greenwood, N. N., A. Earnshaw, Chemistry of the Elements, 2001, 888.
3.Bartlett, N., Rao, P. R. Proc. R. Chem. Soc., 1962, 112, 218.
4.Agron, P. A., Begun, G. M., Levy, H. A., Mason, A. A., Jones, C. G., Smith, D. F. Science. 1963, 139, 842-844.
5.Claassen, H. H., Selig, H., Malm, J. G. J. Am. Chem. Soc., 1962, 84, 3593-3593.
6.Selig, H., Claassen, H. H., Chernick, C. L., Malm, J. G., Huston, J. L. Science, 1964, 143, 1322-1323.
7.Turner, J. J., Pimentel, G. C. Science 1963., 140, 974-975.
8.Pettersson, M., Lundell, J., Khriachtchev, L., Räsänen, M. J. Chem. Phys., 1998, 109, 618-625.
9.Khriachtchev, L., Pettersson, M., Runeberg, N., Lundell, J., Räsänen, M. Nature, 2000, 406, 874-876.
10.Pettersson, M., Khriachtchev, L., Lignell, A., Räsänen, M., Bihary, Z., Gerber, R. B. J. Chem. Phys., 2002, 116, 2508-2515.
11.Li, T. H., Mou, C. H., Chen, H. R., Hu, W. P. J. Am. Chem. Soc., 2005, 127, 9241-9245.
12.Peng, C. Y., Yang, C. Y., Sun, Y. L., Hu, W. P. J. Chem. Phys., 2012, 137, 194303.
13.Lin, T. Y., Hsu, J. B., Hu, W. P. Chem. Phys. Lett., 2005, 402, 514-518.
14.Tsai, C. C., Lu, Y. W., Hu, W. P. Molecules, 2020, 25, 5839.
15.Tsai, C. C., Liu, P. C., Hu, W. P. J. Phys. Chem. B, 2016, 120, 1780−1787
16.Chen, J. L., Yang, C. Y., Lin, H. J., Hu, W. P. Phys. Chem. Chem. Phys., 2013, 15, 9701-9709.
17.Tsai, C. C.; Tsai, Z. Y.; Tseng, M. Y.; Hu, W. P. Int. J. Quantum Chem. 2020, 120, e26238.
18.Arppe, T.; Khriachtchev, L.; Lignell, A.; Domanskaya, A. V.; Rasä nen, M. Inorg. Chem. 2012, 51, 4398−4402.
19.Zhu, C.; Rasä nen, M.; Khriachtchev, L. J. Chem. Phys. 2015, 143, 074306.
20.Khriachtchev, L.; Domanskaya, A.; Lundell, J.; Akimov, A.; Rasä nen, M.; Misochko, E. J. Phys. Chem. A, 2010, 114, 4181−4187.
21.Møller, C.; Plesset, M. S. Phys. rev. 1934, 46, 618.
22.Watts, J. D.; Gauss, J.; Bartlett, R. J. J. Chem. Phys. 1993, 98, 8718-8733.
23.Zhao, Y.; Truhlar, D. G. Theor. Chem. Acc. 2008, 120, 215-241.
24.Dunning Jr, T. H. J. Chem. Phys., 1989, 90, 1007-1023.
25.Kendall, R. A., Dunning Jr, T. H., Harrison, R. J. J. Chem. Phys., 1992, 96, 6796-6806.
26.Dunning Jr, T. H., Peterson, K. A., Wilson, A. K. J. Chem. Phys., 2001, 114, 9244-9253.
27.Peterson, K. A., Figgen, D., Goll, E., Stoll, H., Dolg, M.. J. Chem. Phys., 2003, 119, 11113-11123.
28.Petersson, A., Bennett, A., Tensfeldt, T. G., Al‐Laham, M. A., Shirley, W. A., Mantzaris, J. J. Chem. Phys., 1988, 89, 2193-2218.
29.Petersson, G. A.; Al‐Laham, M. A. J. Chem. Phys. 1991, 94, 6081-6090.
30.Fukui, K. Acc. Chem. Res. 1981, 14, 363-368.
31.Dykstra, C.; Frenking, G.; Kim, K.; Scuseria, G. Elsevier: 2011.
32.Carpenter, J.; Weinhold, F. Comput. Theor. Chem. 1988, 169, 41-62.
33.Frisch, M. J., et al. Gaussian 16, Revision C.01; Gaussian, Inc.: Wallingford, CT, 2016.
34.Origin(Pro), Version 2020A. OriginLab Corporation, Northampton, MA, USA.
35.Lu, T.; Chen, F.-W. Multiwfn: a multifunctional wavefunction analyzer. J. Comput. Chem. 2012, 33, 580-592.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top