跳到主要內容

臺灣博碩士論文加值系統

(44.222.104.206) 您好!臺灣時間:2024/05/28 01:12
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳昀廷
研究生(外文):CHEN, YUN-TING
論文名稱:偵測在大眾運輸攜帶大型物品的人
論文名稱(外文):Detecting People with Large Objects in Public Transport
指導教授:張榮貴張榮貴引用關係
指導教授(外文):Chang, Rong-Guey
口試委員:葉禾田陳鵬升張榮貴
口試委員(外文):Yeh, Her-TyanChen, Peng-ShengChang, Rong-Guey
口試日期:2022-07-21
學位類別:碩士
校院名稱:國立中正大學
系所名稱:資訊工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2022
畢業學年度:110
語文別:中文
論文頁數:65
中文關鍵詞:物件偵測YOLOv4電腦視覺影像處理
外文關鍵詞:Object DetectionYOLOv4Computer VisionImage Processing
相關次數:
  • 被引用被引用:0
  • 點閱點閱:186
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
誌謝 i
摘要 ii
Abstract iii
1 緒論 1
1.1 研究背景 1
1.2 研究動機與目的 4
1.3 論文架構 5
2 相關文獻回顧 6
2.1 物件偵測 6
2.1.1 二階段物件偵測(two-stage object detection) 8
2.1.2 一階段物件偵測(one-stage object detection) 10
2.2 一階段物件偵測YOLO 系列11
2.2.1 YOLOv1 11
2.2.2 YOLOv2 12
2.2.3 YOLOv3 13
2.2.4 YOLOv4 14
3 研究方法 16
3.1 方法流程 16
3.2 資料集蒐集整理 18
3.3 資料擴增 19
3.4 Anchor 計算 20
3.5 YOLOv4 22
3.6 大型物件判斷 23
3.6.1 人與物的匹配 24
3.6.2 物件比例推測 26
3.7 違規警示提醒 27
4 實驗結果 28
4.1 實驗資料與環境設備 28
4.1.1 實驗資料介紹 28
4.1.2 實驗環境設備 31
4.2 實驗流程 32
4.3 準確率評測 33
4.3.1 評估指標 33
4.3.2 模型測試 35
4.4 實驗成果 36
4.4.1 情境一:無違規攜帶大型物件出入 36
4.4.2 情境二:預先將行李箱設為大型物件因而違規 38
4.4.3 情境三:展開的雨傘為違規事件 40
4.4.4 情境四:驗證衝浪板長度超過規定尺寸 42
4.4.5 情境五:已折疊腳踏車之尺寸符合規範 44
4.4.6 情境六:未折疊腳踏車且超出限制大小為違規事件 45
4.4.7 LINE Notify 警示通知 47
5 結論與未來展望 48
參考文獻 49
[1] Cyberlink. https://tw.cyberlink.com/faceme/insights/articles/451/post-pandemic-guide-facial-recognition-attendance-system Accessed April 14, 2022.
[2] Foldable bike on public transport. https://news.pts.org.tw/article/550498 Accessed April 15, 2022.
[3] 中時新聞網. https://www.chinatimes.com/realtimenews/20171008002596-260402 Accessed April 16, 2022.
[4] 公視新聞網. https://news.pts.org.tw/article/550498 Accessed April 16, 2022.
[5] Ross B. Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. Rich feature hierarchies for accurate object detection and semantic segmentation. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 580–587, 2014.
[6] Ross B. Girshick. Fast R-CNN. In Proceedings of the IEEE international conference on computer vision, pages 1440–1448, 2015.
[7] Shaoqing Ren, Kaiming He, Ross B. Girshick, and Jian Sun. Faster R-CNN: towards real-time object detection with region proposal networks. Advances in neural information processing systems, 28, 2015.
[8] Zhaowei Cai and Nuno Vasconcelos. Cascade R-CNN: delving into high quality object detection. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 6154–6162, 2018.
[9] Jiangmiao Pang, Kai Chen, Jianping Shi, Huajun Feng, Wanli Ouyang, and Dahua Lin. Libra R-CNN: towards balanced learning for object detection. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pages 821–830, 2019.
[10] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott E. Reed, Cheng-Yang Fu, and Alexander C. Berg. SSD: single shot multibox detector. In European conference on computer vision, pages 21–37. Springer, 2016.
[11] Cheng-Yang Fu, Wei Liu, Ananth Ranga, Ambrish Tyagi, and Alexander C. Berg. DSSD : Deconvolutional single shot detector. CoRR, abs/1701.06659, 2017.
[12] Zhiqiang Shen, Zhuang Liu, Jianguo Li, Yu-Gang Jiang, Yurong Chen, and Xiangyang Xue. DSOD: learning deeply supervised object detectors from scratch. In Proceedings of the IEEE international conference on computer vision, pages 1919–1927, 2017.
[13] Zuoxin Li and Fuqiang Zhou. FSSD: feature fusion single shot multibox detector. CoRR, abs/1712.00960, 2017.
[14] Shifeng Zhang, Longyin Wen, Xiao Bian, Zhen Lei, and Stan Z. Li. Single-shot refinement neural network for object detection. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 4203–4212, 2018.
[15] Joseph Redmon, Santosh Kumar Divvala, Ross B. Girshick, and Ali Farhadi. You only look once: Unified, real-time object detection. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 779–788, 2016.
[16] Joseph Redmon and Ali Farhadi. YOLO9000: better, faster, stronger. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 7263–7271, 2017.
[17] Joseph Redmon and Ali Farhadi. Yolov3: An incremental improvement. CoRR, abs/1804.02767, 2018.
[18] Alexey Bochkovskiy, Chien-Yao Wang, and Hong-Yuan Mark Liao. Yolov4: Optimal speed and accuracy of object detection. CoRR, abs/2004.10934, 2020.
[19] Chien-Yao Wang, Alexey Bochkovskiy, and Hong-Yuan Mark Liao. Scaled-yolov4: Scaling cross stage partial network. In Proceedings of the IEEE/cvf conference on computer vision and pattern recognition, pages 13029–13038, 2021.
[20] Jasper RR Uijlings, Koen EA Van De Sande, Theo Gevers, and Arnold WM Smeulders. Selective search for object recognition. International journal of computer vision, 104(2):154–171, 2013.
[21] Marti A. Hearst, Susan T Dumais, Edgar Osuna, John Platt, and Bernhard Scholkopf. Support vector machines. IEEE Intelligent Systems and their applications, 13(4):18–28, 1998.
[22] Pedro F Felzenszwalb and Daniel P Huttenlocher. Efficient graph-based image segmentation. International journal of computer vision, 59(2):167–181, 2004.
[23] Alexander Neubeck and Luc Van Gool. Efficient non-maximum suppression. In 18th International Conference on Pattern Recognition (ICPR’06), volume 3, pages 850–855. IEEE, 2006.
[24] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In International conference on machine learning, pages 448–456. PMLR, 2015.
[25] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 770–778, 2016.
[26] Tsung-Yi Lin, Piotr Dollár, Ross B. Girshick, Kaiming He, Bharath Hariharan, and Serge J. Belongie. Feature pyramid networks for object detection. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 2117–2125, 2017.
[27] Chien-Yao Wang, Hong-Yuan Mark Liao, I-Hau Yeh, Yueh-Hua Wu, Ping-Yang Chen, and Jun-Wei Hsieh. Cspnet: A new backbone that can enhance learning capability of CNN. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition workshops, pages 390–391, 2020.
[28] Gao Huang, Zhuang Liu, and Kilian Q. Weinberger. Densely connected convolutional networks. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 4700–4708, 2017.
[29] Diganta Misra. Mish: A self regularized non-monotonic neural activation function. CoRR, abs/1908.08681, 2019.
[30] Bing Xu, Naiyan Wang, Tianqi Chen, and Mu Li. Empirical evaluation of rectified activations in convolutional network. CoRR, abs/1505.00853, 2015.
[31] Michael K. Buckland and Fredric C. Gey. The relationship between recall and precision. Journal of the American society for information science, 45(1):12–19, 1994.
[32] Taitung amazing. https://youtu.be/q3KJt-SZc2s Accessed May 10, 2022.
電子全文 電子全文(網際網路公開日期:20270728)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊