跳到主要內容

臺灣博碩士論文加值系統

(44.201.92.114) 您好!臺灣時間:2023/03/28 04:37
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃瑋丞
研究生(外文):HUANG, WEI-CHENG
論文名稱:以青少年期社交網路預測成人期之憂鬱傾向
論文名稱(外文):Prospective Longitudinal Associations between Social Network and Depression from Adolescence through Adulthood
指導教授:林育秀林育秀引用關係
指導教授(外文):LIN, YU-HSIU
口試委員:郭建志許巍嚴
口試委員(外文):KUO, JIAN-JHIHHSU, WEI-YEN
口試日期:2022-07-19
學位類別:碩士
校院名稱:國立中正大學
系所名稱:資訊管理系研究所
學門:電算機學門
學類:電算機一般學類
論文種類:學術論文
論文出版年:2022
畢業學年度:110
語文別:中文
論文頁數:162
中文關鍵詞:臺灣青少年成長歷程研究計畫憂鬱社交網路機器學習圖神經網路
外文關鍵詞:Taiwan Youth Projectdepressionsocial networkmachine learninggraph neural network
相關次數:
  • 被引用被引用:0
  • 點閱點閱:98
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
背景:
近年來年輕族群患有憂鬱症的比例已不容忽視,且於青少年罹患憂鬱症有相當高的比例會在其成人復發,因此早期發現憂鬱傾向已成一重要議題。使用機器學習預測憂鬱傾向的研究於近幾年如雨後春筍般冒出,但研究對象的年齡層常針對中、老年人,較少針對年輕族群,且多數為橫斷面研究,缺乏利用縱貫性資料觀察時序性變化。故本研究採用中央研究院社會學研究所的縱貫性資料庫臺灣青少年成長歷程研究(Taiwan Youth Project [TYP])進行憂鬱傾向的探討。
方法:
本研究從臺灣青少年成長歷程研究計畫中篩選出1,047名研究對象,觀察青少年的成長歷程如何影響成人期的憂鬱傾向。以SAS 9.4進行自變項與依變項的雙變項分析,且鑒於社交網路和憂鬱傾向常互相影響,本研究將利用深度學習中圖神經網路(graph neural network [GNN])的方法,以社交網路結合各重要因子進行圖卷積網路、圖取樣與聚合、圖同構網路、圖注意力網路的模型建置,來預測其成年時期的憂鬱傾向,並同時建置機器學習中的邏輯斯迴歸、支援向量機、隨機森林、極限梯度提升進行比較。模型皆使用Python 3.8進行十折交叉驗證做驗證方式,採用上採樣、下採樣、上下採樣、調整權重的方式進行資料平衡。
結果:
於1,047名研究對象中,有950人(90.74%)不具憂鬱傾向,97人(9.26%)具憂鬱傾向。雙變項分析結果整理出影響成人期憂鬱傾向的因素,居住地、偏差行為、自尊、自我滿意程度、快樂感、健康狀態、生活事件、生命重大事件的發生與影響、青少年時期憂鬱傾向、家庭同住狀況、家庭經濟條件、家庭凝聚力、家庭支持、家庭間滿意程度、朋友支持、同班好友數量與成人期憂鬱傾向有顯著相關。預測模型方面,於測試集中表現最好的為圖注意力網路(AUC值:0.7356),LR-reweighting和SVM-reweighting的表現次佳(AUC值:0.7158)。在模型重要特徵排名中,自尊、自我滿意程度、家庭凝聚力、家庭支持、快樂感、自我滿意程度、生命重大事件的影響程度、性別、健康狀態、生活事件皆是自變項中影響模型預測的重要特徵。
結論:
本研究驗證了圖神經網路在縱貫性資料也能獲得良好的表現,未來研究可利用於時間序列上有較佳表現的長短期記憶(long short-term memory [LSTM])進行比較。從重要特徵排名中亦可發現,除性別變項外,其餘變項在雙變項分析中皆達到統計顯著。針對影響成人期憂鬱傾向的高相關因子,除青少年照護者、家庭、老師、學校、社區等最直接與青少年互動的接觸者和場所,政府機關、社福機構,也可對相關領域進行關切,制定相應的法規或提供相關福利,在規範之餘提供心理輔導,盡早進行治療,以此降低國內年輕族群罹患憂鬱症的風險,避免病情反覆發作,甚至最後引起自殺行為。

Background:
The proportion of young generation suffering in depression becomes higher in recent years, and would be relapsed in their adulthood. Early detection of depression has been becoming an important issue. Researchers emploied machine learning techniques to predict depression; howerver, the study subjects are often in middle-aged or elderly population instead of young generation. Moreover, most of the researches are cross-sectional studies, which may lack to observe temporal changes as the longitudinal studies. Therefore, this study was derived the data from Taiwan Youth Project (TYP), a longitudinal database from the Institute of Sociology, Academia Sinica, to investigate the tendency of depression. This study aims to observe how the adolescent’s developmental trajectory affects the depression in adulthood, and to build up a predictive model via the machine learning techniques.
Method:
A total of 1,047 subjects were retrieved from the TYP database. Bivariate analysis was was applied to examinate the associations of independent variables and dependent variable (depression in adulthood) by SAS 9.4. According to the interactions of social networks and depression, this study applied the graph neural network (GNN), which is combined various important factors in social networks and to constructe graph convolutional network (GCN), graph sample and aggregate (GraphSAGE), graph isomorphism network (GIN), and graph attention network (GAT) models to predict subjects’ depression in their adulthood. Meanwhile, this study also constructed the following four machine learning predictive models: logistic regression, support vector machine, random forest, extreme gradient boosting. All predictive models were used 10-fold cross-validation and data balance techniques, including oversampling, undersampling, oversampling and undersampling, and reweighting. The analysis is conducted using Python 3.8.
Result:
The number of non-depression and depression individuals were 950 (90.74%) and 97 (9.26%) in 1,047 subjects, respectively. Bivariate analysis results showed that residence, deviant behavior, self-esteem, self-satisfaction, happiness, health status, life events, occurrence and influence of life events, depression in adolescence, family living conditions, family economic conditions, family cohesion, family support, family satisfaction, friend support, and the number of classmates have associations with adulthood depression. The best performance predictive model in the test dataset is the GAT model (AUC: 0.7356). The ranking of important features of the GAT model include: self-esteem, self-satisfaction, family cohesion, family support, happiness, self-satisfaction, influence of life events, gender, health status, and life events.
Conclusion:
This study demonstrated that GNN has a good performance in longitudinal database. Future researchers may conduct the long short-term memory (LSTM) which has better performance in time series is a potential research area. Comparing to the results of bivariate analysis and important features in GAT model, only gender is not significance in bivariate analysis. The caregivers, families, teachers, schools, communities those who are directly interact with adolescents, government agencies and social welfare organizations should also pay more attentions, formulated corresponding regulations, and provided related psychological counseling to adolescents. Early interventions could reduce the risk of depression among young generation and, avoid recurrence of the disease and even leading to suicidal behavior.

誌謝 i
摘要 ii
Abstract iv
目錄 vi
圖目錄 ix
表目錄 x
第一章 緒論 1
1.1 研究背景 1
1.2 研究動機 5
1.3 研究目的與問題 7
第二章 文獻探討 8
2.1 憂鬱症 8
2.1.1 憂鬱症現況與概述 8
2.1.2 憂鬱症狀量表 11
2.1.3 憂鬱症狀相關因子 26
2.1.4 小結 35
2.2 社交網路 47
2.2.1 社交網路概述 47
2.2.2 社交網路應用於心理狀態的文獻 48
2.2.3 社交網路對心理狀態的影響 51
2.2.4 小結 52
2.3 機器學習 55
2.3.1 機器學習概述 55
2.3.2 憂鬱預測相關文獻 56
2.3.3 圖神經網路概述 60
2.3.4 圖神經網路的困難和挑戰 64
2.3.5 圖神經網路相關文獻 65
2.4 憂鬱狀態、社交網路、機器學習 71
2.4.1. 憂鬱狀態與社交網路 71
2.4.2. 憂鬱狀態與機器學習 72
2.4.3. 社交網路與機器學習 72
第三章 研究方法 74
3.1 研究流程與架構 74
3.1.1 研究流程 74
3.1.2 研究架構 77
3.2 研究對象 79
3.2.1 資料來源 79
3.2.2 資料前處理 83
3.3 變項操作型定義 85
3.3.1 變項定義 85
3.3.2 建構社交網路 91
3.4 統計方法 92
3.5 預測模型技術 92
3.5.1 邏輯斯迴歸(logistic regression [LR]) 93
3.5.2 支援向量機(support vector machine [SVM]) 93
3.5.3 隨機森林(random forest [RF]) 94
3.5.4 極限梯度提升(extreme gradient boosting [XGBoost]) 95
3.5.5 圖卷積網路(graph convolutional network [GCN]) 96
3.5.6 圖取樣與聚合(graph sample and aggregate [GraphSAGE]) 96
3.5.7 圖同構網路(graph isomorphism network [GIN]) 98
3.5.8 圖注意力網路(graph attention network [GAT]) 99
3.6 資料平衡技術 100
3.7 評估指標 101
第四章 研究結果 103
4.1 描述性統計 103
4.1.1 個人層級變項分布情形 103
4.1.2 家庭層級變項分布情形 107
4.1.3 同儕層級變項分布情形 109
4.2 雙變項分析 110
4.2.1 個人層級變項與成人期是否具憂鬱傾向 111
4.2.2 家庭層級變項與成人期是否具憂鬱傾向 114
4.2.3 同儕層級變項與成人期是否具憂鬱傾向 118
4.3 社交網路圖 120
4.4 機器學習模型實驗結果 122
4.5 預測模型重要特徵排名 129
第五章 討論與建議 131
5.1 討論 131
5.2 研究限制 135
5.3 建議 135
5.4 結論 136
參考文獻 138
中文文獻 138
英文文獻 140
中文文獻
American Psychiatric Association(2018)。DSM-5精神疾病診斷與統計(曾念生譯)。台北:合記出版社。(原著出版於2013年)。
Beck, A. T., Steer, R. A., & Brown, G. K.(2000)。貝克憂鬱量表第二版指導手冊(陳心怡譯)。台北市:中國行為科學社。(原著出版於1996年)。
丁羿心(2019)。酗酒家庭成年前期子女復原力及保護因子探討[未出版之碩士論文]。國立政治大學。
王文君(2017)。社區環境對於青少年心理健康發展[未出版之碩士論文]。國防醫學院。
伊慶春(2000)。台灣青少年成長歷程研究。中央研究院人文社會科學研究中心調查研究專題中心學術調查研究資料庫。https://srda.sinica.edu.tw/browsingbydatatype_result.php?category=surveymethod&type=2&csid=1
伊慶春(2021)。台灣青少年成長歷程研究:TYP2017調查(成人合併樣本第三波)(公共版)(D00188)。中央研究院人文社會科學研究中心調查研究專題中心學術調查研究資料庫。https://doi:10.6141/TW-SRDA-D00188-1
江守峻(2018)。青少年初期至晚期心理健康發展軌跡與教養方式的影響之縱貫性研究[未出版之碩士論文]。國立政治大學。
江啟暉(2014)。學業補習與國中生憂鬱傾向之探討[未出版之碩士論文]。國立台北大學。
吳兩賜(2014)。大學生交友網絡、正向情緒與憂鬱感之關聯:臺北市、新北市、宜蘭縣之比較分析[未出版之碩士論文]。佛光大學。
李明濱(2019)。「全國自殺防治中心計劃」案108年度期末成果報告。衛生福利部委託社團法人台灣自殺防治學會辦理。
周玉慧(2015)。青少年至成年初期親子關係的變化及其影響。中華心理學刊,57(1),67-89。https://doi.org/10.6129/CJP.20140831
周俐利(2012)。家庭支持和朋友支持之改變對青少年憂鬱與偏差行為之影響[未出版之碩士論文]。國立臺灣師範大學。
幸宇晴(2013)。社會資本、自我概念及補習參與[未出版之碩士論文]。佛光大學。
容易(2017)。青少年晚期課業壓力及家人關係對其憂鬱程度的影響[未出版之碩士論文]。輔仁大學。
陳品㨗(2018)。臺灣青少年憂鬱情緒與親子關係的延宕交叉相關[未出版之碩士論文]。銘傳大學。
陳建文(2018)。台灣青少年之自我概念與憂鬱之縱貫研究:性別效果與同儕社會支持中介模式[未出版之碩士論文]。慈濟大學。
陳政瑋(2016)。家庭社會資本與青少年憂鬱之關係[未出版之碩士論文]。國立臺灣師範大學。
楊子翰(2018)。家庭晚餐頻率對青少年心理健康發展軌跡之影響[未出版之碩士論文]。國防醫學院。
臺灣青少年成長歷程研究(2021)。抽樣架構、方法與步驟。http://www.typ.sinica.edu.tw/
臺灣青少年成長歷程研究(2021)。抽樣結果。http://www.typ.sinica.edu.tw/
臺灣青少年成長歷程研究(2021)。歷年問卷架構圖。http://www.typ.sinica.edu.tw/
衛生福利部統計處(2020)。精神疾病患者門、住診人數統計。https://dep.mohw.gov.tw/dos/cp-1720-7337-113.html
衛生福利部統計處(2021)。抗憂鬱藥物使用人數。https://dep.mohw.gov.tw/dos/cp-1720-9734-113.html
羅詩婷(2015)。家庭結構,同儕支持,家庭關係對青少年憂鬱情緒之影響[未出版之碩士論文]。國立成功大學。 


英文文獻
Bao Giang, K., Viet Dzung, T., Kullgren, G., & Allebeck, P. (2010). Prevalence of mental distress and use of health services in a rural district in Vietnam. Global Health Action, 3(1), 2025. https://doi.org/10.3402/gha.v3i0.2025
Beard, C., Millner, A. J., Forgeard, M. J., Fried, E. I., Hsu, K. J., Treadway, M. T., Leonard, C. V., Kertz, S. J., & Bjorgvinsson, T. (2016). Network analysis of depression and anxiety symptom relationships in a psychiatric sample. Psychological Medicine, 46(16), 3359-3369. https://doi.org/10.1017/S0033291716002300
Beck, A. T., Steer, R. A., & Brown, G. K. (1996). Beck depression inventory (BDI-II) (Vol. 10, p. s15327752jpa6703_13). Pearson.
Beck, A. T., Ward, C. H., Mendelson, M., Mock, J., & Erbaugh, J. (1961). An inventory for measuring depression. Archives of General Psychiatry, 4(6), 561-571. https://doi.org/10.1001/archpsyc.1961.01710120031004
Bhatia, S. K., & Bhatia, S. C. (2007). Childhood and adolescent depression. American Family physician, 75(1), 73-80. https://pubmed.ncbi.nlm.nih.gov/17225707
Bowes, L., Joinson, C., Wolke, D., & Lewis, G. (2015). Peer victimisation during adolescence and its impact on depression in early adulthood: prospective cohort study in the United Kingdom. BMJ: British Medical Journal, 350. https://doi.org/10.1136/bmj.h2469.
Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5-32.
Cantwell, D. P., & Baker, L. (1991). Manifestations of depressive affect in adolescence. Journal of Youth and Adolescence, 20(2), 121-133. https://doi.org/10.1007/BF01537604
Chen, Y. H., & Chang, C. F. (2017). The intergenerational transmission of gender role attitudes in Taiwan. Kazoku Syakaigaku Kenkyu, 29(2), 189-199. https://doi.org/10.4234/jjoffamilysociology.29.189
Chiao, C., & Ksobiech, K. (2015). The influence of early sexual debut and pubertal timing on psychological distress among Taiwanese adolescents. Psychology, Health & Medicine, 20(8), 972-978. https://doi.org/10.1080/13548506.2014.987147
Chien, C. P., & Cheng, T. A. (1985). Depression in Taiwan: epidemiological survey utilizing CES-D. Seishin Shinkeigaku Zasshi=Psychiatria Et Neurologia Japonica, 87(5), 335-8. https://pubmed.ncbi.nlm.nih.gov/4070496/
Chiong, R., Budhi, G. S., Dhakal, S., & Chiong, F. (2021). A textual-based featuring approach for depression detection using machine learning classifiers and social media texts. Computers in Biology and Medicine, 135, 104499. https://doi.org/10.1016/j.compbiomed.2021.104499
Choi, K. S., Kim, S., Kim, B. H., Jeon, H. J., Kim, J. H., Jang, J. H., & Jeong, B. (2021). Deep graph neural network-based prediction of acute suicidal ideation in young adults. Scientific Reports, 11(1), 15828. https://doi.org/10.1038/s41598-021-95102-7
Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine Learning, 20(3), 273-297. https://doi.org/10.1007/BF00994018
Cuijpers, P. (2018). The challenges of improving treatments for depression. JAMA, 320(24), 2529-2530. https://doi.org/10.1001/jama.2018.17824
de Souza Filho, E. M., Veiga Rey, H. C., Frajtag, R. M., Arrowsmith Cook, D. M., Dalbonio de Carvalho, L. N., Pinho Ribeiro, A. L., & Amaral, J. (2021). Can machine learning be useful as a screening tool for depression in primary care? Journal of Psychiatric Research, 132, 1-6. https://doi.org/10.1016/j.jpsychires.2020.09.025
Derogatis, L. R. (1983). SCL-90-R: administration, scoring and procedures: manual II for the R (evised) version and other instruments of the psychopathology rating scale series.Clinical Psychometric Research
Derogatis, L. R. (1993). BSI brief symptom inventory: administration, scoring, and procedures manual. National Computer Systems.
Erikson, E. H. (1950). Childhood and society. W. W. Norton & Co.
Freeman, L. C. (1977). A set of measures of centrality based on betweenness. Sociometry, 35-41. https://doi.org/10.2307/3033543
Gong, J., Simon, G. E., & Liu, S. (2019). Machine learning discovery of longitudinal patterns of depression and suicidal ideation. Plos One, 14(9), e0222665. https://doi.org/10.1371/journal.pone.0222665
Government of Canada (2017). About mental illness. https://www.canada.ca/en/publichealth/services/about-mental-illness.html.
Gray, L. B., Weller, R. A., Fristad, M., & Weller, E. B. (2011). Depression in children and adolescents two months after the death of a parent. Journal of Affective Disorders, 135(1-3), 277-283. https://doi.org/10.1016/j.jad.2011.08.009
Guo, Z., & Wang, H. (2021). A deep graph neural network-based mechanism for social recommendations. IEEE Transactions on Industrial Informatics, 17(4), 2776-2783. https://doi.org/10.1109/tii.2020.2986316
Gupta, A., Matta, P., & Pant, B. (2021). Graph neural network: current state of art, challenges and applications. Materials Today: Proceedings, 46, 10927-10932. https://doi.org/10.1016/j.matpr.2021.01.950
Hakulinen, C., Fried, E. I., Pulkki-Raback, L., Virtanen, M., Suvisaari, J., & Elovainio, M. (2020). Network structure of depression symptomology in participants with and without depressive disorder: the population-based health 2000-2011 study. Social Psychiatry and Psychiatric Epidemiology, 55(10), 1273-1282. https://doi.org/10.1007/s00127-020-01843-7
Hamilton, M. (1960). Arating scalefordepression. journalofneurology. Neurosurgery, and Psychiatry, 23, 5642. http://doi.org/10.1136/jnnp.23.1.56
Hamilton, W. L., Ying, R., & Leskovec, J. (2017, December 04). Inductive representation learning on large graphs [Paper presentation]. Proceedings of the 31st International Conference on Neural Information Processing Systems. Long Beach, California, United States. https://dl.acm.org/doi/proceedings/10.5555/3294996
Heizomi, H., Allahverdipour, H., Jafarabadi, M. A., & Safaian, A. (2015). Happiness and its relation to psychological well-being of adolescents. Asian Journal of Psychiatry, 16, 55-60. https://doi.org/10.1016/j.ajp.2015.05.037
Höltge, J., Theron, L., & Ungar, M. (2022). A multisystemic perspective on the temporal interplay between adolescent depression and resilience-supporting individual and social resources. Journal of Affective Disorders, 297, 225-232. https://doi.org/10.1016/j.jad.2021.10.030
Hong, H. C., & Min, A. (2018). Peer victimization, supportive parenting, and depression among adolescents in South Korea: a longitudinal study. Journal of Pediatric Nursing, 43, e100-e105. https://doi.org/10.1016/j.pedn.2018.08.002
Hsu, B.-Y., Shen, C.-Y., & Yan, X. (2019). Network intervention for mental disorders with minimum small dense subgroups. IEEE Transactions on Knowledge and Data Engineering, 33(5), 2121-2136. https://doi.org/10.1109/TKDE.2019.2949294
Huang, H. W., & Wang, R. H. (2019). Roles of protective factors and risk factors in suicidal ideation among adolescents in Taiwan. Public Health Nursing, 36(2), 155-163. https://doi.org/10.1111/phn.12584
Islam, M. R., Kabir, M. A., Ahmed, A., Kamal, A. R. M., Wang, H., & Ulhaq, A. (2018). Depression detection from social network data using machine learning techniques. Health Information Science and Systems, 6(1), 8. https://doi.org/10.1007/s13755-018-0046-0
Johnson, D., Dupuis, G., Piche, J., Clayborne, Z., & Colman, I. (2018). Adult mental health outcomes of adolescent depression: A systematic review. Depression and Anxiety, 35(8), 700-716. https://doi.org/10.1002/da.22777
Kipf, T. N., & Welling, M. (2016). Semi-supervised classification with graph convolutional networks. Arxiv Preprint Arxiv:1609.02907. https://arxiv.org/abs/1609.02907
Lewinsohn, P. M., Rohde, P., & Seeley, J. R. (1998). Major depressive disorder in older adolescents: prevalence, risk factors, and clinical implications. Clinical Psychology Review, 18(7), 765-794. https://doi.org/10.1016/S0272-7358(98)00010-5
Li, B., Pi, D., & Lin, Y. (2021). Learning ladder neural networks for semi-supervised node classification in social network. Expert Systems with Applications, 165, 113957. https://doi.org/10.1016/j.eswa.2020.113957
Liao, S. C., Chen, W. J., Lee, M. B., Lung, F. W., Lai, T. J., Liu, C. Y., Lin, C. Y., Yang, M. J., & Chen, C. C. (2012). Low prevalence of major depressive disorder in Taiwanese adults: possible explanations and implications. Psychological Medicine, 42(6), 1227-1237. https://doi.org/10.1017/S0033291711002364
Lien, Y. J., Hu, J. N., & Chen, C. Y. (2016). The influences of perceived social support and personality on trajectories of subsequent depressive symptoms in Taiwanese youth. Social Science & Medicine, 153, 148-155. https://doi.org/10.1016/j.socscimed.2016.02.015
Lin, F. G., Chou, Y. C., Wu, C. H., & Lin, J. D. (2014). Short-term and long-term influences of family arguments and gender difference on developing psychological well-being in Taiwanese adolescents. Research in Developmental Disabilities, 35(11), 2735-2743. https://doi.org/10.1016/j.ridd.2014.07.018
Lin, H., Jia, J., Qiu, J., Zhang, Y., Shen, G., Xie, L., Tang, J., Feng, L., & Chua, T. S. (2017). Detecting stress based on social interventions in social networks. IEEE Transactions on Knowledge and Data Engineering, 29(9), 1820-1833. https://doi.org/10.1109/tkde.2017.2686382
Lin, S., Faust, L., Robles-Granda, P., Kajdanowicz, T., & Chawla, N. V. (2019). Social network structure is predictive of health and wellness. Plos One, 14(6), e0217264. https://doi.org/10.1371/journal.pone.0217264
Lin, W. H., & Yi, C. C. (2017). The effect of family cohesion and life satisfaction during adolescence on later adolescent outcomes: A prospective study. Youth & Society, 51(5), 680-706. https://doi.org/10.1177/0044118X17704865
Lin, W. H., & Yi, C. C. (2019). Subjective well-being and family structure during early adolescence: a prospective study. The Journal of Early Adolescence, 39(3), 426-452. https://doi.org/10.1177/0272431618770785
Mansori, K., Shiravand, N., Shadmani, F. K., Moradi, Y., Allahmoradi, M., Ranjbaran, M., Ahmadi, S., Farahani, A., Samii, K., & Valipour, M. (2019). Association between depression with glycemic control and its complications in type 2 diabetes. Diabetes & Metabolic Syndrome: Clinical Research & Reviews, 13(2), 1555-1560. https://doi.org/10.1016/j.dsx.2019.02.010
Mehler-Wex, C., & Kölch, M. (2008). Depression in children and adolescents. Deutsches Arzteblatt International, 105(9), 149-155. https://doi.org/10.3238/arztebl.2008.0149
Merrin, G. J., Davis, J. P., Berry, D., & Espelage, D. L. (2019). Developmental changes in deviant and violent behaviors from early to late adolescence: Associations with parental monitoring and peer deviance. Psychology of Violence, 9(2), 196–208. https://doi.org/10.1037/vio0000207
Min, S., Gao, Z., Peng, J., Wang, L., Qin, K., & Fang, B. (2021). STGSN-A Spatial-Temporal Graph Neural Network framework for time-evolving social networks. Knowledge-Based Systems, 214, 106746. https://doi.org/10.1016/j.knosys.2021.106746
Mitchell, A. J., Vaze, A., & Rao, S. (2009). Clinical diagnosis of depression in primary care: a meta-analysis. The Lancet, 374(9690), 609-619. https://doi.org/10.1016/s0140-6736(09)60879-5
Monteiro, F., Canavarro, M. C., & Pereira, M. (2017). Prevalence and correlates of psychological distress of middle-aged and older women living with HIV. Psychology, Health & Medicine, 22(9), 1105-1117. https://doi.org/10.1080/13548506.2017.1281972
Nguyen, G. H., Lee, J. B., Rossi, R. A., Ahmed, N. K., Koh, E., & Kim, S. (2018, April 23-37). Continuous-time dynamic network embeddings [Paper presentation]. In Companion Proceedings of the The Web Conference 2018. Lyon France. https://doi.org/10.1145/3184558.3191526
Office of Disease Prevention and Health Promotion. (2000). US Department of Health and Human Services: Healthy People 2010. https://www.paho.org/hq/dmdocuments/2010/National_Health_Policies-United_States-Healthy_People_2010.pdf
Otte, S., Vasic, N., Nigel, S., Streb, J., Ross, T., Spitzer, C., Grabe, H. J., & Dudeck, M. (2017). Different yet similar? Prisoners versus psychiatric patients-a comparison of their mental health. European Psychiatry, 44, 97-103. https://doi.org/10.1016/j.eurpsy.2017.04.006
Pavey, T. G., Gilson, N. D., Gomersall, S. R., Clark, B., & Trost, S. G. (2017). Field evaluation of a random forest activity classifier for wrist-worn accelerometer data. Journal of Science and Medicine in Sport, 20(1), 75-80. https://doi.org/10.1016/j.jsams.2016.06.003
Radloff, L. S. (1977). The CES-D scale: a self-report depression scale for research in the general population. Applied Psychological Measurement, 1(3), 385-401. https://doi.org/10.1177/014662167700100306
Reece, A. G., Reagan, A. J., Lix, K. L. M., Dodds, P. S., Danforth, C. M., & Langer, E. J. (2017). Forecasting the onset and course of mental illness with Twitter data. Scientific Reports, 7(1), 13006. https://doi.org/10.1038/s41598-017-12961-9
Sabidussi, G. (1966). The centrality index of a graph. Psychometrika, 31(4), 581-603. https://doi.org/10.1007/BF02289527
Salamat, A., Luo, X., & Jafari, A. (2021). HeteroGraphRec: a heterogeneous graph-based neural networks for social recommendations. Knowledge-Based Systems, 217, 106817. https://doi.org/10.1016/j.knosys.2021.106817
Santini, Z. I., Koyanagi, A., Tyrovolas, S., Mason, C., & Haro, J. M. (2015). The association between social relationships and depression: a systematic review. Journal of Affective Disorders, 175, 53-65. https://doi.org/10.1016/j.jad.2014.12.049
Shi, S., Qiao, K., Yang, S., Wang, L., Chen, J., & Yan, B. (2021). Boosting-GNN: Boosting algorithm for graph networks on imbalanced node classification. Frontiers in Neurorobotics, 154. https://doi.org/10.3389/fnbot.2021.775688
Stillwell, D. J., & Kosinski, M. (2004). myPersonality project: example of successful utilization of online social networks for large-scale social research. American Psychologist, 59(2), 93-104.
Su, D., Zhang, X., He, K., & Chen, Y. (2021). Use of machine learning approach to predict depression in the elderly in China: A longitudinal study. Journal of Affective Disorders, 282, 289-298. https://doi.org/10.1016/j.jad.2020.12.160
Suykens, J. A., & Vandewalle, J. (1999). Least squares support vector machine classifiers. Neural Processing Letters, 9(3), 293-300. https://doi.org/10.1023/A:1018628609742
Tian, F., Li, H., Tian, S., Yang, J., Shao, J., & Tian, C. (2020). Psychological symptoms of ordinary Chinese citizens based on SCL-90 during the level I emergency response to COVID-19. Psychiatry Research, 288, 112992. https://doi.org/10.1016/j.psychres.2020.112992
Tzeng, S. P., & Yi, C. C. (2012). The Psychological Well-being of East Asian Youth. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4081-5_12
van Mens, K., de Schepper, C., Wijnen, B., Koldijk, S. J., Schnack, H., de Looff, P., Lokkerbol, J., Wetherall, K., Cleare, S., O’Connor, R. C., & de Beurs, D. (2020). Predicting future suicidal behaviour in young adults, with different machine learning techniques: a population-based longitudinal study. Journal of Affective Disorders, 271, 169-177. https://doi.org/10.1016/j.jad.2020.03.081
Veličković, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., & Bengio, Y. (2017). Graph attention networks. Arxiv Preprint Arxiv:1710.10903. https://arxiv.org/abs/1710.10903
Visentini, C., Cassidy, M., Bird, V. J., & Priebe, S. (2018). Social networks of patients with chronic depression: a systematic review. Journal of Affective Disorders, 241, 571-578. https://doi.org/10.1016/j.jad.2018.08.022
Vos, T., Allen, C., Arora, M., Barber, R. M., Bhutta, Z. A., Brown, A., Carter, A., Casey, D. C., Charlson, F. J., Chen, A. Z., Coggeshall, M., Cornaby, L., Dandona, L., Dicker, D. J., Dilegge, T., Erskine, H. E., Ferrari, A. J., Fitzmaurice, C., Fullman, N., ... Murray, C. J. L. (2016). Global, regional, and national incidence, prevalence, and years lived with disability for 310 diseases and injuries, 1990–2015: a systematic analysis for the Global Burden of Disease Study 2015. The Lancet, 388(10053), 1545-1602. https://doi.org/10.1016/S0140-6736(16)31678-6
Wang, S. C., & Fowler, P. J. (2019). Social cohesion, neighborhood collective efficacy, and adolescent subjective well-being in urban and rural Taiwan. American Journal of Community Psychology, 63(3-4), 499-510. https://doi.org/10.1002/ajcp.12324
Weinberger, A. H., Gbedemah, M., Martinez, A. M., Nash, D., Galea, S., & Goodwin, R. D. (2018). Trends in depression prevalence in the USA from 2005 to 2015: widening disparities in vulnerable groups. Psychological Medicine, 48(8), 1308-1315. https://doi:10.1017/S0033291717002781
Wickrama, K. A., Noh, S., & Elder, G. H. (2009). An investigation of family SES-based inequalities in depressive symptoms from early adolescence to emerging adulthood. Advances in Life Course Research, 14(4), 147-161. https://doi.org/10.1016/j.alcr.2010.04.001
Williams, J. B. (1988). A structured interview guide for the Hamilton depression rating scale. Archives of General Psychiatry, 45(8), 742-747. http://doi.org/10.1001/archpsyc.1988.01800320058007
World Health Organization (2008). The global burden of disease: 2004 update. World Health Organization.
World Health Organization (2021). Depression. https://www.who.int/news-room/fact-sheets/detail/depression
Wu, Z., Pan, S., Chen, F., Long, G., Zhang, C., & Yu, P. S. (2021). A comprehensive survey on graph neural networks. IEEE Transactions on Neural Networks and Learning Systems, 32(1), 4-24. https://doi.org/10.1109/TNNLS.2020.2978386
Xu, K., Hu, W., Leskovec, J., & Jegelka, S. (2018). How powerful are graph neural networks? Arxiv Preprint Arxiv:1810.00826. https://arxiv.org/abs/1810.00826
Yang, X., McEwen, R., Ong, L. R., & Zihayat, M. (2020). A big data analytics framework for detecting user-level depression from social networks. International Journal of Information Management, 54. 102141. https://doi.org/10.1016/j.ijinfomgt.2020.102141
Yeun, E. J., Kwon, Y. M., & Kim, J. A. (2012). Psychometric testing of the depressive cognition scale in Korean adults. Applied Nursing Research, 25(4), 264-270. https://doi.org/10.1016/j.apnr.2011.04.003
Yi, C. C., Wu, C. I., Chang, Y. H., & Chang, M. Y. (2009). The psychological well-being of Taiwanese youth. International Sociology, 24(3), 397-429. https://doi.org/10.1177/0268580909102914
Ying, Z., Bourgeois, D., You, J., Zitnik, M., & Leskovec, J. (2019 December 8-14). Gnnexplainer: generating explanations for graph neural networks[Paper presentation]. Advances in neural information processing systems, 32. Vancouver, BC, Canada. https://researchr.org/publication/nips-2019
You, J., Ying, Z., & Leskovec, J. (2020 December 6-12). Design space for graph neural networks[Paper presentation]. Advances in Neural Information Processing Systems, 33. Virtual-only. https://researchr.org/publication/nips-2020
Yu, K., Jiang, H., Li, T., Han, S., & Wu, X. (2020). Data fusion oriented graph convolution network model for rumor detection. IEEE Transactions on Network and Service Management, 17(4), 2171-2181. https://doi.org/10.1109/tnsm.2020.3033996
Yun, I. (2008). Wengu Zhisxin: Review the old and know the new. Asia Pacific Journal of Police & Criminal Justice, 6(1), 3-23. https://www.researchgate.net/publication/254972573_Wengu_Zhisxin_Review_the_Old_and_Know_the_New
Zimmerman, M., Martinez, J. H., Young, D., Chelminski, I., & Dalrymple, K. (2013). Severity classification on the Hamilton depression rating scale. Journal of Affective Disorders, 150(2), 384-388. http://doi.org/10.1016/j.jad.2013.04.028

電子全文 電子全文(網際網路公開日期:20250823)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊