跳到主要內容

臺灣博碩士論文加值系統

(100.28.0.143) 您好!臺灣時間:2024/07/14 22:15
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:郭婉宜
研究生(外文):GUO, WAN-YI
論文名稱:因應高占比風力發電下的風機頻率調節控制技術研究
論文名稱(外文):Study of Frequency Regulation Technologies in Wind turbines Considering High Penetration of Wind Power Generation
指導教授:吳元康吳元康引用關係
指導教授(外文):WU, YUAN-KANG
口試委員:吳元康陳斌魁陳良瑞吳文欽
口試委員(外文):WU, YUAN-KANGCHEN, BIN-KWIECHEN, LIANG-RUIWU, WEN-CHIN
口試日期:2022-04-12
學位類別:碩士
校院名稱:國立中正大學
系所名稱:電機工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2022
畢業學年度:110
語文別:中文
論文頁數:137
中文關鍵詞:頻率調節下垂控制慣量控制最大功率點追蹤
外文關鍵詞:frequency regulationdroop controlinertia controlmaximum power point tracking
相關次數:
  • 被引用被引用:0
  • 點閱點閱:168
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
當前全球環境汙染問題嚴重,各國皆在推動再生能源發展,然而隨著再生能源佔比提高,電網的穩定性降低,將會產生許多問題,例如再生能源間歇性的發電,需要先進的預測技術改善此問題。當事故發生時,我們希望再生能源也能協助電網回復。
同步發電機跳機或負載增加,會導致頻率下降,風力發電機須額外設計控制迴路才能響應頻率調節。
本研究收集風力發電機頻率調節的研究,整理和歸納出了幾種方法:下垂控制、慣量控制、步階慣量控制、快速功率儲備控制、降載控制,詳細介紹各控制方法的原理,及其延伸出的改良方法。
本研究使用PSCAD軟體建立系統和模型,進行同步發電機跳機模擬,並設定風機佔比10%、30%、50%三種情境,觀察在不同風機佔比下,各控制方法的表現,進行分析與比較。最後總結各方法的優缺點,並提供未來研究的方向供參考。

Nowadays, the global environmental pollution problem is serious. Countries are promoting the development of renewable energy. However, as the proportion of renewable energy increases and the stability of the power grid decreases, many problems will arise. For example, the intermittent power generation of renewable energy requires advanced forecasting technology to improve this problem. When an accident occurs, we hope that renewable energy can also assist the grid recovery.
When the synchronous generator trips or the load increases, the frequency will drop. Wind turbines must be designed with additional control loops to respond to frequency regulation.
This study collects the research on frequency regulation of wind turbines. Several methods are sorted out and summarized: droop control, inertia control, step inertia control, fast power reserve control, and load reduction control. The principle of each control method and its extended improvement methods are introduced in detail.
The tripping simulation through PSCAD to perform., and three scenarios were set to account for 10%, 30%, and 50% of wind power. The performance of each control method under different penetration of wind power was observed and analyzed. Finally, the advantages and disadvantages of each method are summarized, and the direction of future research is provided for reference.

致謝 vi
中文摘要 vii
ABSTRACT viii
目錄 ix
圖目錄 xii
表目錄 xvi
第一章 緒論 1
1.1 研究背景與動機 1
1.2 論文章節介紹 2
1.3 本文貢獻 2
第二章 風力發電機模型介紹 3
2.1 雙饋式感應發電機通用模型 3
第三章 風機頻率控制理論與模型介紹 5
3.1 前言 5
3.2 下垂控制(Droop Control) 6
3.3 慣量控制(Inertia Control) 11
3.4 步階慣量控制(Step Inertia Control, SIC) 15
3.5 快速功率備轉(Fast Power Reserve, FSR) 20
3.6 降載控制(Deloading Control) 21
第四章 模擬結果 24
4.1 模擬系統 24
4.2 風機佔比10%的情境 24
4.2.1 傳統下垂控制 25
4.2.2 基於頻率變化率的下垂控制 27
4.2.3 基於頻率變化的下垂控制 29
4.2.4 基於時間的下垂控制 33
4.2.5 基於轉速的下垂控制 36
4.2.6 傳統慣量控制 38
4.2.7 基於轉速的慣量控制 40
4.2.8 基於風速的慣量控制 42
4.2.9 傳統步階慣量控制 44
4.2.10 過渡期呈線性下降的步階慣量控制 46
4.2.11 透過判斷轉速從功率上升期過渡到功率下降期 49
4.2.12 隨MPPT曲線回復轉速的步階慣量控制 51
4.2.13 快速儲備功率 54
4.2.14 降載控制 56
4.3 風機佔比30%的情境 59
4.3.1 傳統下垂控制 60
4.3.2 基於頻率變化率的下垂控制 61
4.3.3 基於頻率變化的下垂控制 65
4.3.4 基於時間的傳統下垂控制 68
4.3.5 基於轉速的傳統下垂控制 71
4.3.6 傳統慣量控制 73
4.3.7 基於轉速的慣量控制 75
4.3.8 傳統步階慣量控制 77
4.3.9 過渡期呈線性下降的步階慣量控制 80
4.3.10 透過判斷轉速從功率上升期過渡到功率下降期 83
4.3.11 隨MPPT曲線回復轉速的步階慣量控制 84
4.3.12 快速儲備功率 87
4.3.13 降載控制 89
4.4 風機佔比50%的情境 91
4.4.1 傳統下垂控制 91
4.4.2 基於頻率變化率的下垂控制 93
4.4.3 基於頻率變化的下垂控制 95
4.4.4 基於時間的下垂控制 98
4.4.5 基於轉速的下垂控制 101
4.4.6 傳統慣量控制 103
4.4.7 基於轉速的慣量控制 105
4.4.8 步階慣量控制 107
4.4.9 過渡期呈線性下降的步階慣量控制 109
4.4.10 透過判斷轉速從功率上升期過渡到功率下降期 112
4.4.11 隨MPPT曲線回復轉速的步階慣量控制 114
4.4.12 快速儲備功率 116
4.4.13 降載控制 118
4.5 各模擬控制使用的參數 120
第五章 根據模擬結果總結各方法的優缺點 124
5.1 下垂控制 124
5.2 慣量控制 125
5.3 步階慣量控制 127
5.4 快速儲備功率控制 130
5.5 降載控制 131
第六章 結論與未來工作 133
6.1 結論 133
6.2 未來工作 133
參考文獻 135


[1]J. Ekanayake, L. Holdsworth, and N. Jenkins, "Control of DFIG wind turbines," Power Engineer, vol. 17, no. 1, pp. 28-32, 2003.
[2]J. Ekanayake and N. Jenkins, "Comparison of the response of doubly fed and fixed-speed induction generator wind turbines to changes in network frequency," IEEE Transactions on Energy conversion, vol. 19, no. 4, pp. 800-802, 2004.
[3]J. Morren, J. Pierik, and S. W. De Haan, "Inertial response of variable speed wind turbines," Electric power systems research, vol. 76, no. 11, pp. 980-987, 2006.
[4]J. Morren, S. W. De Haan, W. L. Kling, and J. Ferreira, "Wind turbines emulating inertia and supporting primary frequency control," IEEE Transactions on power systems, vol. 21, no. 1, pp. 433-434, 2006.
[5]R. G. De Almeida and J. P. Lopes, "Participation of doubly fed induction wind generators in system frequency regulation," IEEE transactions on power systems, vol. 22, no. 3, pp. 944-950, 2007.
[6]N. A. Janssens, G. Lambin, and N. Bragard, "Active power control strategies of DFIG wind turbines," in 2007 IEEE Lausanne Power Tech, 2007: IEEE, pp. 516-521.
[7]B. H. Chowdhury and H. T. Ma, "Frequency regulation with wind power plants," in 2008 IEEE Power and Energy Society General Meeting-Conversion and Delivery of Electrical Energy in the 21st Century, 2008: IEEE, pp. 1-5.
[8]N. R. Ullah, T. Thiringer, and D. Karlsson, "Temporary primary frequency control support by variable speed wind turbines—Potential and applications," IEEE Transactions on Power Systems, vol. 23, no. 2, pp. 601-612, 2008.
[9]S. Wachtel and A. Beekmann, "Contribution of wind energy converters with inertia emulation to frequency control and frequency stability in power systems," 2009.
[10]A. Ellis, Y. Kazachkov, E. Muljadi, P. Pourbeik, and J. Sanchez-Gasca, "Description and technical specifications for generic WTG models—A status report," in 2011 IEEE/PES Power Systems Conference and Exposition, 2011: IEEE, pp. 1-8.
[11]W. R. E. M. T. Force, "Generic wind turbine generator models for WECC–a second status report," in Proc. of IEEE PES General Meeting, 2015, vol. 5.
[12]Y. Wu, G. Lu, and D. P. Quoc, "A review of frequency regulation of DFIG-based wind farms," in The 11th IET International Conference on Advances in Power System Control, Operation and Management (APSCOM 2018), 11-15 Nov. 2018 2018, pp. 1-5, doi: 10.1049/cp.2018.1766.
[13]M. Hwang, E. Muljadi, J. Park, P. Sørensen, and Y. C. Kang, "Dynamic Droop–Based Inertial Control of a Doubly-Fed Induction Generator," IEEE Transactions on Sustainable Energy, vol. 7, no. 3, pp. 924-933, 2016, doi: 10.1109/TSTE.2015.2508792.
[14]U. Datta, A. Kalam, and J. Shi, "Frequency performance analysis of multi-gain droop controlled DFIG in an isolated microgrid using real-time digital simulator," Engineering Science and Technology, an International Journal, vol. 23, no. 5, pp. 1028-1041, 2020/10/01/ 2020, doi: https://doi.org/10.1016/j.jestch.2019.11.008.
[15]M. Garmroodi, G. Verbič, and D. J. Hill, "Frequency support from wind turbine generators with a time-variable droop characteristic," IEEE Transactions on Sustainable Energy, vol. 9, no. 2, pp. 676-684, 2017.
[16]J. Lee, G. Jang, E. Muljadi, F. Blaabjerg, Z. Chen, and Y. C. Kang, "Stable short-term frequency support using adaptive gains for a DFIG-based wind power plant," IEEE Transactions on Energy Conversion, vol. 31, no. 3, pp. 1068-1079, 2016.
[17]D. Yang, Z. Jin, T. Zheng, and E. Jin, "An adaptive droop control strategy with smooth rotor speed recovery capability for type III wind turbine generators," International Journal of Electrical Power & Energy Systems, vol. 135, p. 107532, 2022.
[18]J. Zhao, X. Lyu, Y. Fu, X. Hu, and F. Li, "Coordinated microgrid frequency regulation based on DFIG variable coefficient using virtual inertia and primary frequency control," IEEE Transactions on Energy Conversion, vol. 31, no. 3, pp. 833-845, 2016.
[19]Y.-L. Hu and Y.-K. Wu, "Approximation to frequency control capability of a DFIG-based wind farm using a simple linear gain droop control," IEEE Transactions on Industry Applications, vol. 55, no. 3, pp. 2300-2309, 2018.
[20]G. C. Tarnowski, P. C. Kjar, P. E. Sorensen, and J. Ostergaard, "Variable speed wind turbines capability for temporary over-production," in 2009 IEEE Power & Energy Society General Meeting, 2009: IEEE, pp. 1-7.
[21]S. El Itani, U. D. Annakkage, and G. Joos, "Short-term frequency support utilizing inertial response of DFIG wind turbines," in 2011 IEEE Power and Energy Society General Meeting, 2011: IEEE, pp. 1-8.
[22]M. Kheshti, L. Ding, M. Nayeripour, X. Wang, and V. Terzija, "Active power support of wind turbines for grid frequency events using a reliable power reference scheme," Renewable energy, vol. 139, pp. 1241-1254, 2019.
[23]M. Kang, J. Lee, and Y. C. Kang, "Modified stepwise inertial control using the mechanical input and electrical output curves of a doubly fed induction generator," in 2015 9th International Conference on Power Electronics and ECCE Asia (ICPE-ECCE Asia), 2015: IEEE, pp. 357-361.
[24]Y.-z. Sun, Z.-s. Zhang, G.-j. Li, and J. Lin, "Review on frequency control of power systems with wind power penetration," in 2010 international conference on power system technology, 2010: IEEE, pp. 1-8.
[25]M. Dreidy, H. Mokhlis, and S. Mekhilef, "Inertia response and frequency control techniques for renewable energy sources: A review," Renewable and Sustainable Energy Reviews, vol. 69, pp. 144-155, 2017/03/01/ 2017, doi: https://doi.org/10.1016/j.rser.2016.11.170.
[26]C. Mohssine, T. Nasser, and A. Essadki, "Contribution of Variable Speed Wind Turbine Generator based on DFIG using ADRC and RST Controllers to Frequency Regulation," International Journal of Renewable Energy Research (IJRER), vol. 11, no. 1, pp. 320-331, 2021.
[27]K. Vidyanandan and N. Senroy, "Primary frequency regulation by deloaded wind turbines using variable droop," IEEE transactions on Power Systems, vol. 28, no. 2, pp. 837-846, 2012.


電子全文 電子全文(網際網路公開日期:20270429)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top