跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.87) 您好!臺灣時間:2025/03/17 13:55
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳淑姈
研究生(外文):CHEN, SHU-LING
論文名稱:台灣電力系統慣量與頻率響應特性研究
論文名稱(外文):Study of Inertia and Frequency Response Characteristics of Taiwan Power System
指導教授:吳元康吳元康引用關係
指導教授(外文):WU, YUAN-KANG
口試委員:盧展南張簡樂仁
口試委員(外文):LU, CHAN-NANCHANG-CHIEN, LE-REN
口試日期:2022-04-27
學位類別:碩士
校院名稱:國立中正大學
系所名稱:電機工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2022
畢業學年度:110
語文別:中文
論文頁數:93
中文關鍵詞:再生能源頻率變化率頻率跌幅慣量估計頻率變化係數(m值)頻率響應
外文關鍵詞:Renewable EnergyRate of Change of Frequency (ROCOF)Frequency deviationInertia EstimationCoefficient of Change of FrequencyFrequency Response
相關次數:
  • 被引用被引用:0
  • 點閱點閱:401
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
為了達成廢核減碳的目標,台灣近年來積極地推廣再生能源,以達到2025年再生能源占比達20%的目標。隨著再生能源發電占比提高,燃煤與燃氣的大型同步機組發電量逐漸降低,電力系統的同步慣量也隨之減少,未來的電力系統若發生較大的頻率擾動事故,造成的頻率變化率及頻率跌幅將大幅增加,可能觸發低頻卸載電驛動作,進而影響電力系統穩定性。
本文使用由台灣電力公司提供之歷史頻率擾動事件相關量測資料,針對台電系統之特性進行探討,並與PSS/E模擬系統之頻率響應結果做比較,提出導致與實際量測資料有差異之可能因素。除此之外,也將台電系統等效為一小型系統,以便觀察相關參數對電力系統之影響。接續以西元2026年的台灣電力系統作為研究標的,進行大量再生能源併入系統的暫態模擬及分析,最後利用人工智慧對頻率擾動事件之相關參數進行預測,獲得準確的結果。

In order to achieve the goal of reducing carbon emissions, Taiwan has actively promoted renewable energy in recent years. The government plans to increase the proportion of renewable energy to 20% by 2025. However, as the proportion of renewable energy in the power system increases, the generation of synchronous generators gradually decreases, and the inertia in the system will also decrease. Suppose a large frequency disturbance accident occurs in the future. In that case, the rate of change of frequency and frequency deviation will increase significantly, which may trigger the under frequency load shedding relay action, reducing the stability of the power system.
This thesis uses the measurement data of historical frequency disturbance events provided by the Taiwan Power Company (TPC) to investigate the characteristics of the Taipower system and compares it with the frequency response results of the PSS/E simulation system. After that, it proposes the possible factors that cause the discrepancy with the measurement data. In addition, the Taipower system is equivalent to a small system to observe the effect of related parameters on the power system. Then, taking the Taiwan power system in 2026 as the research object and using the transient simulation analysis function of PSS/E to conduct a large number of renewable energy integration systems. Finally, artificial intelligence technology was used to predict the related parameters of frequency disturbance events and obtain accurate results.

誌謝辭 i
摘要 ii
ABSTRACT iii
目錄 v
圖目錄 vii
表目錄 x
第一章 緒論 1
1.1 研究背景與動機 1
1.2 文獻回顧 1
1.3 論文架構 4
1.4 本文貢獻 5
第二章 台電系統之慣量常數與m值研究 6
2.1 近年台電系統介紹 6
2.2 慣量常數 7
2.3 頻率響應 9
2.4 負載慣量貢獻 13
2.5 頻率變化係數m值 15
2.6 近年電力系統特性 20
第三章 台電歷史頻率擾動事件分析 21
3.1 前言 21
3.2 台灣近年頻率擾動事件 21
3.2.1 實際量測數據 22
3.3 發電廠實際量測資料與PSS/E模擬結果比較 36
3.4 PSS/E參數擬合 39
3.4.1 部份機組慣量資料缺失 40
3.4.2 動態負載模型 40
3.4.3 發電機之調速機響應 40
3.4.4 測試與擬合結果 40
3.4.5 PMU量測數據與PSS/E擬合前後模擬結果比較 41
第四章 台電系統頻率分析之等效電路 47
4.1 概述 47
4.2 系統介紹 47
4.2.1 模型架構 47
4.2.2 參數擬合 48
4.2.3 擬合結果 52
第五章 大量再生能源併入台電系統之情境分析 66
5.1 研究背景與動機 66
5.2 再生能源高占比系統介紹 66
5.2.1 台電系統動態參數修正 66
5.2.2 模擬情境設定 66
5.3 PSS/E暫態模擬結果與分析 67
5.3.1 輕載系統 67
5.3.2 尖載系統 70
5.4 未來電力系統的特性 74
5.5 線性回歸分析 75
5.5.1 頻率變化率(ROCOF)預測結果 75
5.5.2 頻率跌幅預測結果 76
5.6 類神經網路預測模型 78
5.6.1 頻率變化率(ROCOF)預測模型 78
5.6.2 頻率跌幅預測模型 79
5.6.3 線上可允許的最大跳脫量預測模型 80
5.7 小結 87
第六章 結論與未來工作 88
6.1 結論 88
6.2未來工作 90
參考文獻 91

[1]E. Ørum et al., “Future system inertia,” ENTSOE, Brussels, Tech. Rep., 2015.
[2]S. Sharma, S.-H. Huang, and N. Sarma, “System inertial frequency response estimation and impact of renewable resources in ERCOT interconnection,” in Proc. IEEE Power Energy Soc. General Meeting, 2011, pp. 1–6.
[3]V. Gevorgian, Y. Zhang, and E. Ela, “Investigating the impacts of wind generation participation in interconnection frequency response,” IEEE Trans. Sustain. Energy, vol. 6, no. 3, pp. 1004–1012, Jul. 2015.
[4]J.Machowski, J.W. Bialek, and J. R. Bumby, Power System Dynamics: Stability and Control, 2nd ed. Chichester, U.K.: Wiley, 2008.
[5]P. Kundur, Power System Stability and Control. New York, NY, USA: McGraw-Hill, 1994, pp. 128-136
[6]G. Lalor, A. Mullane, M. O'Malley, "Frequency control and wind turbine technologies," Power Systems, IEEE Transactions on, vol.20, no.4, pp. 1905- 1913, Nov. 2005
[7]X. Cao, B. Stephen, F. Ibrahim Abdulhadi, D. C. Booth, G. M. Burt,“Switching markov gaussian models for dynamic power system inertia estimation,” IEEE Trans. Power Syst., vol. 31, no. 5, pp. 3394–3403, Sep. 2016.
[8]A. Ulbig, T. S. Borsche, and G. Andersson,“Impact of low rotational inertia on power system stability and operation,” IFAC Proc., vol. 47, no. 3, pp. 72797290, Dec. 2014.
[9]R. J. Best, C. F. Ten, D. J. Morrow, and P. A. Crossley, "Synchronous island control with significant contribution from wind power generation," in Integration of Wide-Scale Renewable Resources Into the Power Delivery System, 2009 CIGRE/IEEE PES Joint Symposium, 2009, pp. 1-1.
[10]A. Mullane, G. Bryans, M. O'Malley, "Kinetic energy and frequency response comparison for renewable generation systems," Future Power Systems, 2005 International Conference on , vol., no., pp.6 pp.-6, 18-18 Nov. 2005.
[11]T. Kerdphol, M. Watanabe et al, “Determining Inertia of 60 Hz Japan Power System using PMUs from Power Loss Event” IEEE Texas Power and Energy Conference (TPEC), 2021.
[12]H. Pulgar-Painemal, Y. Wang, and H. Silva-Saravia, “On inertia distribution, inter-area oscillations and location of electronically-interfaced resources,” IEEE Trans. Power Syst., vol. 33, no. 1, pp. 995–1003, Jan. 2018.
[13]T. Shu-Jen, L. Zhang, A. G. Phadke, Y. Liu, M. R. Ingram, S. C. Bell, I. S. Grant, D. T. Bradshaw, D. Lubkeman, and L. Tang, “Frequency sensitivity and electromechanical propagation simulation study in large power systems,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 54, no. 8, pp. 1819, 1828, Aug. 2007.
[14]P. M. Ashton, G. A. Taylor, A. M. Carter, H. Renner, “Opportunities to exploit Phasor Measurement Units (PMUs) and synchrophasor measurements on the GB Transmission Network”, UPEC 2011, 5-8 September 2011, Soest, Germany.
[15]P. Ashton, G. Taylor, A. Carter,M. Bradley, andW. Hung, “Application of phasor measurement units to estimate power system inertial frequency response,” in Proc. IEEE Power Energy Soc. General Meeting, 2013, pp. 1–5.
[16]K. Tuttelberg, J. Kilter, D. Wilson, K. Uhlen, “Estimation of Power System Inertia From Ambient Wide Area Measurements” IEEE Trans. Power Syst., vol. 33, no. 4, pp. 7249–7257, Jun. 2018.
[17]J. W. Pierre, D. Trudnowski, M. Donnelly, N. Zhou, F. K. Tuffner, and L. Dosiek, “Overview of system identification for power systems from measured responses,” IFAC Proceedings Volumes, vol. 45, no. 16, pp. 989 – 1000, 2012.
[18]N. Zhou, Z. Huang, L. Dosiek, D. Trudnowski, and J. W. Pierre, “Electromechanical mode shape estimation based on transfer function identification using PMU measurements,” in 2009 IEEE Power Energy Society General Meeting, 2009, pp. 1–7.
[19]K. Tuttelberg, J. Kilter, and K. Uhlen, “Comparison of system identification methods applied to analysis of inter-area modes,” in Proc. Int. Power Syst. Transients Conf., Seoul, South Korea, pp. 1–6, Jun. 2017.
[20]D. T. Duong, K. Uhlen, and E. A. Jansson, “Estimation of hydro turbine governor system’s transfer function from PMU measurements,” in Power and Energy Society General Meeting, 2016 IEEE, July 2016.
[21]C. Phurailatpam, Z H. Rather et al, “Measurement-Based Estimation of Inertia in AC Microgrids” IEEE Transactions on Sustainable Energy, vol. 11, no. 3, pp. 1975–1984, Oct. 2019.
[22]T. Inoue, H. Taniguchi, Y. Ikeguchi, and K. Yoshida, “Estimation of power system inertia constant and capacity of spinning-reserve support generators usingmeasured frequency transients,” IEEE Trans. Power Syst., vol. 12, no. 1, pp. 136–143, Feb. 1997.
[23]P. M. Ashton, C. S. Saunders, G. A. Taylor, A. M. Carter, and M. E.Bradley, “Inertia estimation of the GB power system using synchrophasor measurements,” IEEE Trans. Power Syst., vol. 30, no. 2, pp. 701–709, Mar. 2015.

電子全文 電子全文(網際網路公開日期:20270511)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top