跳到主要內容

臺灣博碩士論文加值系統

(44.201.94.236) 您好!臺灣時間:2023/03/24 12:35
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林峻羽
論文名稱(外文):Numerical investigation of OH species in a kHz atmospheric pressure He/H2O dielectric barrier discharge with a 1D plasma fluid model
指導教授:林昆模
指導教授(外文):LIN, KUN-MO
口試委員:楊翰勳李卓昱
口試委員(外文):YANG, HANG-SUINLEE, CHO-YU
口試日期:2022-07-21
學位類別:碩士
校院名稱:國立中正大學
系所名稱:機械工程系研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2022
畢業學年度:110
語文別:英文
論文頁數:56
外文關鍵詞:OH speciesDielectric barrier dischargePlasma fluid modelHe/H2O discharges
相關次數:
  • 被引用被引用:0
  • 點閱點閱:57
  • 評分評分:
  • 下載下載:8
  • 收藏至我的研究室書目清單書目收藏:0
Dielectric barrier discharges have drawn interest in numerous fields ascribing to the potential of producing diverse reactive species. Among them, OH species is reported to play important roles in assisting combustion, inducing apoptosis of cancer cells, and modifying the skin generation process, to mention a few. Therefore, this work is devoted to investigating the discharge physics and chemical kinetics of OH species in an atmospheric pressure helium dielectric barrier discharge containing H2O by a plasma fluid model. The simulated OH densities under various mixtures ranging from 0.4% to 2.0% H2O are compared with the densities measured by an ultraviolet absorption spectroscopy system and a saturation of OH densities is discovered in the cases of higher H2O concentrations both experimentally and numerically. The chemical model contains 32 species involving the large mass clustering group of water and 102 reaction channels are taken into account. The major OH species generating mechanism is observed to be the dissociative electron impact reaction (e + H2O → e + OH + H), producing roughly 52% of the OH species at 0.8% H2O. Furthermore, the dissociative electron attachment (e + H2O → H- + OH) is discovered to contribute to roughly 11% of the total yield of OH species. That is, the electron impact reactions generate up to 63% of the species. Subsequently, the simulated results show that the self-recombination of OH species and combination of OH and H are the dominant consumption mechanisms, depleting up to 38% and 20% of the OH species respectively. Since the electron is found to be essential in OH species production, the mechanisms of the electron are studied in the research. The critical role of H in the OH consumption and the abundant charged species in He/H2O discharge are also investigated. Additionally, the ionic water clusters H+(H2O)5 and OH-(H2O)2 are discovered to be the most abundant positively charged species and negatively charged species in the discharge and their reaction pathways are presented. The saturation of OH density at high H2O concentrations is observed and discussed.
Abstract i
Table of Contents iii
List of Figures v
List of Tables vii
1. Introduction 1
1.1 Research background 1
1.2 Research motivation 7
1.3 Literature review 8
1.4 Research objectives 16
2. Methodology 17
2.1 Plasma fluid model 17
2.2 Governing equations 19
2.3 Boundary conditions 22
2.4 Chemical model 25
2.5 Procedures for solving the plasma fluid model 31
3. Results and Discussion 33
3.1 Model validation 33
3.1.1 Uniformity 33
3.1.2 Discharge characteristics (IV curves) 34
3.1.3 OH density at various H2O concentrations 35
3.2 OH mechanism analysis 38
3.3 Electron mechanism analysis 40
3.4 H mechanism analysis 42
3.5 The abundant negative ion and the reaction pathway 44
3.6 The abundant positive ion and the reaction pathway 45
3.7 The transition of the current densities and OH species saturation 47
4. Conclusions 49
5. Future works 53
References 54

1.Y. G. Ju, W. T. Sun, Prog. Energy Combust. Sci. 2015, 48, 21–83.
2.I. V. Adamovich, W. R. Lempert, Plasma Phys. Control. Fusion. 2015, 57, 014001.
3.A. Starikovskiy, N. Aleksandrov, Prog. Energy Combust. Sci. 2013, 39, 61–110.
4.D. Yuan, Z. Wang, Y. He, S. Xie, F. Lin, Y. Zhu, K. Cen, Ozone-Sci. Eng. 2018, 40, 494-502.
5.C. Humpert, G.J. Pietsch, Ozone-Sci. Eng. 2005, 27, 59-68.
6.X. H. Zhang, M. J. Li, R. L. Zhou, K. C. Feng, S. Z. Yang, Appl. Phys. Lett. 2008, 93, 021502.
7.Y. H. Kim, Y. J. Hong, K. Y. Baik, G. C. Kwon, J. J. Choi, G. S. Cho, H. S. Uhm, D. Y. Kim, E. H. Choi, Plasma Chem. Plasma Process. 2014, 34, 457-472.
8.K. P. Arjunan, G. Friedman, A. Friedman, A. M. Clyne, J. R. Soc. Interface. 2012, 9, 147-157.
9.K. P. Arjunan, A. M. Clyne, Plasma Process. Polym. 2011, 8, 1154-1164.
10.A. V. Nastuta, I. Topala, C. Grigoras, V. Pohoata, G. Popa, J. Phys. D-Appl. Phys. 2011, 44, 105204.
11.S. Nijdam, J. Teunissen, U. Ebert, Plasma Sources Sci. Technol. 2020, 29, 103001.
12.U. Kogelschatz, Plasma Chem. Plasma Process. 2003, 23, 1–46.
13.H. Wang, L. Y. Zhang, H. Y. Luo, X. X. Wang, J. F. Tie, Z. Ren, Appl. Environ. Microbiol. 2020, 86, 01907-19.
14.I. Korolov, M. Leimkuehler, M. Boeke, Z. Donko, V. Schulz-von der Gathen, L. Bischoff, G. Huebner, P. Hartmann, T. Gans, Y. Liu, T. Mussenbrock, J. Schulze, J. Phys. D-Appl. Phys. 2020, 53, 185201.
15.C. C. Ou, Master thesis, 2021, National Chung Cheng University, Chiayi, Taiwan.
16.Y. J. Du, G. Nayak, G. Oinuma, Z. M. Peng, P. Bruggeman, J. Phys. D-Appl. Phys. 2017, 50, 145201.
17.G. Willems, J. Benedikt, A. von Keudell, J. Phys. D-Appl. Phys. 2017, 50, 335204.
18.A. Brisset, A. R. Gibson, S. Schroter, K. Niemi, J. P. Booth, T. Gans, D. O'Connell, E. Wagenaars, J. Phys. D-Appl. Phys. 2021, 54, 285201.
19.S. Schroter, A. Wijaikhum, A. R. Gibson, A. West, H. L. Davies, N. Minesi, J. Dedrick, E. Wagenaars, N. de Oliveira, L. Nahon, M. J. Kushner, J. P. Booth, K. Niemi, T, Gans, D. O'Connell, Phys. Chem. Chem. Phys. 2018, 20, 24263.
20.D. X. Liu, P. Bruggeman, F. Iza, M. Z. Rong, M. G. Kong, Plasma Sources Sci. Technol. 2010, 19, 025018.
21.Z. Abd-Allah, D. A. G. Sawtell, K. McKay, G. T. West, P. J. Kelly, J. W. Bradley, J. Phys. D-Appl. Phys. 2015, 48, 085202.
22.C. Lazarou, A. S. Chiper, C. Anastassiou, I. Topala, I. Mihaila, V. Pohoata, G. E. Georghiou, J. Phys. D-Appl. Phys. 2019, 52, 195203.
23.K. M. Lin, K. C. Wang, Y. S. Chang, S. Y. Chuang, Appl. Sci.-Basel. 2020, 10, 7583.
24.H. H. Choe, N. S. Yoon, J. Korean Phys. Soc. 2003, 42, 859-866.
25.G. J. M. Hagelaar, L. C. Pitchford, Plasma Sources Sci. Technol. 2005, 14, 722.
26.R. B. Bird, W. E. Stewart, E. N. Lightfoot, “Transport Phenomena”, John Wiley & Sons: New York, USA, 2007.
27.R. Ono, M. Tokuhiro, Plasma Sources Sci. Technol. 2020, 29, 035021.
28.Biagi database, www.lxcat.net, retrieved on June 15, 2021.
29.TRINITI database, www.lxcat.net, retrieved on June 15, 2021.
30.T. Martens, A. Bogaerts, W. Brok, J. van Dijk, Anal. Bioanal. Chem. 2007, 388, 1583.
31.D. Breden, L. L. Raja, Plasma Sources Sci. Technol. 2014, 23, 065020.
32.Morgan database, www.lxcat.net, retrieved on June 15, 2021.
33.T. Murakami, K. Niemi, T. Gans, D. O. Connell, W. G. Graham, Plasma Sources Sci. Technol. 2014, 23, 025005.
34.Y. Sakiyama, D. B. Graves, H. W. Chang, T. Shimizu, G. E. Morfill, J. Phys. D-Appl. Phys. 2012, 45, 425201.
35.B. W. Sun, D. X. Liu, X. H. Wang, Z. C. Liu, F. Iza, A. J. Yang, M. Z. Rong, Phys. Plasmas, 2019, 26, 063514.
36.K. M. Lin, C. H. Huang, J. Y. Lin, J. W. Chen, C. C. Ou, Y. H. Wu, Plasma Sources Sci. Technol. 2022, 31, 075005.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊