跳到主要內容

臺灣博碩士論文加值系統

(44.200.171.156) 您好!臺灣時間:2023/03/22 02:46
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:管書頤
研究生(外文):Kuan,Shu-Yi
論文名稱:雙作動自由活塞式史特靈熱製冷機理論分析與設計製造
論文名稱(外文):Theoretical analysis and manufacture of a double-acting free-piston Stirling heat-driven cooler
指導教授:楊翰勳
指導教授(外文):Yang,Hang-Suin
口試委員:鄭金祥林昆模鄭宗杰
口試委員(外文):Cheng,Chin-HsiangLin,Kun-Mo
口試日期:2022-07-20
學位類別:碩士
校院名稱:國立中正大學
系所名稱:機械工程系研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2022
畢業學年度:110
語文別:中文
論文頁數:124
中文關鍵詞:史特靈熱製冷機自由活塞理論模型性能
外文關鍵詞:Stirlingheat-driven coolerfree-pistontheoretical modelperformance
相關次數:
  • 被引用被引用:0
  • 點閱點閱:77
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
史特靈熱製冷機為一可利用任意外部熱源作為能量來源,以達製冷效果之系統。未來可利用聚焦式太陽熱能、廢熱或其他環境熱源製冷,以達到節約能源之效果。本研究提出自由活塞式史特靈熱製冷機之原型機,其由引擎端、冷機端,以及發電機端組成。可利用任意熱源驅動,並同時具備製冷、泵熱與發電等功能。自由活塞系統之運作仰賴各動件參數,為確保其能順利運作,本研究建立一結合熱力及動力之整合數值模型,對熱製冷機系統於各條件下之可運作區間來進行預測。同時亦對其於不同操作條件下,各動件之動態特性、工作流體之熱力性質、原型機之製冷量,以及其性能係數進行分析計算。
為驗證本研究所提出之理論模型,本研究亦針對原型機引擎端進行啟動穩定性測試,探討不同動件自然頻率與填充壓力下之最低啟動溫度與可運作區間,並與理論模型預測結果比較。同時亦對原型機冷機端進行操作頻率測試,探討不同動件自然頻率與填充壓力下之降溫速度,藉此求得可運作區間和最佳操作頻率,最後針對熱製冷機進行整合測試。透過比較其溫降曲線與模擬結果可知,理論模型計算結果與測試結果相符。實驗結果顯示,當原型機引擎端移氣器自然頻率為18.66 Hz與19.86 Hz時,分別有最低啟動溫度150 oC,以及最大之可運作區間。而當冷機端自然頻率為15.99 Hz時,填充4 bar氦氣,且操作頻率為21 Hz時,冷機端最低之製冷溫度可降至-1 oC。而當引擎端與冷機端整合成熱製冷機運作時,其在填充4 bar氦氣下,活塞自然頻率為15.2 Hz,移氣器自然頻率為24 Hz時,製冷溫度可降至-8 oC,製冷量最高為50 W,相對卡諾循環COP可達22 %。

Stirling heat-driven cooler (SHC) is an external combustion system which can convert any type of thermal energy to cooling capacity. SHCs can be driven using concentrating solar thermal energy, waste heat, or other heat sources. It can be applied in the field of energy conservation in the future. In this thesis, a prototype free-piston SHC was proposed which is composed of an engine part, a cooler part, and a generator part. It can be operated by absorbing any type of heat sources, then produces cooling capacity, pumps heat, and generates electric power in parallel. However, the operation criterion of a free-piston system is strongly dependent on the parameters of moving parts. To make sure the system can be operated, a numerical model which includes a thermodynamic model and a dynamic model is developed. The operation regions of the proposed SHC under different conditions are predicted, as well as the dynamic characteristics of the moving parts, the thermal properties of the working fluid, the cooling capacity, and COP.
To validate the proposed model, the stability tests of the engine part were conducted and compared with simulation results. The minimum heating temperature and operation region for starting the system under different natural frequency of moving parts and charged pressure were measured. In parallel, to find the optimum operating frequency of the cooler part, the cooling rate curves under different operating frequency and charged pressure were also measured. Finally, the integration testing of the proposed SHC was conducted and the cooling rate curves was measured. The results revealed that the simulation results agree with the experimental results well. The proposed SHC can be started at minimum heating temperature of 150 oC and with the widest operation region as the natural frequency of the displacer in the engine part is 18.66 Hz and 19.86 Hz, respectively. The lowest cooling temperature of the cooler part can reach -1 oC with 4 bar helium and operating frequency of 21 Hz. In the the integration testing, the lowest cooling temperature can reach -8 oC with 4 bar helium, in which the natural frequencies of the piston and displacer are 15.2 Hz and 24 Hz, respectively. The maximum cooling capacity is 50 W, and the relative Carnot COP can reach 22 %.

目錄
誌謝 IV
表目錄 VII
圖目錄 VIII
第一章 緒論 1
1.1 前言 1
1.2 文獻回顧 2
1.2.1 自由活塞式史特靈引擎啟動性分析 2
1.2.2 冷機端製冷量與性能係數研究 6
1.2.3熱製冷機製冷性能研究 11
1.3 研究目的與研究動機 15
1.4 論文架構 15
第二章 理論模型 16
2.1 原型機介紹 16
2.1.1 原型機運作原理 18
2.2 動力模型 20
2.2.1 壓縮室及膨脹室體積變化 20
2.2.2 穩定性分析 24
2.3 熱力模型 27
2.3.1 引擎端熱物理性質 28
2.3.2 冷機端熱物理性質 35
2.3.3 熱阻及壓差計算 39
2.4 性能計算 44
2.4.1 引擎端 44
2.4.2 冷機端 45
第三章 實驗量測與設備 47
3.1 自由活塞式史特靈熱製冷原型機 47
3.1.1 引擎端熱交換器 49
3.1.2 動件與彈簧 51
3.1.3 活塞及移氣器彈簧係數量測 52
3.1.4 活塞及移氣器阻尼係數量測 54
3.1.5 線性馬達/發電機組件 55
3.2 性能量測方法與設備 56
3.2.1 引擎端穩定性分析量測方法 56
3.2.2 引擎端穩定性分析量測設備 60
3.2.3 冷機端最佳製冷性能量測方法 63
第四章 結果與討論 68
4.1 引擎端穩定性測試 68
4.2 冷機端性能測試 71
4.3 熱製冷機性能測試 77
4.3.1 熱製冷機溫降實驗 77
4.3.2 熱製冷機性能計算 81
4.4 熱製冷機基準組性能模擬 87
4.4.1 參數分析 87
4.4.2 熱製冷機溫降曲線 91
第五章 結論 102
參考文獻 104


[1]Israel Urieli, David Berchowitz, "Stirling Cycle Engine Analysis." Bristol, UK, 1984.
[2]Robert Walter Redlich, David Berchowitz, " Linear Dynamics of Free-Piston Stirling Engines.", Proc. Inst. Mech. Eng. Part A Power Process Eng(1985): 199, 203–213.
[3]Jian Mou, Guo Tong Hong, "Startup mechanism and power distribution of free piston Stirling engine." Energy 123(2017): 655-663.
[4]Dong Jun Kim, Kyu Ho Sim, "Linear Dynamic Analysis of Free-Piston Stirling Engines on Operable Charge Pressure and Working Frequency along with Experimental Verifications." Applied science 11(2021): 5205.
[5]Muhammad Rashad, Nada Sameh, "Experimental and theoretical investigation on a proposed free piston Stirling engine with expansion bellow." Applied Thermal Engineering 182 (2021) :116071.
[6]Wen Lian Ye, Xiao Jun Wang, Ying Wen Liu, Jun Chen, "Analysis and prediction of the performance of free- piston Stirling engine using response surface methodology and artificial neural network." Applied Thermal Engineering 188(2021):116557.
[7]Masoumi Amir Pouya , Tavakolpour Saleh, "Experimental assessment of damping and heat transfer coefficients in an active free piston Stirling engine using genetic algorithm." Energy 195(2020):117064.
[8]Alireza Shourangiz Haghighi, Tavakolpour Saleh, "A neural network-based scheme for predicting critical unmeasurable parameters of a free piston Stirling oscillator." Energy Conversion and Management 196(2019): 623-639.
[9]Hong Seok Kim, In Cheol Gwak, Seong Hyuk Lee, "Numerical analysis of heat transfer area effect on cooling performance in regenerator of free-piston Stirling cooler." Case Studies in Thermal Engineering 32 (2022):101875.
[10]Yun Hao Cui, Jian Xin Qiao, Bin Song, Xiao Tao Wang, Zhao Hui Yang, Hai Bing Li, Wei Dai, " Experimental study of a free piston Stirling cooler with wound wire mesh regenerator. " Energy 234 (2021):121287.
[11]Chin Hsiang Cheng, Chu Yin Huanga, Hang Suin Yang, " Development of a 90-K beta type Stirling cooler with rhombic drive mechanism." International Journal of Refrigeration 98 (2019):388-398.
[12]Xiao Wei Li, Wei Dai,Wei Zhang, " A high-efficiency free-piston Stirling cooler with 350 W cooling capacity at 80 K ." Energy Procedia 158(2019): Pages 4416-4422.
[13]Ri Ying Wang, Jian Ying Hu, Zi Long Jia, Li Min Zhang, Er Cang Luo, "Study on the temperature adaptability of free-piston Stirling heat pump." Energy Conversion and Management 249 (2021):114864.
[14]Tyagi, Jin Can Chen, Kaushik, "Thermoeconomic optimization and parametric study of an irreversible Stirling heat pump cycle." International Journal of Thermal Sciences 43 (2004):105–112.
[15]Subhash Chandra Kaushik, Sudhir Kumar Tyagi, Shuvendu Kumar Bose, Mahendra Kumar Singhal, " Performance evaluation of irreversible Stirling and Ericsson heat pump cycles"International Journal of Thermal Sciences 41 2(2002):193-200
[16]Ji Ho Park, Hyo Bong Kim, Jun Seok Ko, She Wan In, Yong Ju Hong, Hankil Yeom, Seong Je Park, "Free-piston Stirling cryocooler (FPSC) for low-temperature applications down to 110 K." International Journal of Refrigeration 117(2020):218-229.
[17]Shun Min Zhu, Guo Yao Yua, Xiao Wei Li, Wei Daia, Er Cang Luoa, "Parametric study of a free-piston Stirling cryocooler capable of providing 350 W cooling power at 80 K."Applied Thermal Engineering 174(2020):115101.
[18]Shun Min Zhua, Guo Yao Yua, XiaoWei Lic, Ma Ying, Cun Gang Yan, Wei Dai, Ercang Luo, "Acoustic field characteristics of a free-piston Stirling cryocooler with large cooling capacity at liquid nitrogen temperature." Applied Thermal Engineering 147(2019):324-335.
[19]George Dogkas, Emmanouil Rogdakis, "A review on Vuilleumier machines." Thermal Science and Engineering Progress 8(2018):340-354.
[20]Ronald Ross Jr, "Aerospace coolers: a 50-year Quaest for long-life cryogenic cooling in space." Cryogenic Engineering: Fifty Years of Progress, 2006.
[21]George Dogkas, Emmanouil Rogdakis, Panagiotis Bitsikas, "3D CFD simulation of a Vuilleumier heat pump."Applied Thermal Engineering 153 (2019):604-619
[22]Yoichi Matsubara, Mitsuhiro Kaneko, "Vuilleumier Cycle Cryocooler Operating Below 8 K." 3rd Cryocooler Conference. Colorado 1984.
[23]Han Fei Chen,Chih Chieh Lin, Jon Longtin, "Performance analysis of a free-piston Vuilleumier heat pump with dwell-based motion."Applied Thermal Engineering 140 (2019) :553-563.
[24]Chin Hsiang Cheng, Jian Hua Feng, Jhen Syuan Huang, "Development of a vuilleumier refrigerator with crank drive mechanism based on experimental and numerical study." International Journal of Refrigeration 129 (2021) :204-214.
[25]Chin Hsiang Cheng, Jhen Syuan Huang, " Development of tri-generation system combining Stirling cooler and Stirling engine." International Journal of Energy Research 45(15) (2021) :21006-21022.
[26]Yan Lei Sun, Kai Qi Luo, Jian Ying Hu, Er Cang Luo, Zhang Hua Wu, Li Min Zhang, Guo Yao Yu, Zi Long Jia, Yuan Zhou. "A combined cooling and power cogeneration system by coupling duplex free-piston Stirling cycles and a linear alternator. " International Journal of Refrigeration 118 (2020) :146-149.
[27]Samuel Langdon Armsa, Michael Gschwendtnera, Martin Neumaierb," A novel solar-powered liquid piston Stirling refrigerator." Applied Energy 229 (2018):603-613.
[28]Esmatullah Maiwand Sharify, Shinya Hasegawa, "Traveling-wave thermoacoustic refrigerator driven by a multistage traveling-wave thermoacoustic engine." Applied Thermal Engineering 113 (2017) : 791-795.
[29]Hang Suin Yang, Chin Hsiang Cheng, Yu Ting Lin, Kun Chia Hsieh, "Stability and Performance Analysis for a Free Piston Stirling Engine ." The 18th International Stirling Engine Conference. Tainan, Taiwan 2018.
[30]Hang Suin Yang, Chin Hsiang Cheng, "Development of a beta-type Stirling engine with rhombic-drive mechanism using a modified non-ideal adiabatic model. " Applied Energy 200(2017):62-72.
[31]Ramesh K.Shah, Alexander Louis London, " Laminar flow forced convection in ducts."Academic Press,New York,1978.
[32]Makoto Tanaka, Iwao Yamashita,Fumitake Chisaka, "Flow and Heat Transfer Characteristics of the Stirling engine regenerator in an Oscillating Flow."JSME international journal series 2,vol 33,no.2,2019.
[33]Robert Ackermann, "Cryogenic regenerative heat exchangers."Plenum Press, New York,1997.
[34]Kwan Woo Nam, Sang Kwon Jeong, "Novel flow analysis of regenerator under oscillating flow with pulsating pressure. "Cryogenics 45 (2005):368–379.

電子全文 電子全文(網際網路公開日期:20270828)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊