張哲軒,2020,以基因演算法應用於賽事時程表之最佳化問題, 國立中央大學資訊工程學系碩士論文。陳建中,2013,新台幣匯率與總體經濟變數關係之實證研究, 國立高雄應用科技大學金融資訊學系碩士論文。鄭仁杰,2018,利用隨機森林模型建構台灣指數期貨交易策略, 國立政治大學金融學系碩士論文。Aggarwal, P., & Sahani, A. K. (2020). Comparison of neural networks for foreign exchange rate prediction. Paper presented at the 2020 IEEE 15th International Conference on Industrial and Information Systems (ICIIS).
Ahmed, M. K., Wajiga, G. M., Blamah, N. V., & Modi, B. (2019). Stock market forecasting using ant colony optimization based algorithm. American Journal of Mathematical and Computer Modelling, 4(3), 52-57.
Akerman, J., & Cassel, G. (1967). Economic Essays in Honour of Gustav Cassel: October 20. 1933: Cass.
Chang, S. H., Ho, Tsung wu. (2017). Whether the machine learning can forecast nominal exchange-rate better?
Chantarakasemchit, O., Nuchitprasitchai, S., & Nilsiam, Y. (2020). Forex Rates Prediction on EUR/USD with Simple Moving Average Technique and Financial Factors. Paper presented at the 2020 17th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON).
Cherkassky, V., & Ma, Y. (2004). Comparison of loss functions for linear regression. Paper presented at the 2004 IEEE International Joint Conference on Neural Networks (IEEE Cat. No. 04CH37541).
Dorigo, M., Maniezzo, V., & Colorni, A. (1996). Ant system: optimization by a colony of cooperating agents. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 26(1), 29-41.
Drucker, H., Burges, C. J., Kaufman, L., Smola, A., & Vapnik, V. (1997). Support vector regression machines. Advances in neural information processing systems, 9, 155-161.
Edgar, T., & Manz, D. (2017). Research Methods for Cyber Security: Elsevier Science.
Fawcett, T. (2006). An introduction to ROC analysis. Pattern recognition letters, 27(8), 861-874.
Galeshchuk, S. (2016). Neural networks performance in exchange rate prediction. Neurocomputing, 172, 446-452.
Galeshchuk, S., & Mukherjee, S. (2017). Deep networks for predicting direction of change in foreign exchange rates. Intelligent Systems in Accounting, Finance and Management, 24(4), 100-110.
Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural computation, 9(8), 1735-1780.
Holland, J. H. (1992). Genetic algorithms. Scientific american, 267(1), 66-73.
Homenda, W., Jastrzebska, A., & Pedrycz, W. (2014). Modeling time series with fuzzy cognitive maps. Paper presented at the 2014 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE).
Hua, Y., Zhao, Z., Li, R., Chen, X., Liu, Z., & Zhang, H. (2019). Deep learning with long short-term memory for time series prediction. IEEE Communications Magazine, 57(6), 114-119.
Ince, H., & Trafalis, T. B. (2006). A hybrid model for exchange rate prediction. Decision Support Systems, 42(2), 1054-1062.
Islam, M. S., & Hossain, E. (2020). Foreign exchange currency rate prediction using a GRU-LSTM Hybrid Network. Soft Computing Letters, 100009.
Kennedy, J., & Eberhart, R. (1995). Particle swarm optimization. Paper presented at the Proceedings of ICNN'95-international conference on neural networks.
Keynes, J. M. (1923). A Tract on Monetary Reform: Macmillan.
Keynes, J. M. (1935). The general theory of employment, interest and money. New York: Harcourt, Brace and Company.
Kosko, B. (1986). Fuzzy cognitive maps. International journal of man-machine studies, 24(1), 65-75.
Li, M., & Suohai, F. (2013). Forex prediction based on SVR optimized by artificial fish swarm algorithm. Paper presented at the 2013 Fourth Global Congress on Intelligent Systems.
Locke, J. (1824). Some considerations of the consequences of lowering the interest and raising the value of money. Two treatises of government (Vol. 4): C. and J. Rivington.
Meese, R. A., & Rogoff, K. (1983). Empirical exchange rate models of the seventies: Do they fit out of sample? Journal of international economics, 14(1-2), 3-24.
Nassirtoussi, A. K., Wah, T. Y., & Ling, D. N. C. (2013). A novel FOREX prediction methodology based on fundamental data. African Journal of Business Management, 5(20), 8322-8330.
Olah, C. (2015). Understanding lstm networks.
Özesmi, U., & Özesmi, S. L. (2004). Ecological models based on people’s knowledge: a multi-step fuzzy cognitive mapping approach. Ecological modelling, 176(1-2), 43-64.
Pradeepkumar, D., & Ravi, V. (2016). FOREX rate prediction using chaos and quantile regression random forest. Paper presented at the 2016 3rd International Conference on Recent Advances in Information Technology (RAIT).
Ranjit, S., Shrestha, S., Subedi, S., & Shakya, S. (2018). Comparison of algorithms in foreign exchange rate prediction. Paper presented at the 2018 IEEE 3rd International Conference on Computing, Communication and Security (ICCCS).
Salmeron, J. L., & Froelich, W. (2016). Dynamic optimization of fuzzy cognitive maps for time series forecasting. Knowledge-Based Systems, 105, 29-37.
Sarangi, P. K., Chawla, M., Ghosh, P., Singh, S., & Singh, P. (2021). FOREX trend analysis using machine learning techniques: INR vs USD currency exchange rate using ANN-GA hybrid approach. Materials Today: Proceedings.
Shiao, Y. C., Chakraborty, G., Chen, S. F., Li, L. H., & Chen, R. C. (2019). Modeling and Prediction of Time-Series-A Case Study with Forex Data. Paper presented at the 2019 IEEE 10th International Conference on Awareness Science and Technology (iCAST).
Tarafás, I. (2015). Exchange Rates and Capital Flows. Periodica Polytechnica Social and Management Sciences, 23(1), 1-6. doi:10.3311/PPso.7965
Wang, J., Wang, X., Li, J., & Wang, H. (2021). A Prediction Model of CNN-TLSTM for USD/CNY Exchange Rate Prediction. IEEE Access, 9, 73346-73354.
Yang, S., & Liu, J. (2018). Time-series forecasting based on high-order fuzzy cognitive maps and wavelet transform. IEEE Transactions on Fuzzy Systems, 26(6), 3391-3402.
Yang, X.-S. (2009). Firefly algorithms for multimodal optimization. Paper presented at the International symposium on stochastic algorithms.
Zhang, G. P. (2003). Time series forecasting using a hybrid ARIMA and neural network model. Neurocomputing, 50, 159-175.
Zhang, J., Teng, Y.-F., & Chen, W. (2019). Support vector regression with modified firefly algorithm for stock price forecasting. Applied Intelligence, 49(5), 1658-1674.