|
Aggarwal, S., & Chugh, N. (2019). Signal processing techniques for motor imagery brain computer interface: A review. Array, 1, 100003. Chen, J., Yu, Z., Gu, Z., & Li, Y. (2020). Deep temporal-spatial feature learning for motor imagery-based brain–computer interfaces. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 28(11), 2356-2366. Duan, L., Li, J., Ji, H., Pang, Z., Zheng, X., Lu, R., ... & Zhuang, J. (2020). Zero-shot learning for EEG classification in motor imagery-based BCI system. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 28(11), 2411-2419. George, O., Smith, R., Madiraju, P., Yahyasoltani, N., & Ahamed, S. I. (2021, July). Motor Imagery: A review of existing techniques, challenges and potentials. In 2021 IEEE 45th Annual Computers, Software, and Applications Conference (COMPSAC) (pp. 1893-1899). IEEE. Hsu, W. Y., & Sun, Y. N. (2009). EEG-based motor imagery analysis using weighted wavelet transform features. Journal of neuroscience methods, 176(2), 310-318. Hsu, W. Y., Lin, C. C., Ju, M. S., & Sun, Y. N. (2007). Wavelet-based fractal features with active segment selection: Application to single-trial EEG data. Journal of neuroscience methods, 163(1), 145-160. Hu, J., Shen, L., & Sun, G. (2018). Squeeze-and-excitation networks. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 7132-7141). Iftikhar, M., Khan, S. A., & Hassan, A. (2018, November). A survey of deep learning and traditional approaches for EEG signal processing and classification. In 2018 IEEE 9th Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON) (pp. 395-400). IEEE. Jasper, H. (1958). Report of the committee on methods of clinical examination in electroencephalography. Electroencephalogr Clin Neurophysiol, 10, 370-375. Khosla, A., Khandnor, P., & Chand, T. (2020). A comparative analysis of signal processing and classification methods for different applications based on EEG signals. Biocybernetics and Biomedical Engineering, 40(2), 649-690. Lahane, P., Jagtap, J., Inamdar, A., Karne, N., & Dev, R. (2019, February). A review of recent trends in EEG based Brain-Computer Interface. In 2019 International Conference on Computational Intelligence in Data Science (ICCIDS) (pp. 1-6). IEEE. Li, Y., Guo, L., Liu, Y., Liu, J., & Meng, F. (2021). A temporal-spectral-based squeeze-and-excitation feature fusion network for motor imagery EEG decoding. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 29, 1534-1545. Li, Y., Zhang, X. R., Zhang, B., Lei, M. Y., Cui, W. G., & Guo, Y. Z. (2019). A channel-projection mixed-scale convolutional neural network for motor imagery EEG decoding. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 27(6), 1170-1180. Nath, D., Singh, M., Sethia, D., Kalra, D., & Indu, S. (2020, March). A comparative study of subject-dependent and subject-independent strategies for EEG-based emotion recognition using LSTM network. In Proceedings of the 2020 the 4th International Conference on Compute and Data Analysis (pp. 142-147). Padfield, N., Zabalza, J., Zhao, H., Masero, V., & Ren, J. (2019). EEG-based brain-computer interfaces using motor-imagery: Techniques and challenges. Sensors, 19(6), 1423. Papanastasiou, G., Drigas, A., Skianis, C., & Lytras, M. (2020). Brain computer interface based applications for training and rehabilitation of students with neurodevelopmental disorders. A literature review. Heliyon, 6(9), e04250. Pfurtscheller, G., Neuper, C., Flotzinger, D., & Pregenzer, M. (1997). EEG-based discrimination between imagination of right and left hand movement. Electroencephalography and clinical Neurophysiology, 103(6), 642-651. Schirrmeister, R. T., Springenberg, J. T., Fiederer, L. D. J., Glasstetter, M., Eggensperger, K., Tangermann, M., ... & Ball, T. (2017). Deep learning with convolutional neural networks for EEG decoding and visualization. Human brain mapping, 38(11), 5391-5420. Soman, S., & Murthy, B. K. (2015). Using brain computer interface for synthesized speech communication for the physically disabled. Procedia Computer Science, 46, 292-298. Xu, B., Zhang, L., Song, A., Wu, C., Li, W., Zhang, D., ... & Zeng, H. (2018). Wavelet transform time-frequency image and convolutional network-based motor imagery EEG classification. Ieee Access, 7, 6084-6093. Zhang, Y., Nam, C. S., Zhou, G., Jin, J., Wang, X., & Cichocki, A. (2018). Temporally constrained sparse group spatial patterns for motor imagery BCI. IEEE transactions on cybernetics, 49(9), 3322-3332. Zhao, X., Zhao, J., Cai, W., & Wu, S. (2019). Transferring common spatial filters with semi-supervised learning for zero-training motor imagery brain-computer interface. IEEE Access, 7, 58120-58130.
|