跳到主要內容

臺灣博碩士論文加值系統

(44.211.31.134) 您好!臺灣時間:2024/07/25 18:13
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林欣葦 
研究生(外文):Lin,Hsin-Wei
論文名稱:以轉麩醯胺酶改質植物蛋白建立植物蝦加工資料庫
論文名稱(外文):Applying transglutaminase modified plant proteins to establish a database for processing of vegetarian shrimp
指導教授:陳琦媛陳琦媛引用關係李明怡李明怡引用關係
指導教授(外文):Chen,Chi-YuanLee,Ming-Yi
口試委員:李明怡陳琦媛鍾成沛蔡書憲蘇稚仁
口試委員(外文):Lee,Ming-YiChen,Chi-YuanChung, Cheng-PeiTsai, Shu-HsienSu, Vincent
口試日期:2022-06-30
學位類別:碩士
校院名稱:長庚科技大學
系所名稱:健康產業科技研究所
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2022
畢業學年度:110
語文別:中文
論文頁數:108
中文關鍵詞:轉麩醯胺酶植物蛋白植物蝦表面疏水性掃描式電子顯微鏡質地分析
外文關鍵詞:transglutaminaseplant proteinvegetarian shrimpsurface hydrophobicityscanning electron microscopetexture analysis
相關次數:
  • 被引用被引用:0
  • 點閱點閱:145
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
近年來植物肉市場蓬勃發展,目前素蝦產品為蒟蒻製造其口感不佳,因此本研究為增加植物蝦口感,選用四種商業化植物蛋白 (大豆、豌豆、小麥及藍藻蛋白) 為原料,藉由添加不同濃度 (0.1及0.5%) 轉麩醯胺酶 (transglutaminase;TGase),於不同溫度 (25及50℃) 及時間(20及60分鐘) 下反應,探討生成蛋白質產物特性及質地變化,且與三種不同種類的新鮮冷凍蝦 (草蝦、明蝦及波士頓龍蝦) 進行比較,並由此建立資料庫以供未來植物蝦製造。實驗結果顯示從游離胺基酸、分子量大小及表面疏水性三方面,龍蝦、草蝦及明蝦的蛋白質特性略微不同,在掃描式電子顯微鏡中觀察內部結構亦存在差異;而在植物蛋白中也發現,當加入TGase後會使蛋白質有顯著的變化,且當TGase濃度、反應溫度及時間提升時對蛋白質特性及質地變化更明顯,但對藍藻及小麥蛋白並無明顯影響。本研究發現,大豆及豌豆蛋白添加TGase後之蛋白質產物特性與新鮮冷凍龍蝦較為接近,因此建議製作植物蝦時可使用大豆或豌豆蛋白,並添加0.5%的TGase做為基礎,可製造出與新鮮冷凍龍蝦相似蛋白質特性及口感的植物蝦,而藍藻及小麥蛋白做為增加鮮味及增加食品彈性與延展性的原料。

關鍵字:轉麩醯胺酶、植物蛋白、植物蝦、表面疏水性、掃描式電子顯微鏡、質地分析

In recent years, vegetarian meat has flourished in the market, but vegetarian shrimp is not ideal because it is made from konjac, which does not have the same texture as shrimp. In an effort to improve the texture of vegetarian shrimp, this study used different commercial plant proteins (soy, pea, cyanobacteria and wheat protein) with different transglutaminase (TGase) concentrations (0.1% and 0.5%), under defined temperatures (25℃ and 50 ℃) and incubation times (20 and 60 minutes) to establish a relationship between protein profile and food texture. Three different frozen shrimps (grass shrimp, prawn and lobster) were used as standards for comparison. The results show that the protein profile and scanning electron microscope of the three different frozen shrimps were slightly different. In plant proteins, the protein profile and texture were significantly affected with increasing TGase concentration, temperature and time of incubation. These three parameters had no effect on cyanobacteria and wheat proteins. In addition, it was found that soy and pea proteins after adding TGase had similar texture to frozen lobster. Experimental data indicate that adding 0.5% TGase to soy and pea protein could produce vegetarian shrimps with most similarity in protein profile and texture as lobster. Experimental data also show, that the flavor and springiness of food could be improved by using protein of cyanobacteria and wheat. In summary, this study may provide a database for preparing vegetarian shrimp.

Keywords: transglutaminase, plant protein, vegetarian shrimp, surface hydrophobicity, scanning electron microscope, texture analysis

碩士學位論文指導教授推薦書
碩士學位論文口試審定書
中文摘要..........................i
Abstract.........................ii
目錄.............................iii
圖目錄...........................viii
表目錄............................ix
第一章 緒論........................1
第二章 文獻回顧....................2
第一節 植物肉 (plant meat).........2
第二節 轉麩醯胺酶 (transglutaminase, TGase).................2
壹、轉麩醯胺酶來源及作用............3
貳、轉麩醯胺酶特性..................4
第三節 商用植物蛋白 (commercial plant protein)..............5
壹、大豆蛋白 (soy protein).........5
一、大豆蛋白組成...................6
(一)、蛋白質 (protein).............6
(二)、碳水化合物 (carbohydrate)....8
(三)、脂質 (lipid)................8
(四)、異黃酮 (isoflavones)........9
貳、豌豆蛋白 (pea protein)........9
一、豌豆蛋白組成..................9
參、小麥蛋白 (wheat protein)......11
一、小麥蛋白組成..................11
(一)、蛋白質 (protein)...........11
第四節 藻類蛋白 (algae protein)...12
壹、大型藻類及微藻特性............12
一、大型藻類 (macroalgae).........12
二、微藻 (microalgae)............13
貳、大型藻類及微藻之胺基酸組成.....13
參、大型藻類及微藻之應用..........14
一、人體.........................14
二、動物.........................14
肆、大型藻類及微藻的優點..........14
伍、微藻 – 藍藻 (cyanophyta).....15
一、藍藻營養組成.................15
二、藍藻之應用及功效.............16
第五節 蛋白質特性................16
壹、游離胺基酸 (free amino acids).........................16
貳、分子量 (molecular weight).............................17
參、表面疏水性 (surface hydrophobicity)....................17
肆、掃描式電子顯微鏡 (scanning electron microscope, SEM)....17
第六節 全質構分析 (texture profile analysis, TPA)...........18
壹、全質構分析項目及圖譜...........18
一、硬度 (hardness;N)............18
二、咀嚼性 (chewiness;N).........19
三、彈性 (springiness)............19
四、膠著性 (gumminess;N)..........19
五、回復性 (resilience)............19
六、內聚性 (cohesiveness)..........19
七、黏性 (adhesiveness;N)..........20
第三章 材料與方法...................21
第一節 實驗架構.....................21
第二節 儀器設備.....................22
第三節 實驗藥品.....................23
第四節 藥品配置.....................25
第五節 新鮮冷凍蝦及植物蛋白樣品來源...26
第六節 實驗方法.....................27
壹、蛋白質特性......................27
一、蛋白質定量......................27
二、游離胺基酸 (free amino acids).......................28
三、SDS-PAGE (sodium dodecyl sulfate polyacrylamide gel electrophoresis)..................28
(一)、膠體配置.....................28
(二)、樣品製備.....................29
(三)、染色及掃描...................29
四、表面疏水性 (surface hydrophobicity).....................29
五、掃描式電子顯微鏡 (Scanning electron microscope, SEM).....30
六、保水性 (moisture content)......30
貳、 質地分析 (texture analysis).........................31
一、新鮮冷凍蝦製備..................31
二、植物蛋白樣品製備................31
三、質構儀.........................31
第七節 統計分析....................32
第四章 實驗結果....................33
第一節 不同TGase濃度在不同反應溫度及時間下對植物蛋白游離胺基酸指數影響.........................33
第二節 植物蛋白在TGase作用下對分子量影響.....................38
第三節 植物蛋白在不同濃度TGase、不同反應溫度及時間下對表面疏水性之影響.........................42
第四節 在不同濃度TGase反應於不同溫度及時間下利用掃描式電子顯微鏡觀察植物蛋白內部微結構之變化..........46
第五節 植物蛋白在不同條件下觀察蒸煮前後對質地之影響.............59
第六節 植物蛋白在不同濃度TGase、不同反應時間及溫度下觀察蒸煮前後對保水性之影響......................73
第五章 討論........................79
第一節 游離胺基酸指數...............79
第二節 分子量大小..................80
第三節 表面疏水性..................82
第四節 SEM........................83
第五節 質地分析 – 硬度.............84
第六章 結論.......................86
參考文獻..........................87

圖目錄
圖一、轉麩醯胺酶催化反應............4
圖二、7S和11S球蛋白的結構...........7
圖三、小麥蛋白組成.................12
圖四、全質構分析圖譜...............20
圖五、實驗架構.....................21
圖六、三種新鮮冷凍蝦蒸煮前及蒸煮五分鐘後利用SDS-PAGE觀察分子量大小變化......................39
圖七、四種植物蛋白在不同TGase濃度、反應溫度及時間利用SDS-PAGE觀察分子量大小變化..................41
圖八、 三種新鮮冷凍蝦蒸煮前及蒸煮五分鐘後在掃描式電子顯微鏡圖..........48
圖九、四種植物蛋白在不同TGase濃度、反應溫度及時間掃描式電子顯微鏡圖.....52
圖十、四種植物蛋白在不同TGase濃度、反應溫度及時間,蒸煮後掃描式電子顯微鏡圖......................57

表目錄
表一、大豆蛋白主要成分..............7
表二、7S和11S球蛋白的組成..........8
表三、豌豆蛋白組成.................11
表四、四種植物蛋白基本成分分析.......27
表五、Separating gel 及 Stacking gel 組成.......................29
表六、三種新鮮冷凍蝦蒸煮前及蒸煮五分鐘後之游離胺基酸指數............35
表七、四種植物蛋白在不同TGase濃度、反應溫度及時間之游離胺基酸指數....36
表八、 三種新鮮冷凍蝦在蒸煮前及蒸煮五分鐘後之表面疏水性分析...........44
表九、四種植物蛋白在不同TGase濃度、反應溫度及時間之表面疏水性分析......45
表十、三種新鮮冷凍蝦蒸煮前及蒸煮五分鐘後硬度分析......................63
表十一、四種植物蛋白未蒸煮前在不同TGase濃度、反應時間及溫度下硬度分析..................64
表十二、四種植物蛋白蒸煮五分鐘後在不同TGase濃度、反應時間及溫度下硬度分析..................66
表十三、三種新鮮冷凍蝦蒸煮前及蒸煮五分鐘後彈性分析....................68
表十四、四種植物蛋白蒸煮前在不同TGase濃度、反應時間及溫度下彈性分析..................69
表十五、四種植物蛋白蒸煮五分鐘後在不同TGase濃度、反應時間及溫度下彈性分析...................71
表十六、三種新鮮冷凍蝦蒸煮前及蒸煮五分鐘後後保水性分析.................74
表十七、四種植物蛋白在TGase作用下蒸煮前保水性分析......................75
表十八、四種植物蛋白在TGase的作用下蒸煮五分鐘後保水性分析..............77


1. Broad, G.M., Plant-based and cell-based animal product alternatives: An assessment and agenda for food tech justice. Geoforum, 2019. 107: p. 223-226.

2. 經濟部研究發展委員會, 國內外經濟情勢分析. 109 年 1 月. 2020.

3. 蔡書憲等, 淨零碳排趨勢帶動之替代性肉品的產業發展、研究進展及未來挑戰. Chang Gung Journal of Science, 2021. 34: p. 1-15.

4. Santo, R.E., et al., Considering Plant-Based Meat Substitutes and Cell-Based Meats: A Public Health and Food Systems Perspective.Frontiers in Sustainable Food Systems, 2020. 4(134): p. 1-23.

5. Motoki, M. and K. Seguro, Transglutaminase and its use for food processing. Trends in Food Science & Technology, 1998. 9(5): p. 204-210.

6. Seki, N., et al., Transglutaminase Activity in Alaska Pollack Muscle and Surimi, and its Reaction with Myosin B. The Japanese Society of Fisheries Science, 1990. 56(1): p. 125-132.

7. Asagami, T., et al., Effect of Microbial trasglutaminase on the quality of Frozen Surimi Made from Various Kinds of Fish Species. Fisheries science, 1995. 61(2): p. 267-272.

8. Zhu, D., Q. Wu, and N. Wang, 3.02 - Industrial Enzymes, Comprehensive Biotechnology (Second Edition). 2011. p. 3-13.

9. Aeschlimann, D. and M. Paulsson, Transglutaminases: Protein Cross-Linking Enzymes in Tissues and Body Fluids. Thromb Haemost, 1994. 71(04): p. 402-415.

10. Klein, J.D., E. Guzman, and G.D. Kuehn, Purification and partial characterization of transglutaminase from Physarum polycephalum.Journal of Bacteriology, 1992. 174(8): p. 2599-2605.

11. Clark, P.K. and H.E. Snyder, Hydroperoxide formation in soybean seeds during storage. Journal of the American Oil Chemists' Society, 1991. 68: p. 346-347.

12. Pisano, J.J., J.S. Finlayson, and M.P. Peyton, Cross-link in fibrin polymerized by factor 13: epsilon-(gamma-glutamyl)lysine. Science, 1968. 160(3830): p. 892-893.

13. Huang, Z., et al., Analysis of the gel properties, microstructural characteristics, and intermolecular forces of soybean protein isolate gel induced by transglutaminase. Food Science & Nutrition, 2022. 10(3): p. 772-783.

14. Zhang, T., et al., Effect of ultrasound pretreatment on structural, physicochemical, rheological and gelation properties of transglutaminase cross-linked whey protein soluble aggregates.Ultrason Sonochem, 2021. 74: p. 105553.

15. Griffin, M., R. Casadio, and C.M. Bergamini, Transglutaminases: nature's biological glues. Acta Biomaterialia, 2002. 368(2): p. 377-396.

16. Ohtsuka, T., et al., Comparison of Deamidation Activity of Transglutaminases. Journal of Food Science 2001. 66(1): p. 25-29.

17. Kieliszek, M. and A. Misiewicz, Microbial transglutaminase and its application in the food industry. A review. Folia Microbiologica, 2014. 59(3): p. 241-250.

18. Akbari, M., S.H. Razavi, and M. Kieliszek, Recent advances in microbial transglutaminase biosynthesis and its application in the food industry. Trends in Food Science & Technology, 2021. 110: p. 458-469.

19. Hertzler, S.R., et al., Plant Proteins: Assessing Their Nutritional Quality and Effects on Health and Physical Function. Nutrients, 2020. 12(12): p. 3704.

20. Wolf, W.J., Soybean proteins. Their functional, chemical, and physical properties. Journal of Agricultural and Food Chemistry, 1970. 18(6): p. 969-976.

21. 蕭雨萱, 豆腐製備過程中大豆異黃酮、花青素轉換及與大豆蛋白之凝聚作用, 輔仁大學食品營養博士. 2018, 新北市. p. 154.

22. Barać, M.B., et al., Soy protein modification: A review. Acta periodica technologica, 2004(35): p. 3-16.

23. Kinsella, J.E., Functional properties of soy proteins. Journal of the American Oil Chemists' Society, 1979. 56(3): p. 242-258.

24. 陳櫻雪, 凝固劑對豆腐質地特性及異黃酮素保留之影響, 國立嘉義大學食品科學系研究所. 2004: 嘉義市. p. 129.

25. Petruccelli, S. and M.C. Anon, Soy Protein Isolate Components and Their Interactions. Journal of Agricultural and Food Chemistry, 1995. 43(7): p. 1762-1767.

26. Ruíz-Henestrosa, V.P., et al., Interfacial and foaming characteristics of soy globulins as a function of pH and ionic strength. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2007. 309(1): p. 202-215.

27. 張庭瑜, 加工條件對豆漿蛋白質結構與豆腐品質之影響, 中國文化大學生活應用科學系. 2011: 台北市. p. 94.

28. Salas, C., et al., On the surface interactions of proteins with lignin.ACS Applied Materials & Interfaces, 2013. 5: p. 199-206.

29. 謝恆昌, 豆漿與豆腐於加工過程中之異黃酮素分析和安定性的研究, 輔仁大學食品營養學系. 2003: 新北市. p. 219.

30. 韓立德, 蓋鈞鎰, 張文明, 大豆營養成分研究現狀. 種子, 2003. 5: p. 57-59.

31. Jung, Y.S., et al., A brief history and spectroscopic analysis of soy isoflavones. Food Science and Biotechnology, 2020. 29(12): p. 1605-1617.

32. Miyake, Y., et al., Soy, isoflavones, and prevalence of allergic rhinitis in Japanese women: the Osaka Maternal and Child Health Study.Journal of Allergy and Clinical Immunology, 2005. 115(6): p. 1176-1183.

33. Yamabe, S., et al., Effect of soybean varieties on the content and composition of isoflavone in rice-koji miso. Food Chemistry, 2007. 100(1): p. 369-374.

34. Barnes, S., The biochemistry, chemistry and physiology of the isoflavones in soybeans and their food products. Lymphatic Research and Biology, 2010. 8(1): p. 89-98.

35. Dahl, W.J., L.M. Foster, and R.T. Tyler, Review of the health benefits of peas (Pisum sativum L.). British Journal of Nutrition, 2012. 108(S1): p. 3-10.

36. Lam, A., et al., Pea protein isolates: Structure, extraction, and functionality. Food reviews international., 2018. 34(2): p. 126-147.

37. 李穎等, 豌豆蛋白餅乾的研制. 煙台南山學院食品科學系, 2018. 2: 山東省. p. 20-22.

38. Lu, Z.X., et al., Composition, physicochemical properties of pea protein and its application in functional foods. Critical Reviews in Food Science and Nutrition, 2020. 60(15): p. 2593-2605.

39. Stone, A.K., et al., Functional attributes of pea protein isolates prepared using different extraction methods and cultivars. Food Research International, 2015. 76: p. 31-38.

40. Yang, H., et al., Evaluation of nutritional quality of a novel pea protein. Agro FOOD industry hi-tech, 2012. 23(6): p. 8-10.

41. Zhao, H., et al., Comparison of wheat, soybean, rice, and pea protein properties for effective applications in food products. Journal of Food Biochemistry, 2020. 44(4): p. 13157.

42. Mertens, C., et al., Agronomical factors influencing the legumin/vicilin ratio in pea (Pisum sativum L.) seeds. Journal of the Science of Food and Agriculture, 2012. 92(8): p. 1591-1596.

43. Reinkensmeier, A., et al., Characterization of individual proteins in pea protein isolates and air classified samples. Food Research International, 2015. 76: p. 160-167.

44. Barac, M., et al., Profile and functional properties of seed proteins from six pea (Pisum sativum) genotypes. International journal of molecular sciences, 2010. 11(12): p. 4973-4990.

45. 雷昌貴, 盧大新, 陳錦屏, 小麥蛋白質的特性與麵條品質. 食品與藥品, 2006. 8(6): p. 27-30.

46. Godfray, H.C., et al., Food security: the challenge of feeding 9 billion people. Science, 2010. 327(5967): p. 812-818.

47. Bleakley, S. and M. Hayes, Algal Proteins: Extraction, Application, and Challenges Concerning Production. Foods, 2017. 6(5): p.33.

48. Machado, M., et al., Amino Acid Profile and Protein Quality Assessment of Macroalgae Produced in an Integrated Multi-Trophic Aquaculture System. Foods, 2020. 9(10): p. 1382.

49. Zubia, M., et al., Antioxidant and antitumoural activities of some Phaeophyta from Brittany coasts. Food Chemistry, 2009. 116(3): p. 693-701.

50. Brennan, L. and P. Owende, Biofuels from microalgae—A review of technologies for production, processing, and extractions of biofuels and co-products. Renewable and Sustainable Energy Reviews, 2010. 14(2): p. 557-577.

51. Dawczynski, C., R. Schubert, and G. Jahreis, Amino acids, fatty acids, and dietary fibre in edible seaweed products. Food Chemistry, 2007. 103(3): p. 891-899.

52. Leser, S., The 2013 FAO report on dietary protein quality evaluation in human nutrition: Recommendations and implications. Nutrition Bulletin, 2013. 38(4): p. 421-428.

53. MacArtain, P., et al., Nutritional value of edible seaweeds. Nutrition reviews, 2007. 65(12): p. 535-543.

54. Volkmann, H., et al., Cultivation of Arthrospira (spirulina) platensis in desalinator wastewater and salinated synthetic medium: protein content and amino-acid profile. Brazilian Journal of Microbiology, 2008. 39(1): p. 98-101.

55. Fleurence, J., et al., What are the prospects for using seaweed in human nutrition and for marine animals raised through aquaculture? Trends in Food Science & Technology, 2012. 27(1): p. 57-61.

56. Pulz, O. and W. Gross, Valuable products from biotechnology of microalgae. Applied Microbiology and Biotechnology, 2004. 65(6): p. 635-648.

57. Tokuşoglu, Ö. and M.K. üUnal, Biomass Nutrient Profiles of Three Microalgae: Spirulina platensis, Chlorella vulgaris, and Isochrisis galbana. Journal of Food Science, 2003. 68(4): p. 1144-1148.

58. Spolaore, P., et al., Commercial applications of microalgae. Journal of Bioscience and Bioengineering, 2006. 101(2): p. 87-96.

59. Becker, W., Microalgae in Human and Animal Nutrition. Handbook of Microalgal Culture. 2003. p. 312-351.

60. Holman, B. and A. Malau-Aduli, Spirulina as a livestock supplement and animal feed. Journal of animal physiology and animal nutrition, 2012. 97(4): p. 615-623.

61. Wallace, J.S., Increasing agricultural water use efficiency to meet future food production. Agriculture, Ecosystems & Environment, 2000. 82(1): p. 105-119.

62. Sampath-Wiley, P., C.D. Neefus, and L.S. Jahnke, Seasonal effects of sun exposure and emersion on intertidal seaweed physiology: Fluctuations in antioxidant contents, photosynthetic pigments and photosynthetic efficiency in the red alga Porphyra umbilicalis Kützing (Rhodophyta, Bangiales). Journal of Experimental Marine Biology and Ecology, 2008. 361(2): p. 83-91.

63. Tang, G. and P.M. Suter, Vitamin A, nutrition, and health values of algae: Spirulina, Chlorella, and Dunaliella. Journal of Pharmacy and Nutrition Sciences, 2011. 1(2): p. 111-118.

64. Singh, S., B.N. Kate, and U.C. Banerjee, Bioactive compounds from cyanobacteria and microalgae: an overview. Critical reviews in biotechnology, 2005. 25(3): p. 73-95.

65. Grossmann, L., J. Hinrichs, and J. Weiss, Cultivation and downstream processing of microalgae and cyanobacteria to generate protein-based technofunctional food ingredients. Critical reviews in food science and nutrition, 2020. 60(17): p. 2961-2989.

66. Nweze, N., Ecological implications and roles of cyanobacteria (cyanophyta) in food security–A review. Plant Product Research Journal, 2009. 13: p. 8-14.

67. 劉寶亮, 藍藻的綜合利用. 常州工學院理學院化工系, 2009. 18: 江蘇省. p. 77-77.

68. 許玲等, 藍藻綜和利用研究現狀. 現代農業科技, 2010. 8: p. 283-284.

69. Huang, W., et al., Effects of transglutaminase on the rheological and Mixolab thermomechanical characteristics of oat dough. Food Chemistry, 2010. 121(4): p. 934-939.

70. Wang, F., et al., Effects of transglutaminase on the rheological and noodle-making characteristics of oat dough containing vital wheat gluten or egg albumin. Journal of Cereal Science, 2011. 54(1): p. 53-59.

71. Du, J., L. Li, and S. Zhou, Microbial production of cyanophycin: From enzymes to biopolymers. Biotechnology advances, 2019. 37(7): p. 107400.

72. Li, J., et al., Low temperature extrusion promotes transglutaminase cross-linking of whey protein isolate and enhances its emulsifying properties and water holding capacity. Food Hydrocolloids, 2022. 125: p. 107410.

73. Ding, X., et al., Influence of transglutaminase‐assisted ultrasound treatment on the structure and functional properties of soy protein isolate. Journal of Food Processing and Preservation, 2019. 43(11): p. 14203.

74. Hou, H.J. and S.K.C. Chang, Yield and Quality of Soft Tofu As Affected by Soybean Physical Damage and Storage. Journal of Agricultural and Food Chemistry, 1998. 46(12): p. 4798-4805.

75. Zhang, A., et al., Effects of transglutaminase glycosylated soy protein isolate on its structure and interfacial properties. Journal of the Science of Food and Agriculture, 2021. 101(12): p. 5097-5105.

76. Wu, J., H.J.J.o.t.S.o.F. Corke, and Agriculture, Quality of dried white salted noodles affected by microbial transglutaminase. Journal of the Science of Food and Agriculture, 2005. 85(15): p. 2587-2594.

77. 謝泓鈞, 加熱及加壓處理對 transglutaminase(TGase)在吳郭魚魚漿中凝膠作用之影響, 國立中興大學食品科學系. 2004: 台中市. p. 100.

78. Kang, M.J., S.J. Chung, and S.S. Kim, The Effects of Transglutaminase and Refrigerated Storage on the Physicochemical Properties of Whole Wheat Dough and Noodles. Foods, 2021. 10(7): p. 1675.

79. Uran, H. and I. Yilmaz, A research on determination of quality characteristics of chicken burgers produced with transglutaminase supplementation. Food Science and Technology, 2017. 38: p. 19-25.

80. 王海鷗, 姜松, 質購分析(TPA)及測試條件對麵包品質的影響.糧油食品科技, 2004. 12(3): p. 1-4.

81. 張浩玉, 黃星奕, 醋豆產品的質地分析(TPA)試驗研究. 中國良遊學報, 2008. 23(3): p. 181-185.

82. Guiné, R., et al., Effect of Chemical Pretreatments on the Physical Properties of Kiwi. International Journal of Food Engineering, 2016. 2(2): p. 90-95.

83. Ernst, O. and T. Zor, Linearization of the bradford protein assay.Journal of Visualized Experiments, 2010. 38: p. 1918.

84. 趙毓謙, 油炸裹麵漿重組魚排之研究, 國立宜蘭大學食品科學系. 2007: 宜蘭縣. p. 100.

85. Yang, T., et al., Effects of Nitrogen Fertilizer on Quality Characteristics of Wheat with the Absence of Different Individual High-Molecular-Weight Glutenin Subunits (HMW-GSs).International Journal of Molecular Sciences, 2022. 23(4): p. 2178.
電子全文 電子全文(網際網路公開日期:20270722)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top