跳到主要內容

臺灣博碩士論文加值系統

(44.201.72.250) 您好!臺灣時間:2023/09/24 06:06
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:詹凱淵
研究生(外文):Kai Yuan Jhan
論文名稱:小鼠感染廣東住血線蟲後引發空間學習與記憶障礙機制之探討
論文名稱(外文):Study on the mechanism of spatial learning and memory impairment induced by mice infected with Angiostrongylus cantonensis
指導教授:王蓮成
指導教授(外文):L. C. Wang
學位類別:博士
校院名稱:長庚大學
系所名稱:生物醫學研究所
學門:生命科學學門
學類:生物化學學類
論文種類:學術論文
論文出版年:2022
畢業學年度:110
語文別:英文
論文頁數:119
中文關鍵詞:廣東住血線蟲嗜伊紅性腦膜炎嗜伊紅性腦膜腦炎認知障礙治療策略突觸喪失
外文關鍵詞:Angiostrongylus cantonensiseosinophilic meningitiseosinophilic meningoencephalitiscognitive impairmentstherapeutic strategiessynaptic loss
相關次數:
  • 被引用被引用:0
  • 點閱點閱:30
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
TABLE OF CONTENTS

中文摘要…………………………………………………………...……..i
ABSTRACT...……………………………………………………..……iii
TABLE OF CONTENTS……………………………………...….…….v
FIGURE………………………………………………………………..viii
TABLE………………………………………………………………….xii
Chapter 1. BACKGROUND AND SIGNIFICANCE…………...…….1
1.1 Human angiostrongyliasis……..……………………………….…1
1.2 Clinical Manifestations and Pathology………………..……….…2
1.3 Changes in Animal Behavior Caused by Parasitic Infections and Other Pathogens……………..…………………………………....4
1.4 Animal Model for This Study…………..…………………….…..8
1.5 Evaluation on Factors Associated with the Cognitive Deficits……………..………………………………………...….11
1.5.1 Learning and Memory Test………………………...…...…11
1.5.2 Neuronal Death…………...…………………………….....12
1.5.3 Synaptic integrity………………...…………………….….14
Chapter 2. SPECIFIC AIMS………………….…………………...….16
Chapter 3. EXPERIMENTAL DESIGNS AND RATIONALE….…18
Chapter 4. MATERIALS AND METHODS…….…………………...20
4.1 Establishment and Maintenance of the Life Cycle of A. cantonensis……..…………………………………………….….20
4.2 Experimental Animals………………………………..……..…..21
4.3 Experimental Infection………………..…………………..…….21
4.4 Chemotherapy...………...…………………………………...…..21
4.5 Survival rates…………………………..………………………..22
4.6 Y-Maze Test………………………..……………………….…..22
4.7 Morris Water Maze Test……………………………..….………23
4.8 Novel Object Recognition Task………………………..………..24
4.9 Collection of Blood and Brain Specimens…………..……….….25
4.10 Preparation of Sera………………………………………….….25
4.11 Brain Sections for Pathological Analysis…………..…….……25
4.12 Brain Regions for Western Blotting…………………………...26
4.13 Golgi Staining……………………………………………….…26
4.14 Western Blotting…………………………………………….....27
4.15 Immunochemical Staining……………………………………..27
4.16 Enzyme-Linked Immunosorbent Assay……………………..…28
4.17 Hematoxylin and Eosin Staining…………………………..…..28
4.18 Histopathological Examination………………………………...29
4.19 Sholl analysis…………………………………………………..29
4.20 TUNEL Assay…………………………………………...……..30
4.21 Statistical Analysis…………………………………………..…30
Chapter 5. RESULTS……………………….……………………...….31
Chapter 6. DISCUSSION……….………………………………….….38
REFERENCES…………………………………………………………51
FIGURES AND TABLES………………………………………..……67
ABBREVIATIONS…………………………………………………….94
APPENDICES………………………………………………………….96
LIST OF PUBLICATIONS………………………………..….……..100


FIGURES

Figure. 1. Life cycle of Angiostrongylus cantonensis…………….……68
Figure. 2. Evaluation of spatial learning and memory of C57BL/6 mice before and after A. cantonensis infection by Morris water maze……………………………………………………..…..69
Figure 3. Evaluation of spatial memory of C57BL/6 mice before and after A. cantonensis infection by NOR task……………..….70
Figure 4. Evaluation of spatial working memory of C57BL/6 mice before and after A. cantonensis infection by Y maze………………71
Figure. 5. Evaluation of spatial learning and memory of infected C57BL/6 mice before and after treatment by Morris water maze……………………………………………………...….72
Figure. 6. Induction of dendrite damages in CA1 pyramidal neurons in A. cantonensis infected mice detected by Golgi staining……....73
Figure. 7. Induction of dendritic spines damages in CA1 pyramidal neurons in A. cantonensis infected mice detected by Golgi staining……………………………………………….……..74
Figure. 8. Induction of dendrite damages in CA1 pyramidal neurons in A. cantonensis infected mice before and after treatment detected by Golgi staining……………………………………...……..75
Figure 9. Changes in the level of PSD95 expression in hippocampus of mice infected with A. cantonensis detected by immunohistochemistry…………………………………...…76
Figure. 10. Changes in the level of synaptophysin expression in hippocampus of mice infected with A. cantonensis detected by immunohistochemistry………………………………...……77
Figure. 11. Changes in the level of NeuN expression in hippocampus of mice infected with A. cantonensis detected by immunohistochemistry………………………………...……78
Figure. 12. Changes in the level of PSD95, synaptophysin and NeuN expression in hippocampus of mice infected with A. cantonensis detected by Western blotting…………………………………………………...…79
Figure. 13. Changes in the level of PSD95, synaptophysin and NeuN expression in prefrontal cortex of mice infected with A. cantonensis detected by Western blotting…………………..80
Figure. 14. Changes in the level of PSD95, synaptophysin and NeuN expression in hippocampus of mice infected with A. cantonensis before and after treatment detected by Western blotting…………………………………………………..…..81
Figure. 15. Changes in the level of PSD95, synaptophysin and NeuN expression in prefrontal cortex of mice infected with A. cantonensis before and after treatment detected by Western blotting…………………………………………….……...…82
Figure. 16. Survival rates of infected mice………………………….….83
Figure. 17. Pathological changes in brain section of infected mice….....84
Figure. 18. Pathological changes in brain section of infected mice before and after treatment……………………………………….….85
Figure. 19. Presence of larvae in different section of brain………...…..86
Figure. 20. Recovery rate and length of larvae in the brain of infected mice at different time points…………………………….…..87
Figure. 21. Expression of cell death-related proteins in the brain of C57BL/6 mice infected with A. cantonensis………………..88
Figure. 22. Expression of cell death-related proteins in the brain of C57BL/6 mice infected with A. cantonensis before and after treatment………………………………………………...…..89
Figure. 23. Fluorometric in situ cell death detection (TUNEL staining)……………………………………………………..90
Figure. 24. Peripheral immunoglobulin expressions in C57BL/6 mice infected with A. cantonensis……………………………...…91
Figure. 25. Synaptic loss and progression in mice infected with Angiostrongylus cantonensis in the early stage……………..92
Supplementary Figure. 1. Functional regions of the mouse brain for Western Blotting…………………………………………….93


TABLE

Table. 1. Correlation between occurrence of eosinophilic meningitis and the presence of larvae in meningitis in brain sections of SD rats and ICR mice infected with different numbers of third-stage larvae (L3) of Angiostrongylus cantonensis………………..….67
REFERENCES

Alicata JE. 1991. The discovery of Angiostrongylus cantonensis as a cause of human eosinophilic meningitis. Parasitol Today. 7:151–153.
Andrade GC, Dias JRO, Maia A, Kanecadan LA, Moraes NSB, Belfort Jr R, Lasiste JME, Burnier MN, 2018. Intravitreal Angiostrongylus cantonensis: first case report in South America. Arq Bras Oftalmol. 81:63–65.
Bandilla M, Hakalahti-Sirén T, Valtonen ET. 2007. Experimental evidence for a hierarchy of mate- and host-induced cues in a fish ectoparasite, Argulus coregoni (Crustacea: Branchiura). Int J Parasitol. 37:1343–1349.
Bitzer-Quintero OK, González-Burgos I. 2012. Immune system in the brain: a modulatory role on dendritic spine morphophysiology? Neural plast. 348642.
Boje KM, Arora PK. 1992. Microglial-produced nitric oxide and reactive nitrogen oxides mediate neuronal cell death. Brain Res. 587:250–256.
Burda JE, Sofroniew MV. 2014. Reactive gliosis and the multicellular response to CNS damage and disease. Neuron. 81:229–48.
Chang PK, Yu L, Chen JC. 2018. Dopamine D3 receptor blockade rescues hyper-dopamine activity-induced deficit in novel object recognition memory. Neuropharmacology. 133:216–223.
Chao CC, Hu S, Molitor TW, Shaskan EG, Peterson PK. 1992. Activated microglia mediate neuronal cell injury via a nitric oxide mechanism. J Immunol. 149:2736–41.
Chao CC, Hu S, Ehrlich L, Peterson PK. 1995. Interleukin-1 and tumor necrosis factor-alpha synergistically mediate neurotoxicity: involvement of nitric oxide and of N-methyl-D-aspartate receptors. Brain Behav Immun. 9:355–365.
Chegeni TN, Sarvi S, Moosazadeh M, Sharif M, Aghayan SA, Amouei A, Hosseininejad Z, Daryani A. 2019. Is Toxoplasma gondii a potential risk factor for Alzheimer's disease? A systematic review and meta-analysis. Microb Pathog. 137:103751.
Chen X, Oppenheim JJ, Howard OM. 2005. BALB/c mice have more CD4+CD25+ T regulatory cells and show greater susceptibility to suppression of their CD4+CD25- responder T cells than C57BL/6 mice. J Leukoc Biol. 78:114–121.
Chen KY, Chiu CH, Wang LC. 2017. Anti-apoptotic effects of Sonic hedgehog signalling through oxidative stress reduction in astrocytes co-cultured with excretory-secretory products of larval Angiostrongylus cantonensis. Sci Rep. 7:41574.
Chen KY, Wang LC. 2017. Stimulation of IL-1β and IL-6 through NF-κB and sonic hedgehog-dependent pathways in mouse astrocytes by excretory/secretory products of fifth-stage larval Angiostrongylus cantonensis. Parasit Vectors. 10:445.
Chi H, Chang HY, Sang TK. 2018. Neuronal cell death mechanisms in major neurodegenerative diseases. Int J Mol Sci. 19pii: E3082.
Cho J. 2006. Antioxidant and neuroprotective effects of hesperidin and its aglycone hesperetin. Arch Pharm Res. 29:699–706.
Chou CM, Lee YL, Liao CW, Huang YC, Fan CK. 2017. Enhanced expressions of neurodegeneration-associated factors, UPS impairment, and excess Aβ accumulation in the hippocampus of mice with persistent cerebral toxocariasis. Parasit Vectors. 10:620.
Cobley JN, Fiorello ML, Bailey DM. 2018. 13 reasons why the brain is susceptible to oxidative stress. Redox Biol. 15:490–503.
Cooke-Yarborough CM, Kornberg AJ, Hogg GG, Spratt DM, Forsyth JR, 1999. A fatal case of angiostrongyliasis in an 11-month-old infant. Med J Australia. 170:541–543.
Cox DM, Holland CV. 2001. Relationship between three intensity levels of Toxocara canis larvae in the brain and effects on exploration, anxiety, learning and memory in the murine host. J Helminthol. 75:33–41.
Daniels BP, Sestito SR, Rouse ST. 2015. An expanded task battery in the Morris water maze reveals effects of Toxoplasma gondii infection on learning and memory in rats. Parasitol Int. 64:5–12.
de Andrade Teles RB, Diniz TC, Pinto TCC, de Oliveira Júnior RG, Silva MGE, de Lavor ÉM, Fernandes AWC, de Oliveira AP, de Almeida Ribeiro FPR, da Silva AAM, Cavalcante TCF, Júnior LJQ, da Silva Almeida JRG. 2018. Flavonoids as therapeutic agents in Alzheimer's and Parkinson's diseases: a systematic review of preclinical evidences. Oxid Med Cell Longev. 2018:7043213.
De Chiara G, Marcocci ME, Sgarbanti R, Civitelli L, Ripoli C, Piacentini R, Garaci E, Grassi C, Palamara AT. 2012. Infectious agents and neurodegeneration. Mol Neurobiol. 46:614–638.
Delint-Ramírez I, Salcedo-Tello P, Bermudez-Rattoni F. 2008. Spatial memory formation induces recruitment of NMDA receptor and PSD‐95 to synaptic lipid rafts. J Neurochem. 106:1658–1668.
Demandt N, Saus B, Kurvers RHJM, Krause J, Kurtz J, Scharsack JP. 2018. Parasite-infected sticklebacks increase the risk-taking behaviour of uninfected group members. Proc Biol Sci. 285:20180956.
D’Hooge R, De Deyn PP. 2001. Applications of the Morris water maze in the study of learning and memory. Brain Res Rev. 36:60–90.
DiSabato DJ, Quan N, Godbout JP. 2016. Neuroinflammation: the devil is in the details. J Neurochem. 139 Suppl 2:136–153.
Donat CK, Scott G, Gentleman SM, Sastre M. 2017. Microglial activation in traumatic brain injury. Front Aging Neurosci. 9:208.
ElAli A, Rivest S. 2016. Microglia ontology and signaling. Front Cel Dev Biol. 4:72.
Ennaceur A. 2010. One-trial object recognition in rats and mice: methodological and theoretical issues. Behav Brain Res. 215:244–254.
Evans AK, Strassmann PS, Lee IP, Sapolsky RM. 2014. Patterns of Toxoplasma gondii cyst distribution in the forebrain associate with individual variation in predator odor avoidance and anxiety-related behavior in male Long–Evans rats. Brain Behav Immun. 37:122–133.
Failla MD, Conley YP, Wagner AK. 2016. Brain-derived neurotrophic factor in traumatic brain injury-related mortality: interrelationships between genetics and acute systemic and central nervous system BDNF profiles. Neurorehabil Neural Repair. 30:83–93.
Farías JG, Molina VM, Carrasco RA, Zepeda AB, Figueroa E, Letelier P, Castillo RL. 2017. Antioxidant therapeutic strategies for cardiovascular conditions associated with oxidative stress. Nutrients. 9:966.
Frankfurt M, Luine V. 2015. The evolving role of dendritic spines and memory: interaction(s) with estradiol. Hormones and Behavior. 74:28–36.
Frick KM, Fernandez SM. 2003. Enrichment enhances spatial memory and increases synaptophysin levels in aged female mice. Neurobiol Aging. 24:615–626.
Gibertini M, Newton C, Friedman H, Klein TW. 1995. Spatial learning impairment in mice infected with Legionella pneumophila or administered exogenous interleukin-1-beta. Brain Behav Immun. 9:113–128.
Gosnell WL, Kramer KJ. 2013. The role of eosinophils in angiostrongyliasis: multiple roles for a versatile cell? Hawaii J Med Public Health. 72:49-51.
Gudi V, Gai L, Herder V, Tejedor LS, Kipp M, Amor S, Sühs KW, Hansmann F, Beineke A, Baumgärtner W, Stangel M, Skripuletz T. 2017. Synaptophysin is a reliable marker for axonal damage. J Neuropathol Exp Neurol. 76:109–125.
Gueders MM, Paulissen G, Crahay C, Quesada-Calvo F, Hacha J, Van Hove C, Tournoy K, Louis R, Foidart JM, Noël A, Cataldo DD. 2009. Mouse models of asthma: a comparison between C57BL/6 and BALB/c strains regarding bronchial responsiveness, inflammation, and cytokine production. Inflamm Res. 58:845–854.
Guo PJ, Zhan XM, Gan M, Pan ZH, Yu YJ, Zhang MC, Qu ZY, Li ZY, He A, 2008. Pathological change in the brain of mice infected with Angiostrongylus cantonensis. Chinese J Parasitol Parasitic Dis. 26:353–355.
Gustafsson D, Klang A, Thams S, Rostami E. 2021. The role of BDNF in experimental and clinical traumatic brain injury. Int J Mol Sci. 22:3582.
Henstridge CM, Pickett E, Spires-Jones TL. 2016. Synaptic pathology: A shared mechanism in neurological disease. Ageing Res Rev. 28:72–84.
Hughes RN. 2004. The value of spontaneous alternation behavior (SAB) as a test of retention in pharmacological investigations of memory. Neurosci Biobehav Rev. 28:497–505.
Hwang KP, Chen ER, 1988. Larvicidal effect of albendazole against Angiostrongylus cantonensis in mice. Am J Trop Med Hyg. 39:191–195.
Hwang KP, Chen ER, 1991. Clinical studies on Angiostrongyliasis cantonensis among children in Taiwan. Southeast Asian J. Trop. Med. Public Health. 22 Suppl:194–199.
Hwang KP, Chen ER, Chen TS, 1994. Eosinophilic meningitis and meningoencephalitis in children. Acta Pediar Sinica, 35:124–135.
Jeohn GH, Kong LY, Wilson B, Hudson P, Hong JS. 1998. Synergistic neurotoxic effects of combined treatments with cytokines in murine primary mixed neuron/glia cultures. J Neuroimmunol. 85:1–10.
Jhan KY, Lai GJ, Chang PK, Tang RY, Cheng CJ, Chen KY, Wang LC. 2020. Angiostrongylus cantonensis causes cognitive impairments in heavily infected BALB/c and C57BL/6 mice. Parasit Vectors. 13:405.
Jhan KY, Chang PK, Cheng CJ, Jung SM, Wang LC. 2022. Synaptic loss and progression in mice infected with Angiostrongylus cantonensis in the early stage. J Neuroinflammation. 19(1):85.
Jo MG, Ikram M, Jo MH, Yoo L, Chung KC, Nah SY, Hwang H, Rhim H, Kim MO. 2019. Gintonin mitigates MPTP-induced loss of nigrostriatal dopaminergic neurons and accumulation of α-synuclein via the Nrf2/HO-1 pathway. Mol Neurobiol. 56:39–55.
John DT, Martinez AJ. 1975. Animal model: eosinophilic meningoencephalitis in mice infected with Angiostrongylus cantonensis. Am J Pathol. 80:345–348
Jovicic N, Jeftic I, Jovanovic I, Radosavljevic G, Arsenijevic N, Lukic ML, Pejnovic N. 2015. Differential Immunometabolic phenotype in Th1 and Th2 dominant mouse strains in response to high-fat feeding. PLoS One. 10:e0134089.
Jurgens HA, Amancherla K, Johnson RW. 2012. Influenza infection induces neuroinflammation, alters hippocampal neuron morphology, and impairs cognition in adult mice. J Neurosci. 32:3958–3968.
Kavaliers M, Colwell DD. 1995. Reduced spatial learning in mice infected with the nematode, Heligmosomoides polygyrus. Parasitology. 110:591–597.
Kim YS, Joh TH. 2006. Microglia, major player in the brain inflammation: their roles in the pathogenesis of Parkinson's disease. Exp Mol Med. 38:333–47.
Klein RS, Garber C, Howard N. 2017. Infectious immunity in the central nervous system and brain function. Nat Immunol. 18:132–141.
Kramer KJ, Posner J, Gosnell WL, 2018. Role of gastropod mucus in the transmission of Angiostrongylus cantonensis, a potentially serious neurological infection. ACS Chem Neurosci, 9:629–632.
Lamprecht R, LeDoux J. 2004. Structural plasticity and memory. Nat Rev Neurosci. 5:45–54.
Li Y, Du XF, Liu CS, Wen ZL, Du JL. 2012. Reciprocal regulation between resting microglial dynamics and neuronal activity in vivo. Dev Cell. 23:1189–202.
Lindo JF, Escoffery CT, Reid B, Codrington G, Cunningham-Myrie C, Eberhard ML, 2004. Fatal autochthonous eosinophilic meningitis in a Jamaican child caused by Angiostrongylus cantonensis. Am J Trop Med Hyg. 70:425–428.
London A, Cohen M, Schwartz M. 2013. Microglia and monocyte-derived macrophages: functionally distinct populations that act in concert in CNS plasticity and repair. Front Cell Neurosci. 7:34.
Loot G, Brosse S, Lek S, Guégan JF. 2008. Behaviour of roach (Rutilus rutilus L.) altered by Ligula intestinalis (Cestoda: Pseudophyllidea): a field demonstration. Freshw Biol. 46:1219–1122.
Lotsch F, Vingerling R, Spijker R, Grobusch MP. 2017. Toxocariasis in humans in Africa—a systematic review. Travel Med Infect Dis. 20:15–25.
Lotz SK, Blackhurst BM, Reagin KL, Funk KE. 2021. Microbial infections are a risk factor for neurodegenerative diseases. Front Cell Neurosci. 15:691136.
Mahmmoud RR, Sase S, Aher YD, Sase A, Gröger M, Mokhtar M, Höger H, Lubec G. 2015. Spatial and working memory is linked to spine density and mushroom Spines. Plos One. 10:e0139739.
McGuire SO, Ling ZD, Lipton JW, Sortwell CE, Collier TJ, Carvey PM. 2001. Tumor necrosis factor alpha is toxic to embryonic mesencephalic dopamine neurons. Exp Neurol. 169:219–230.
McLean JH, Shipley MT, Bernstein DI, Corbett D. 1993. Selective lesions of neural pathways following viral inoculation of the olfactory bulb. Exp Neurol. 122:209–222.
Morris RGM. 1981. Spatial localization does not require the presence of local cues. Learn Motiv. 12:239–260.
Murphy GS, Johnson S, 2013. Clinical aspects of eosinophilic meningitis and meningoencephalitis caused by Angiostrongylus cantonensis, the rat lungworm. Hawaii J Med Public Health, 72 Suppl 2:35–40.
Nayak D, Roth TL, McGavern DB. 2014. Microglia development and function. Annu Rev Immunol. 32:367–402.
Negroni A, Cucchiara S, Stronati L. 2015. Apoptosis, necrosis, and necroptosis in the gut and intestinal homeostasis. Mediators Inflamm. 2015:250762.
Nelson MM, Jones AR, Carmen JC, Sinai AP, Burchmore R, Wastling JM. 2008. Modulation of the host cell proteome by the intracellular apicomplexan parasite Toxoplasma gondii. Infect Immun. 76:828–844.
Ngô HM, Zhou Y, Lorenzi H, Wang K, Kim TK, Zhou Y, Bissati KE, Mui E, Fraczek L, Rajagopala SV, Roberts CW, Henriquez FL, Montpetit A, Blackwell JM, Jamieson SE, Wheeler K, Begeman IJ, Naranjo-Galvis C, Alliey-Rodriguez N, Davis RG, Soroceanu L, Cobbs C, Steindler DA, Boyer K, Noble AG, Swisher CN, Heydemann PT, Rabiah P, Withers S, Soteropoulos P, Hood L, McLeod R. 2017. Toxoplasma modulates signature pathways of human epilepsy, neurodegeneration and cancer. Sci Rep. 7:11496.
Nomura S, Lin H. 1945. First clinical case of Haemostrongylus ratti (Japennnese text). Taiwan No Ikai. 3: 589–592.
Paolicelli RC, Bolasco G, Pagani F, Maggi L, Scianni M, Panzanelli P, Giustetto M, Ferreira TA, Guiducci E, Dumas L, Ragozzino D, Gross CT. 2011. Synaptic pruning by microglia is necessary for normal brain development. Science. 333:1456–8.
Paris L, El Alaoui H, Delbac F, Diogon M. 2018. Effects of the gut parasite Nosema ceranae on honey bee physiology and behavior. Curr Opin Insect Sci. 26:149–154.
Paxinos G, Franklin KBJ. 2001. The mouse brain in stereotaxic coordinates, second edition. USA. Academic Press. 151.
Perez O, Capron M, Lastre M, Venge P, Khalife J, Capron A, 1989. Angiostrongylus cantonensis: role of eosinophils in the neurotoxic syndrome (Gordon-like phenomenon). Exp Parasitol. 68:403–413.
Perry VH, Teeling J. 2013. Microglia and macrophages of the central nervous system: the contribution of microglia priming and systemic inflammation to chronic neurodegeneration. Semin Immunopathol. 35:601–12.
Pont-Lezica L, Béchade C, Belarif-Cantaut Y, Pascual O, Bessis A. 2011. Physiological roles of microglia during development. J Neurochem. 119:901–908.
Preston AR, Eichenbaum H. 2013. Interplay of hippocampus and prefrontal cortex in memory. Curr Biol. 23: R764–73.
Rosen L, Chappell R, Laqueur GL, Wallace GD, Weinstein PP, 1962. Eosinophilic meningoencephalitis caused by a metastrongylid lung-worm of rats. JAMA. 179:620–624.
Sasaki D, Sugaya H, Ishida K, Yoshimura K. 1993. Ablation of eosinophils with anti-IL-5 antibody enhances the survival of intracranial worms of Angiostrongylus cantonensis in mouse. Parasite Immunol. 15:349–354
Skaper SD, Facci L, Zusso M, Giusti P. 2018. An inflammation-centric view of neurological disease: beyond the neuron. Front Cell Neurosci. 12:72.
Sonakul D, 1978. Pathological findings in four cases of human angiostrongyliasis. Southeast Asian J Trop Med Public Health. 9:220–227.
Squarzoni P, Oller G, Hoeffel G, Pont-Lezica L, Rostaing P, Low D, Bessis A, Ginhoux F, Garel S. 2014. Microglia modulate wiring of the embryonic forebrain. Cell Rep. 8:1271–1279.
Uttara B, Singh AV, Zamboni P, Mahajan RT. 2009. Oxidative stress and neurodegenerative diseases: a review of upstream and downstream antioxidant therapeutic options. Curr Neuropharmacol. 7:65–74.
Wakade C, Sukumari-Ramesh S, Laird MD, Dhandapani KM, Vender JR. 2010. Delayed reduction in hippocampal postsynaptic density protein-95 expression temporally correlates with cognitive dysfunction following controlled cortical impact in mice. J Neurosurg. 113:1195–1201.
Wang HL, Bao AY, Wang GH, Jiang MS, Liu ZC, Dong HF, Guo Y. 2006. Effect of chronic Toxoplasma infection on the spatial learning and memory capability in mice. Zhongguo Ji Sheng Chong Xue Yu Ji Sheng Chong Bing Za Zhi. 24:114–118.
Wang LC, Wan YL. 2004. Alteration of antibodies against the fifth-stage larvae and changes in brain magnetic resonance images in experimentally infected rabbits with Angiostrongylus cantonensis. J Parasitol. 90:1193–1196.
Wang LC, Wan DP, Jung SM, Chen CC, Wong HF, Wan YL. 2005. Magnetic resonance imaging findings in the brains of rabbits infected with Angiostrongylus cantonensis: a long-term investigation. J Parasitol. 91:1237–1239.
Wang LC, Jung SM, Chen KY, Wang TY, Li CH, 2015. Temporal-spatial pathological changes in the brains of permissive and non-permissive hosts experimentally infected with Angiostrongylus cantonensis. Exp Parasitol. 157:177–184.
Wang QP, Lai DH, Zhu XQ, Chen XG, Lun ZR. 2008. Human angiostrongyliasis. Lancet Infect Dis. 8:621–630
Wang QP, Wu ZD, Wei J, Owen RL, Lun ZR, 2012. Human Angiostrongylus cantonensis: an update. Eur J Clin Microbiol Infect Dis. 31:389–395.
Wang TY, Chen KY, Jhan KY, Li CH, Jung SM, Wang LC. 2018. Temporal-spatial expressions of interleukin-4, interleukin-10, and interleukin-13 in the brains of C57BL/6 and BALB/c mice infected with Angiostrongylus cantonensis: An immunohistochemical study. J Microbiol Immunol Infect. 53:592–603.
Webster JP. 2001. Rats, cats, people and parasites: the impact of latent toxoplasmosis on behaviour. Microbes Infect. 3:1037–1045.
Wei J, Wu F, He A, Zeng X, Ouyang LS, Liu MS, Zheng HQ, Lei WL, Wu ZD, Lv ZY. 2015. Microglia activation: one of the checkpoints in the CNS inflammation caused by Angiostrongylus cantonensis infection in rodent model. Parasitol Res. 114:3247–3254.
Wellmer A, Noeske C, Gerber J, Munzel U, Nau R. 2000. Spatial memory and learning deficits after experimental pneumococcal meningitis in mice. Neurosci Lett. 296:137–140.
Williamson G, Kay CD, Crozier A. 2018. The bioavailability, transport, and bioactivity of dietary flavonoids: a review from a historical perspective. Compr Rev Food Sci Food Saf. 17:1054–112
Witoonpanich R, Chuahirun S, Soranastaporn S, Rojanasunan P, 1991. Eosinophilic myelomeningo-encephalitis caused by Angiostrongylus cantonensis: a report of three cases. Southeast Asian J Trop Med Pub Health. 22:262–267.
Xie Z, Wei M, Morgan TE, Fabrizio P, Han D, Finch CE, Longo VD. 2002. Peroxynitrite mediates neurotoxicity of amyloid beta-peptide1-42- and lipopolysaccharide-activated microglia. J Neurosci. 22:3484–3492.
Yan BC, Park JH, Ahn JH, Lee JC, Won MH, Kang IJ. 2013. Postsynaptic density protein (PSD)-95 expression is markedly decreased in the hippocampal CA1 region after experimental ischemia–reperfusion injury. J Neurol Sci. 330:111–116.
Yii CY, 1976. Clinical observations on eosinophilic meningitis and meningoencephalitis caused by Angiostrongylus cantonensis on Taiwan. J Trop Med Hyg. 25:233–249.
Zhang P, Zhu S, Li Y, Zhao M, Liu M, Gao J, Ding S, Li J. 2016. Quantitative proteomics analysis to identify diffuse axonal injury biomarkers in rats using iTRAQ coupled LC-MS/MS. J Proteomics. 133:93–99.
Zhang MY, Xu YY, Pan T, Hu Y, Limpanont Y, Huang P, Okanurak K, Wu YQ, Dekumyoy P, Zhou HG, Watthanakulpanich D, Wu ZD, Wang Z, Lv ZY. 2017. Apoptosis and necroptosis of mouse hippocampal and parenchymal astrocytes, microglia and neurons caused by Angiostrongylus cantonensis infection. Parasit Vectors. 10:611.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊