|
[1] G. Inc, “Global Emotions Report,” Gallup.com. https://www.gallup.com/analytics/349280/gallup-global-emotions-report.aspx (accessed Jul. 29, 2022). [2] J. Kabat‐Zinn, Wherever you go, there you are : mindfulness meditation in everyday life. 1994. [3] J. Kabat-Zinn, “Mindfulness-based interventions in context: Past, present, and future,” Clinical Psychology: Science and Practice, vol. 10, no. 2, pp. 144–156, 2003, doi: 10.1093/clipsy.bpg016. [4] R. A. Baer, “Mindfulness training as a clinical intervention: A conceptual and empirical review,” Clinical Psychology: Science and Practice, vol. 10, no. 2, pp. 125–143, 2003, doi: 10.1093/clipsy.bpg015. [5] B. Bajaj, R. W. Robins, and N. Pande, “Mediating role of self-esteem on the relationship between mindfulness, anxiety, and depression,” Personality and Individual Differences, vol. 96, pp. 127–131, Jul. 2016, doi: 10.1016/j.paid.2016.02.085. [6] C. R. Pernet, N. Belov, A. Delorme, and A. Zammit, “Mindfulness related changes in grey matter: a systematic review and meta‐analysis,” Brain Imaging and Behavior, vol. 15, no. 5, pp. 2720–2730, Oct. 2021, doi: 10.1007/s11682-021-00453-4. [7] R. F. Afonso, I. Kraft, M. A. Aratanha, and E. H. Kozasa, “Neural correlates of meditation: a review of structural and functional MRI studies,” Frontiers in Bioscience-Scholar, vol. 12, no. 1, Art. no. 1, Mar. 2020, doi: 10.2741/S542. [8] M. Melis et al., “The Impact of Mindfulness-Based Interventions on Brain Functional Connectivity: a Systematic Review,” Mindfulness, Jun. 2022, doi: 10.1007/s12671-022-01919-2. [9] Y. Dor-Ziderman, A. Berkovich-Ohana, J. Glicksohn, and A. Goldstein, “Mindfulness-induced selflessness: a MEG neurophenomenological study,” Frontiers in Human Neuroscience, vol. 7, 2013, Accessed: Jul. 20, 2022. [Online]. Available: https://www.frontiersin.org/articles/10.3389/fnhum.2013.00582 [10] J. Gao et al., “Entrainment of chaotic activities in brain and heart during MBSR mindfulness training,” Neuroscience Letters, vol. 616, pp. 218–223, Mar. 2016, doi: 10.1016/j.neulet.2016.01.001. [11] B. R. Cahn, A. Delorme, and J. Polich, “Occipital gamma activation during Vipassana meditation,” Cogn Process, vol. 11, no. 1, pp. 39–56, Feb. 2010, doi: 10.1007/s10339-009-0352-1. [12] N. A. Shanok, C. Reive, K. D. Mize, and N. A. Jones, “Mindfulness meditation intervention alters neurophysiological symptoms of anxiety and depression in preadolescents,” Journal of Psychophysiology, vol. 34, no. 3, pp. 159–170, 2020, doi: 10.1027/0269-8803/a000244. [13] E. Nyhus, W. A. Engel, T. D. Pitfield, and I. M. W. Vakkur, “Combining Behavior and EEG to Study the Effects of Mindfulness Meditation on Episodic Memory,” JoVE (Journal of Visualized Experiments), no. 159, p. e61247, May 2020, doi: 10.3791/61247. [14] C. Marasinghe, V. Tennakoon, and S. T. C. Mahawithanage, “EEG Characteristics During Mindfulness Meditation Among Buddhist Monks in a Sri Lankan Forest Monastery,” Mindfulness, vol. 12, no. 12, pp. 3026–3035, Dec. 2021, doi: 10.1007/s12671-021-01762-x. [15] M. Jung and M. Lee, “The Effect of a Mindfulness-Based Education Program on Brain Waves and the Autonomic Nervous System in University Students,” Healthcare, vol. 9, no. 11, Art. no. 11, Nov. 2021, doi: 10.3390/healthcare9111606. [16] A. Ahani, H. Wahbeh, H. Nezamfar, M. Miller, D. Erdogmus, and B. Oken, “Quantitative change of EEG and respiration signals during mindfulness meditation,” Journal of NeuroEngineering and Rehabilitation, vol. 11, no. 1, p. 87, May 2014, doi: 10.1186/1743-0003-11-87. [17] H.-Y. H. Ng et al., “Mindfulness Training Associated With Resting-State Electroencephalograms Dynamics in Novice Practitioners via Mindful Breathing and Body-Scan,” Front Psychol, vol. 12, p. 748584, 2021, doi: 10.3389/fpsyg.2021.748584. [18] A. Berkovich-Ohana, J. Glicksohn, and A. Goldstein, “Mindfulness-induced changes in gamma band activity – Implications for the default mode network, self-reference and attention,” Clinical Neurophysiology, vol. 123, no. 4, pp. 700–710, Apr. 2012, doi: 10.1016/j.clinph.2011.07.048. [19] T. Lomas, I. Ivtzan, and C. H. Y. Fu, “A systematic review of the neurophysiology of mindfulness on EEG oscillations,” Neuroscience & Biobehavioral Reviews, vol. 57, pp. 401–410, Oct. 2015, doi: 10.1016/j.neubiorev.2015.09.018. [20] M. Navarro Gil, C. Escolano Marco, J. Montero-Marín, J. Minguez Zafra, E. Shonin, and J. García Campayo, “Efficacy of Neurofeedback on the Increase of Mindfulness-Related Capacities in Healthy Individuals: a Controlled Trial,” Mindfulness, vol. 9, no. 1, pp. 303–311, Feb. 2018, doi: 10.1007/s12671-017-0775-1. [21] J. Cao et al., “Brain functional and effective connectivity based on electroencephalography recordings: A review,” Human Brain Mapping, vol. 43, no. 2, pp. 860–879, 2022, doi: 10.1002/hbm.25683. [22] M. A. Awais, M. Z. Yusoff, D. M. Khan, N. Yahya, N. Kamel, and M. Ebrahim, “Effective Connectivity for Decoding Electroencephalographic Motor Imagery Using a Probabilistic Neural Network,” Sensors, vol. 21, no. 19, Art. no. 19, Jan. 2021, doi: 10.3390/s21196570. [23] E. Rezaei and A. Shalbaf, “Classification of Right/Left Hand Motor Imagery by Effective Connectivity Based on Transfer Entropy in EEG Signal,” Basic and Clinical Neuroscience Journal, 2021, doi: 10.32598/bcn.2021.2034.3. [24] A. Maghsoudi and A. Shalbaf, “Hand Motor Imagery Classification Using Effective Connectivity and Hierarchical Machine Learning in EEG Signals,” J Biomed Phys Eng, vol. 12, no. 2, pp. 161–170, Apr. 2022, doi: 10.31661/jbpe.v0i0.1264. [25] G. Zhan et al., “EEG-Based Brain Network Analysis of Chronic Stroke Patients After BCI Rehabilitation Training,” Frontiers in Human Neuroscience, vol. 16, 2022, Accessed: Jul. 27, 2022. [Online]. Available: https://www.frontiersin.org/articles/10.3389/fnhum.2022.909610 [26] S. Bagherzadeh, K. Maghooli, A. Shalbaf, and A. Maghsoudi, “Emotion recognition using effective connectivity and pre-trained convolutional neural networks in EEG signals,” Cogn Neurodyn, Jan. 2022, doi: 10.1007/s11571-021-09756-0. [27] C. Dissanayaka et al., “Comparison between human awake, meditation and drowsiness EEG activities based on directed transfer function and MVDR coherence methods,” Med Biol Eng Comput, vol. 53, no. 7, pp. 599–607, Jul. 2015, doi: 10.1007/s11517-015-1272-0. [28] M. A. Francisco-Vicencio, F. Góngora-Rivera, X. Ortiz-Jiménez, and D. Martinez-Peon, “Sustained attention variation monitoring through EEG effective connectivity,” Biomedical Signal Processing and Control, vol. 76, p. 103650, Jul. 2022, doi: 10.1016/j.bspc.2022.103650. [29] A. Saeedi, M. Saeedi, A. Maghsoudi, and A. Shalbaf, “Major depressive disorder diagnosis based on effective connectivity in EEG signals: a convolutional neural network and long short-term memory approach,” Cogn Neurodyn, vol. 15, no. 2, pp. 239–252, Apr. 2021, doi: 10.1007/s11571-020-09619-0. [30] L. Shaw and A. Routray, “Topographical assessment of neurocortical connectivity by using directed transfer function and partial directed coherence during meditation,” Cogn Process, vol. 19, no. 4, pp. 527–536, Nov. 2018, doi: 10.1007/s10339-018-0869-2. [31] C. W. J. Granger, “Investigating Causal Relations by Econometric Models and Cross-spectral Methods,” Econometrica, vol. 37, no. 3, pp. 424–438, 1969, doi: 10.2307/1912791. [32] M. A. Ferdek, C. M. van Rijn, and M. Wyczesany, “Depressive rumination and the emotional control circuit: An EEG localization and effective connectivity study,” Cogn Affect Behav Neurosci, vol. 16, no. 6, pp. 1099–1113, Dec. 2016, doi: 10.3758/s13415-016-0456-x. [33] S. Ghahari, F. Salehi, N. Farahani, R. Coben, and A. Motie Nasrabadi, “Representing Temporal Network based on dDTF of EEG signals in Children with Autism and Healthy Children,” Biomedical Signal Processing and Control, vol. 62, p. 102139, Sep. 2020, doi: 10.1016/j.bspc.2020.102139. [34] A. K. Abbas, G. Azemi, S. Amiri, S. Ravanshadi, and A. Omidvarnia, “Effective connectivity in brain networks estimated using EEG signals is altered in children with ADHD,” Computers in Biology and Medicine, vol. 134, p. 104515, Jul. 2021, doi: 10.1016/j.compbiomed.2021.104515. [35] A. Al-Ezzi, N. Kamel, I. Faye, and E. Gunaseli, “Analysis of Default Mode Network in Social Anxiety Disorder: EEG Resting-State Effective Connectivity Study,” Sensors, vol. 21, no. 12, Art. no. 12, Jan. 2021, doi: 10.3390/s21124098. [36] E. Maggioni et al., “Effective Connectivity During Rest and Music Listening: An EEG Study on Parkinson’s Disease,” Frontiers in Aging Neuroscience, vol. 13, 2021, Accessed: Jul. 27, 2022. [Online]. Available: https://www.frontiersin.org/articles/10.3389/fnagi.2021.657221 [37] A. Maghsoudi and A. Shalbaf, “Mental Arithmetic Task Recognition Using Effective Connectivity and Hierarchical Feature Selection From EEG Signals,” Basic Clin Neurosci, vol. 12, no. 6, pp. 817–826, 2021, doi: 10.32598/bcn.2021.2034.1. [38] S. Wang et al., “A Study on Resting EEG Effective Connectivity Difference before and after Neurofeedback for Children with ADHD,” Neuroscience, vol. 457, pp. 103–113, Mar. 2021, doi: 10.1016/j.neuroscience.2020.12.038. [39] J. Gao et al., “Effective connectivity in cortical networks during deception: A lie detection study using EEG,” IEEE J Biomed Health Inform, vol. PP, May 2022, doi: 10.1109/JBHI.2022.3172994. [40] N. Talebi and A. Motie Nasrabadi, “Investigating the discrimination of linear and nonlinear effective connectivity patterns of EEG signals in children with Attention-Deficit/Hyperactivity Disorder and Typically Developing children,” Computers in Biology and Medicine, vol. 148, p. 105791, Sep. 2022, doi: 10.1016/j.compbiomed.2022.105791. [41] T. F. Tafreshi, M. R. Daliri, and M. Ghodousi, “Functional and effective connectivity based features of EEG signals for object recognition,” Cogn Neurodyn, vol. 13, no. 6, pp. 555–566, Dec. 2019, doi: 10.1007/s11571-019-09556-7. [42] A. Korzeniewska, M. Mańczak, M. Kamiński, K. J. Blinowska, and S. Kasicki, “Determination of information flow direction among brain structures by a modified directed transfer function (dDTF) method,” Journal of Neuroscience Methods, vol. 125, no. 1, pp. 195–207, May 2003, doi: 10.1016/S0165-0270(03)00052-9. [43] X.-W. Wang, D. Nie, and B.-L. Lu, “Emotional state classification from EEG data using machine learning approach,” Neurocomputing, vol. 129, pp. 94–106, Apr. 2014, doi: 10.1016/j.neucom.2013.06.046. [44] W. Mumtaz, P. L. Vuong, L. Xia, A. S. Malik, and R. B. A. Rashid, “An EEG-based machine learning method to screen alcohol use disorder,” Cogn Neurodyn, vol. 11, no. 2, pp. 161–171, Apr. 2017, doi: 10.1007/s11571-016-9416-y. [45] V. Vijayakumar, M. Case, S. Shirinpour, and B. He, “Quantifying and Characterizing Tonic Thermal Pain Across Subjects From EEG Data Using Random Forest Models,” IEEE Transactions on Biomedical Engineering, vol. 64, no. 12, pp. 2988–2996, Dec. 2017, doi: 10.1109/TBME.2017.2756870. [46] O. AlShorman et al., “Frontal lobe real-time EEG analysis using machine learning techniques for mental stress detection,” Journal of Integrative Neuroscience, vol. 21, no. 1, Art. no. 1, Jan. 2022, doi: 10.31083/j.jin2101020. [47] M. Shim, C.-H. Im, S.-H. Lee, and H.-J. Hwang, “Enhanced Performance by Interpretable Low-Frequency Electroencephalogram Oscillations in the Machine Learning-Based Diagnosis of Post-traumatic Stress Disorder,” Front Neuroinform, vol. 16, p. 811756, Apr. 2022, doi: 10.3389/fninf.2022.811756. [48] 黃鳳英, 吳昌衛, 釋惠敏, 釋果暉, 趙一平, and 戴志達, “「臺灣版五因素正念量表」之信效度分析,” 測驗學刊, vol. 62卷3期, no. 3, pp. 231–260, Sep. 2015. [49] K. L. Gratz and L. Roemer, “Multidimensional Assessment of Emotion Regulation and Dysregulation: Development, Factor Structure, and Initial Validation of the Difficulties in Emotion Regulation Scale,” Journal of Psychopathology and Behavioral Assessment, vol. 26, no. 1, pp. 41–54, Mar. 2004, doi: 10.1023/B:JOBA.0000007455.08539.94. [50] A. Delorme and S. Makeig, “EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis,” Journal of Neuroscience Methods, vol. 134, no. 1, pp. 9–21, Mar. 2004, doi: 10.1016/j.jneumeth.2003.10.009. [51] R. A. Baer, G. T. Smith, J. Hopkins, J. Krietemeyer, and L. Toney, “Using self-report assessment methods to explore facets of mindfulness,” Assessment, vol. 13, no. 1, pp. 27–45, Mar. 2006, doi: 10.1177/1073191105283504. [52] J. K. Carpenter, K. Conroy, A. F. Gomez, L. C. Curren, and S. G. Hofmann, “The relationship between trait mindfulness and affective symptoms: A meta-analysis of the Five Facet Mindfulness Questionnaire (FFMQ),” Clinical Psychology Review, vol. 74, p. 101785, Dec. 2019, doi: 10.1016/j.cpr.2019.101785. [53] Y. Ma et al., “Driving Drowsiness Detection with EEG Using a Modified Hierarchical Extreme Learning Machine Algorithm with Particle Swarm Optimization: A Pilot Study,” Electronics, vol. 9, no. 5, Art. no. 5, May 2020, doi: 10.3390/electronics9050775. [54] A. Delorme et al., “EEGLAB, SIFT, NFT, BCILAB, and ERICA: New Tools for Advanced EEG Processing,” Computational Intelligence and Neuroscience, vol. 2011, p. e130714, May 2011, doi: 10.1155/2011/130714. [55] Y.-Y. Lee and S. Hsieh, “Classifying Different Emotional States by Means of EEG-Based Functional Connectivity Patterns,” PLOS ONE, vol. 9, no. 4, p. e95415, Apr. 2014, doi: 10.1371/journal.pone.0095415. [56] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H. Witten, “The WEKA data mining software: an update,” SIGKDD Explor. Newsl., vol. 11, no. 1, pp. 10–18, Nov. 2009, doi: 10.1145/1656274.1656278. [57] “Editorial: special issue on learning from imbalanced data sets: ACM SIGKDD Explorations Newsletter: Vol 6, No 1.” https://dl.acm.org/doi/abs/10.1145/1007730.1007733 (accessed Jul. 28, 2022). [58] “Exploratory Data Analysis,” in The Concise Encyclopedia of Statistics, New York, NY: Springer, 2008, pp. 192–194. doi: 10.1007/978-0-387-32833-1_136. [59] S. le Cessie and J. C. van Houwelingen, “Ridge Estimators in Logistic Regression,” Journal of the Royal Statistical Society: Series C (Applied Statistics), vol. 41, no. 1, pp. 191–201, 1992, doi: 10.2307/2347628. [60] J. C. Platt, “Platt, J.C. (1999). Fast training of support vector machines using sequential minimal optimization, advances in kernel methods.,” Computer Science, Feb. 1999. [61] S. S. Keerthi, S. K. Shevade, C. Bhattacharyya, and K. R. K. Murthy, “Improvements to Platt’s SMO Algorithm for SVM Classifier Design,” Neural Computation, vol. 13, no. 3, pp. 637–649, Mar. 2001, doi: 10.1162/089976601300014493. [62] T. Hastie and R. Tibshirani, “Classification by pairwise coupling,” The Annals of Statistics, vol. 26, no. 2, pp. 451–471, Apr. 1998, doi: 10.1214/aos/1028144844. [63] G. John and P. Langley, “Estimating Continuous Distributions in Bayesian Classifiers,” in In Proceedings of the Eleventh Conference on Uncertainty in Artificial Intelligence, 1995, pp. 338–345. [64] S. L. Salzberg, “C4.5: Programs for Machine Learning by J. Ross Quinlan. Morgan Kaufmann Publishers, Inc., 1993,” Mach Learn, vol. 16, no. 3, pp. 235–240, Sep. 1994, doi: 10.1007/BF00993309. [65] N. Landwehr, M. Hall, and E. Frank, “Logistic Model Trees,” Mach Learn, vol. 59, no. 1, pp. 161–205, May 2005, doi: 10.1007/s10994-005-0466-3. [66] M. Sumner, E. Frank, and M. Hall, “Speeding Up Logistic Model Tree Induction,” in Knowledge Discovery in Databases: PKDD 2005, Berlin, Heidelberg, 2005, pp. 675–683. doi: 10.1007/11564126_72. [67] L. Breiman, “Random Forests,” Machine Learning, vol. 45, no. 1, pp. 5–32, Oct. 2001, doi: 10.1023/A:1010933404324. [68] T.-T. Wong, “Performance evaluation of classification algorithms by k-fold and leave-one-out cross validation,” Pattern Recognition, vol. 48, no. 9, pp. 2839–2846, Sep. 2015, doi: 10.1016/j.patcog.2015.03.009. [69] R. A. Gotink, R. Meijboom, M. W. Vernooij, M. Smits, and M. G. M. Hunink, “8-week Mindfulness Based Stress Reduction induces brain changes similar to traditional long-term meditation practice - A systematic review,” Brain Cogn, vol. 108, pp. 32–41, Oct. 2016, doi: 10.1016/j.bandc.2016.07.001. [70] B. Tomasino and F. Fabbro, “Increases in the right dorsolateral prefrontal cortex and decreases the rostral prefrontal cortex activation after-8 weeks of focused attention based mindfulness meditation,” Brain and Cognition, vol. 102, pp. 46–54, Feb. 2016, doi: 10.1016/j.bandc.2015.12.004. [71] N. W. Bailey et al., “Mindfulness meditators show altered distributions of early and late neural activity markers of attention in a response inhibition task,” PLOS ONE, vol. 14, no. 8, p. e0203096, Aug. 2019, doi: 10.1371/journal.pone.0203096. [72] Q. Xiao et al., “Alterations of Regional Homogeneity and Functional Connectivity Following Short-Term Mindfulness Meditation in Healthy Volunteers,” Frontiers in Human Neuroscience, vol. 13, 2019, Accessed: Jul. 12, 2022. [Online]. Available: https://www.frontiersin.org/articles/10.3389/fnhum.2019.00376 [73] W. R. Marchand, “Neural mechanisms of mindfulness and meditation: Evidence from neuroimaging studies,” World J Radiol, vol. 6, no. 7, pp. 471–479, Jul. 2014, doi: 10.4329/wjr.v6.i7.471. [74] A. A. Taren et al., “Mindfulness Meditation Training and Executive Control Network Resting State Functional Connectivity: A Randomized Controlled Trial,” Psychosom Med, vol. 79, no. 6, pp. 674–683, 2017, doi: 10.1097/PSY.0000000000000466. [75] Z. Zhang et al., “Longitudinal effects of meditation on brain resting-state functional connectivity,” Sci Rep, vol. 11, no. 1, Art. no. 1, May 2021, doi: 10.1038/s41598-021-90729-y. [76] E. De Filippi et al., “Meditation-induced effects on whole-brain structural and effective connectivity,” Brain Struct Funct, vol. 227, no. 6, pp. 2087–2102, Jul. 2022, doi: 10.1007/s00429-022-02496-9. [77] X. Wen, L. Yao, Y. Liu, and M. Ding, “Causal Interactions in Attention Networks Predict Behavioral Performance,” J. Neurosci., vol. 32, no. 4, pp. 1284–1292, Jan. 2012, doi: 10.1523/JNEUROSCI.2817-11.2012. [78] D. Crivelli, G. Fronda, I. Venturella, and M. Balconi, “Supporting Mindfulness Practices with Brain-Sensing Devices. Cognitive and Electrophysiological Evidences,” Mindfulness, vol. 10, no. 2, pp. 301–311, Feb. 2019, doi: 10.1007/s12671-018-0975-3. [79] Y.-Q. Shen, H.-X. Zhou, X. Chen, F. X. Castellanos, and C.-G. Yan, “Meditation effect in changing functional integrations across large-scale brain networks: Preliminary evidence from a meta-analysis of seed-based functional connectivity,” Journal of Pacific Rim Psychology, vol. 14, ed 2020, doi: 10.1017/prp.2020.1.
|