|
References
[1.1] M. H. Park, H. J. Kim, Y. J. Kim, T. Moon, K. Do Kim, Y. H. Lee, S.D. Hyun, C. S. Hwang, Giant negative electrocaloric effects of Hf0.5Zr0.5O2 thin films, Adv. Mater. 28 (2016) 7956–7961. [1.2] M. Valant, Electrocaloric materials for future solid-state refrigeration technologies, Prog. Mater. Sci. 57 (2012) 980–1009. [1.3] J. F. Scott, Electrocaloric materials, Annu. Rev. Mater. Res. 41 (2011) 229–240. [1.4] F. Ali, X. Liu, D. Zhou, X. Yang, J. Xu, T. Schenk, J. Müller, U. Schroeder, F. Cao, X. Dong, Silicon-doped hafnium oxide anti-ferroelectric thin films for energy storage, J. Appl. Phys. 122 (2017) 144105. [1.5] Y. Huang, F. Li, H. Hao, F. Xia, H. Liu, S. Zhang, (Bi0.51Na0.47)TiO3 based lead free ceramics with high energy density and efficiency, J. Mater. 5 (2019) 385–393. [1.6] X. Liu, Y. Li, N. Sun, X. Hao, High energy-storage performance of PLZS antiferroelectric multilayer ceramic capacitors, Inorg. Chem. Front. 7 (2020) 756–764. [1.7] C. W. Ahn, G. Amarsanaa, S. S. Won, S. A. Chae, D. S. Lee, I. W. Kim, Antiferroelectric Thin-film capacitors with high energy-storage densities, low energy losses, and fast discharge times, ACS Appl. Mater. Interfaces. 7 (2015) 26381–26386. [1.8] T. O. Babarinde, S. A. Akinlabi, D. M. Madyira, Enhancing the performance of vapour compression refrigeration system using nano refrigerants: A review, IOP Conf. Ser. Mater. Sci. Eng. 413 (2018) 012068. [1.9] G. S. Nolas, J. Sharp, J. Goldsmid, Thermoelectrics, Springer: Berlin, 2001. [1.10] A. Gschneidner, V. K. Pecharsky, A. O. Tsokol, Recent developments in magnetocaloric materials, Reports Prog. Phys. 68 (2005) 1479–1539. [1.11] Y. H. Liu, P. C. Wang, L. H. Lin, J. C. Wang, Antiferroelectric titanium-doped zirconia thin films deposited via HiPIMS for highly efficient electrocaloric applications, J. Eur. Ceram. Soc. 41 (2021) 3387–3396. [1.12] J. G. Webster, Z. Kutnjak, B. Rožič, R. Pirc, Electrocaloric effect: Theory, measurements, and applications, Wiley Encycl. Electr. Electron. Eng. 2015. [1.13] J. F. Scott, Electrocaloric materials, Annu. Rev. Mater. Res. 41 (2011) 229–240. [1.14] M. Valant, Electrocaloric materials for future solid-state refrigeration technologies, Prog. Mater. Sci. 57 (2012) 980–1009. [1.15] W. Thomson, II. On the thermoelastic, thermomagnetic, and pyroelectric properties of matter, The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 5 (1878) 4-27. [1.16] J. F. Hautzenlaub, Electric and dielectric behaviour of potassium dihydrogen phosphate. PhD thesis, Massachusetts Institute of Technology, 1943. [1.17] A. I. Karchevskii, Electrocaloric effect in polycrystalline BaTiO3, Soviet Physics -Solid State 3 (1962) 2249. [1.18] A. S. Mischenko, Q. Zhang, J. F. Scott, R. W. Whatmore, N. D. Mathur, Giant electrocaloric effect in thin-film PbZr0.95Ti0.05O3., Science 37 (2006) 1270–1272. [1.19] B. Neese, B. Chu, S.-G. Lu, Y. Wang, E. Furman, Q. M. Zhang, Large electrocaloric effect in ferroelectric polymers near room temperature, Science 321 (2008) 821-823. [1.20] M. H. Park, H. J. Kim, Y. J. Kim, T. Moon, K. Do Kim, C. S. Hwang, Toward a multifunctional monolithic device based on pyroelectricity and the electrocaloric effect of thin antiferroelectric HfxZr1-xO2 films, Nano Energy 12 (2015) 131–140. [1.21] C. Kittel, Theory of antiferroelectric crystals, Phys. Rev. 82 (1951) 729–732. [1.22] S. E. Reyes-Lillo, K. F. Garrity, K. M. Rabe, Antiferroelectricity in thin-film ZrO2 from first principles, Phys. Rev. B 90 (2014) 140103. [1.23] Z. Zhou, Q. Yang, M. Liu, Z. Zhang, X. Zhang, D. Sun, T. Nan, N. Sun, X. Chen, Antiferroelectric materials, applications and recent progress on multiferroic heterostructures, Spin. 5 (2015) 1530001. [1.24] Y. Wang, X. Hao, J. Xu, Effects of PbO insert layer on the microstructure and energy storage performance of (042)-preferred PLZT antiferroelectric thick films, J. Mater. Res. 27 (2012) 1770–1775. [1.25] Q. L. Zhao, Y. K. Wang, G. P. He, J. J. Di, L. Zhao, T. T. Su, M. Y. Zhang, Z. L. Hou, D. Wang, Energy storage and thermodynamics of PNZST thick films with coexisting antiferroelectric and ferroelectric phases, Int. J. Appl. Ceram. Technol. 18 (2021) 154–161. [1.26] L. F. White, A. Černok, J. R. Darling, M. J. Whitehouse, K. H. Joy, C. Cayron, J. Dunlop, K. T. Tait, M. Anand, Evidence of extensive lunar crust formation in impact melt sheets 4,330 Myr ago, Nat. Astron. 4 (2020) 974–978. [1.27] J. Chevalier, L. Gremillard, A. V. Virkar, D. R. Clarke, The tetragonal-monoclinic transformation in zirconia: Lessons learned and future trends, J. Am. Ceram. Soc. 92 (2009) 1901–1920. [1.28] P. D. Lomenzo, M. Materano, T. Mittmann, P. Buragohain, A. Gruverman, T. Kiguchi, T. Mikolajick, U. Schroeder, Harnessing phase transitions in antiferroelectric ZrO2 using the size effect, Adv. Electron. Mater. 8 (2022) 2100556. [1.29] S. K. Kim, C. S. Hwang, Atomic layer deposition of ZrO2 thin films with high dielectric constant on TiN substrates, Electrochem. Solid-State Lett. 11 (2008) 2007–2009. [1.30] D. Martin, M. Grube, W. Weinreich, J. Müller, W. M. Weber, U. Schröder, H. Riechert, T. Mikolajick, Mesoscopic analysis of leakage current suppression in ZrO2/Al2O3/ZrO2 nano-laminates, J. Appl. Phys. 113 (2013) 194103. [1.31] K. Y. Chen, P. H. Chen, R. W. Kao, Y. X. Lin, Y. H. Wu, Impact of plasma treatment on reliability performance for HfZrOx-based metal-ferroelectric-metal capacitors, IEEE Electron Device Lett., 39 (2018) 87-90. [1.32] B. Y. Kim, H. W. Park, S. D. Hyun, Y. B. Lee, S. H. Lee, M. Oh, S. K. Ryoo, I. S. Lee, S. Byun, D. Shim, D. Y. Cho, M. H. Park, C. S. Hwang, “Enhanced ferroelectric properties in Hf0.5Zr0.5O2 films using a HfO0.61N0.72 interfacial layer,” Adv. Electron. Mater., 8 (2021) 2100042. [1.33] Y. K. Liang, J. S. Wu, C. Y. Teng, H. L. Ko, Q. H. Luc, C. J. Su, E. Y. Chang, C. H. Lin “Demonstration of highly robust 5 nm Hf0.5Zr0.5O2 ultra-thin ferroelectric capacitor by improving interface quality,” IEEE Electron Device Lett., 42 (2021) 1299-1302. [1.34] A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, C. N. Lau, Superior thermal conductivity of single-layer graphene, Nano Lett. 8 (2008) 902–907. [1.35] P. Sun, N. Lu, L. Li, Y. Li, H. Wang, H. Lv, Q. Liu, S. Long, S. Liu, M. Liu, Thermal crosstalk in 3-dimensional RRAM crossbar array, Sci. Rep. 5 (2015) 13504. [1.36] https://github.com/karlrupp/microprocessor-trend-data [1.37] M. Ožbolt, A. Kitanovski, J. Tušek, A. Poredoš, Electrocaloric refrigeration: Thermodynamics, state of the art and future perspectives, Int. J. Refrig. 40 (2014) 174–188. [1.38] H. Palneedi, M. Peddigari, G. T. Hwang, D. Y. Jeong, J. Ryu, High-performance dielectric ceramic films for energy storage capacitors: progress and outlook, Adv. Funct. Mater. 28 (2018) 1803665. [1.39] S. H. Yi, H. C. Lin, M. J. Chen, Ultra-high energy storage density and scale-up of antiferroelectric TiO2/ZrO2/TiO2 stacks for supercapacitors, J. Mater. Chem. A. 9 (2021) 9081–9091. [1.40] M. H. Park, H. J. Kim, Y. H. Lee, Y. J. Kim, T. Moon, K. Do Kim, S. D. Hyun, C. S. Hwang, Two-step polarization switching mediated by a nonpolar intermediate phase in Hf0.4Zr0.6O2 thin films, Nanoscale. 8 (2016) 13898–13907. [1.41] A. Chauhan, S. Patel, R. Vaish, C. R. Bowen, Anti-ferroelectric ceramics for high energy density capacitors, Materials (Basel). 8 (2015) 8009–8031. [1.42] J. Müller, T. S. Böscke, U. Schröder, S. Mueller, D. Bräuhaus, U. Böttger, L. Frey, T. Mikolajick, Ferroelectricity in simple binary ZrO2 and HfO2, Nano Lett. 12 (2012) 4318–4323. [1.43] C. Y. Wang, C. I. Wang, S. H. Yi, T. J. Chang, C. Y. Chou, Y. T. Yin, M. Shiojiri, M. J. Chen, Paraelectric/antiferroelectric/ferroelectric phase transformation in As-deposited ZrO2 thin films by the TiN capping engineering, Mater. Des. 195 (2020) 109020. [2.1] J. G. Webster, Z. Kutnjak, B. Rožič, R. Pirc, Electrocaloric effect: Theory, measurements, and applications, Wiley Encycl. Electr. Electron. Eng. 2015. [2.2] G. S. Nolas, J. Sharp, J. Goldsmid, Thermoelectrics, Springer: Berlin, 2001. [2.3] A. Gschneidner, V. K. Pecharsky, A. O. Tsokol, Recent developments in magnetocaloric materials, Reports Prog. Phys. 68 (2005) 1479–1539. [2.4] V. K. Pecharsky, A. P. Holm, K. A. Gschneidner, R. Rink, Massive magnetic-field-induced structural transformation in Gd5Ge4 and the nature of the giant magnetocaloric effect, Phys. Rev. Lett. 91 (2003) 5–8. [2.5] M. Valant, Electrocaloric materials for future solid-state refrigeration technologies, Prog. Mater. Sci. 57 (2012) 980–1009 [2.6] J. F. Scott, Electrocaloric materials, Annu. Rev. Mater. Res. 41 (2011) 229–240. [2.7] I. Ponomareva, S. Lisenkov, Bridging the macroscopic and atomistic descriptions of the electrocaloric effect, Phys. Rev. Lett. 108 (2012) 167604. [2.8] B. Peng, H. Fan, Q. Zhang, A giant electrocaloric effect in nanoscale antiferroelectric and ferroelectric phases coexisting in a relaxor Pb0.8Ba0.2ZrO3 thin film at room temperature, Adv. Funct. Mater. 23 (2013) 2987–2992. [2.9] Y. Bai, G. P. Zheng, S. Q. Shi, Abnormal electrocaloric effect of Na0.5Bi0.5TiO3-BaTiO3 lead-free ferroelectric ceramics above room temperature, Mater. Res. Bull. 46 (2011) 1866–1869. [2.10] B. Li, J. B. Wang, X. L. Zhong, F. Wang, Y. K. Zeng, Y. C. Zhou, The coexistence of the negative and positive electrocaloric effect in ferroelectric thin films for solid-state refrigeration, Epl. 102 (2013) 47004. [2.11] B. Allouche, H. J. Hwang, T. J. Yoo, B. H. Lee, A negative electrocaloric effect in an antiferroelectric zirconium dioxide thin film, Nanoscale 12 (2020) 3894–3901. [2.12] R. Pirc, B. Rožič, J. Koruza, B. Malič, Z. Kutnjak, Negative electrocaloric effect in antiferroelectric PbZrO3, Epl. 107 (2014) 17002. [2.13] F. L. Goupil, A. Berenov, A.-K. Axelsson, M. Valant, N. McN. Alford, Direct and indirect electrocaloric measurements on〈001〉–PbMg1/3Nb2/3O3-30PbTiO3 single crystal, J. Appl. Phys. 111 (2012) 124109-124116. [2.14] Y. Liu, J. F. Scott, B. Dkhil, Direct and indirect measurements on electrocaloric effect: Recent developments and perspectives, Appl. Phys. Rev. 3 (2016) 031102. [2.15] T. L. Ren, H. Chen, X. M. Wu, Y. Yang, L. T. Liu, Giant electrocaloric effect in lead-free thin film of strontium bismuth tantalite, Appl. Phys. Lett. 94 (2009) 2007–2010. [2.16] M. H. Park, H. J. Kim, Y. J. Kim, T. Moon, K. D. Kim, C. S. Hwang, Thin HfxZr1-xO2 films: A new lead-free system for electrostatic supercapacitors with large energy storage density and robust thermal stability, Adv. Energy Mater. 4 (2014) 1400610. [2.17] T. S. Böscke, J. Müller, D. Bräuhaus, U. Schröder, U. Böttger, Ferroelectricity in hafnium oxide thin films, Appl. Phys. Lett. 99 (2011) 102903. [2.18] T. S. Böscke, S. Teichert, D. Bräuhaus, J. Müller, U. Schröder, U. Böttger, T. Mikolajick, Phase transitions in ferroelectric silicon doped hafnium oxide, Appl. Phys. Lett. 99 (2011) 10–13. [2.19] J. Müller, U. Schröder, T. S. Böscke, I. Müller, U. Böttger, L. Wilde, J. Sundqvist, M. Lemberger, P. Kücher, T. Mikolajick, L. Frey, Ferroelectricity in yttrium-doped hafnium oxide, J. Appl. Phys. 110 (2011) 114113. [2.20] S. Mueller, J. Mueller, A. Singh, S. Riedel, J. Sundqvist, U. Schroeder, T. Mikolajick, Incipient ferroelectricity in Al‐doped HfO2 thin films, Adv. Funct. Mater. 22 (2012) 2412-2417. [2.21] Z. Wang, A. A. Gaskell, M. Dopita, D. Kriegner, N. Tasneem, J. Mack, N. Mukherjee, Z. Karim, A. I. Khan, Antiferroelectricity in lanthanum doped zirconia without metallic capping layers and post-deposition/-metallization anneals, Appl. Phys. Lett. 112 (2018) 222902. [2.22] T. Lu, A. J. Studer, L. Noren, W. Hu, D. Yu, B. McBride, Y. Feng, R. L. Withers, H. Chen, Z. Xu, Y. Liu, Electric-field-induced AFE-FE transitions and associated strain/preferred orientation in antiferroelectric PLZST, Sci. Rep. 6 (2016) 23659. [2.23] M. Ye, T. Li, Q. Sun, Z. Liu, B. Peng, C. Huang, P. Lin, S. Ke, X. Zeng, X. Peng, L. Chen, H. Huang, A giant negative electrocaloric effect in Eu-doped PbZrO3 thin films, J. Mater. Chem. C 4 (2016) 3375–3378. [2.24] S. H. Yi, B. T. Lin, T. Y. Hsu, J. Shieh, M. J. Chen, Modulation of ferroelectricity and antiferroelectricity of nanoscale ZrO2 thin films using ultrathin interfacial layers, J. Eur. Ceram. Soc. 39 (2019) 4038–4045. [2.25] M. Wu, D. Song, M. Guo, J. Bian, J. Li, Y. Yang, H. Huang, S. J. Pennycook, X. Lou, Remarkably enhanced negative electrocaloric effect in PbZrO3 thin film by interface engineering, ACS Appl. Mater. Interfaces 11 (2019) 36863–36870. [2.26] Restriction of Hazardous Substances (RoHS), European Union (EU), 2003. [2.27] M. Pešić, S. Knebel, K. Cho, C. Jung, J. Chang, H. Lim, N. Kolomiiets, V. V. Afanas’ev, T. Mikolajick, U. Schroeder, Conduction barrier offset engineering for DRAM capacitor scaling, Solid. State. Electron. 115 (2016) 133–139. [2.28] J. Müller, T. S. Böscke, U. Schröder, S. Mueller, D. Bräuhaus, U. Böttger, L. Frey, T. Mikolajick, Ferroelectricity in simple binary ZrO2 and HfO2, Nano Lett. 12 (2012) 4318–4323. [2.29] M. Pešić, M. Hoffmann, C. Richter, T. Mikolajick, U. Schroeder, Nonvolatile random access memory and energy storage based on antiferroelectric like hysteresis in ZrO2, Adv. Funct. Mater. 26 (2016) 7486–7494. [2.30] P. O. Oviroh, R. Akbarzadeh, D. Pan, R. A. M. Coetzee, T. C. Jen, New development of atomic layer deposition: processes, methods and applications, Sci. Technol. Adv. Mater. 20 (2019) 465–496. [2.31] X. Zhao, J. Jin, J. C. Cheng, J. W. Lee, K. H. Wu, K. C. Lin, J. R. Tsai, K. C. Liu, Structural and optical properties of zirconia thin films deposited by reactive high-power impulse magnetron sputtering, Thin Solid Films 570 (2014) 404–411. [2.32] C. L. Chang, S. G. Shih, P. H. Chen, W. C. Chen, C. T. Ho, W. Y. Wu, Effect of duty cycles on the deposition and characteristics of high power impulse magnetron sputtering deposited TiN thin films, Surf. Coatings Technol. 259 (2014) 232–237. [2.33] C. Sleigh, A. P. Pijpers, A. Jaspers, B. Coussens, R. J. Meier, On the determination of atomic charge via ESCA including application to organometallics, J. Electron Spectrosc. Relat. Phenom. 77 (1996) 41–57. [2.34] M. Chen, X. Wang, Y. H. Yu, Z. L. Pei, X. D. Bai, C. Sun, R. F. Huang, L. S. Wen, X-ray photoelectron spectroscopy and auger electron spectroscopy studies of Al-doped ZnO films, Appl. Surf. Sci. 158 (2000) 134–140. [2.35] C. S. Lee, C. H. Jeon, B. T. Lee, S. H. Jeong, Abrupt conversion of the conductivity and band-gap in the sputter grown Ga-doped ZnO films by a change in growth ambient: Effects of oxygen partial pressure, J. Alloys Compd. 742 (2018) 977–985. [2.36] S. K. Appani, A. K. Yadav, D. S. Sutar, S. N. Jha, D. Bhattacharyya, S. S. Major, X-ray absorption spectroscopy study of Ga-doping in reactively sputtered ZnO films, Thin Solid Films 701 (2020) 137966. [2.37] S. Sinha, S. Badrinarayanan, A. P. B. Sinha, Interaction of oxygen with Zr76Fe24 metglass: An X-ray photoelectron spectroscopy study, J. Less-Common Met. 125 (1986) 85–95. [2.38] C. O. DeGonzález, E. A. García, An X-ray photoelectron spectroscopy study of the surface oxidation of zirconium, Surf. Sci. 193 (1988) 305–320. [2.39] J. B. Mann, T. L. Meek, E. T. Knight, J. F. Capitani, L. C. Allen, Configuration energies of the d-block elements, J. Am. Chem. Soc. 122 (2000) 5132–5137. [2.40] H. Ikawa, T. Yamada, K. Kojima, S. Matsumoto, X‐ray photoelectron spectroscopy study of high‐ and low‐temperature forms of zirconium titanate, J. Am. Ceram. Soc. 74 (1991) 1459–1462. [2.41] J. Málek, L. Beneš, T. Mitsuhashi, Powder diffraction data and Rietveld refinement of metastable t-ZrO2 at low temperature, Powder Diffr. 12 (1997) 96–98. [2.42] S. K. Kim, C. S. Hwang, Atomic layer deposition of ZrO2 thin films with high dielectric constant on TiN substrates, Electrochem. Solid-State Lett. 11 (2008) 2007–2009. [2.43] R. D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides, Acta Cryst. 32 (1976) 751–767. [2.44] R. D. Shannon, C. T. Prewitt, Effective ionic radii in oxides and fluorides, Acta Crystallogr. Sect. B Struct. Crystallogr. Cryst. Chem. 25 (1969) 925–946. [2.45] B. Ma, D. K. Kwon, M. Narayanan, U. Balachandran, Dielectric properties and energy storage capability of antiferroelectric Pb0.92La0.08Zr0.95Ti0.05O3 film-on-foil capacitors, J. Mater. Res. 24 (2009) 2993–2996. [2.46] X. Lyu, M. Si, X. Sun, M. A. Capano, H. Wang, P. D. Ye, Ferroelectric and anti-ferroelectric hafnium zirconium oxide: Scaling limit, switching speed and record high polarization density, Dig. Tech. Pap. - Symp. VLSI Technol. 2019-June (2019) T44–T45. [2.47] R. Meyer, R. Waser, K. Prume, T. Schmitz, S. Tiedke, Dynamic leakage current compensation in ferroelectric thin-film capacitor structures, Appl. Phys. Lett. 86 (2005) 142907. [2.48] Y. H. Lee, H. J. Kim, T. Moon, K. Do Kim, S. D. Hyun, H. W. Park, Y. B. Lee, M. H. Park, C. S. Hwang, Preparation and characterization of ferroelectric Hf0.5Zr0.5O2 thin films grown by reactive sputtering, Nanotechnology 28 (2017) 305703. [2.49] M. Pešić, F. P. G. Fengler, L. Larcher, A. Padovani, T. Schenk, E. D. Grimley, X. Sang, J. M. LeBeau, S. Slesazeck, U. Schroeder, T. Mikolajick, Physical mechanisms behind the field-cycling behavior of HfO2-based ferroelectric capacitors, Adv. Funct. Mater. 26 (2016) 4601–4612. [2.50] M. Pesic, F. P. G. Fengler, S. Slesazeck, U. Schroeder, T. Mikolajick, L. Larcher, A. Padovani, Root cause of degradation in novel HfO2-based ferroelectric memories, IEEE Int. Reliab. Phys. Symp. Proc. (2016) MY31–MY35. [2.51] H. J. Kim, M. H. Park, Y. J. Kim, Y. H. Lee, T. Moon, K. Do Kim, S. D. Hyun, C. S. Hwang, A study on the wake-up effect of ferroelectric Hf0.5Zr0.5O2 films by pulse-switching measurement, Nanoscale 8 (2016) 1383–1389. [2.52] B. Peng, Q. Zhang, B. Gang, G. J. T. Leighton, C. Shaw, S. J. Milne, B. Zou, W. Sun, H. Huang, Z. Wang, Phase-transition induced giant negative electrocaloric effect in a lead-free relaxor ferroelectric thin film, Energy Environ. Sci. 12 (2019) 1708–1717. [2.53] S. Di Mo, W. Y. Ching, Electronic and optical properties of three phases of titanium dioxide: Rutile, anatase, and brookite, Phys. Rev. B 51 (1995) 13023–13032. [2.54] X. Luo, W. Zhou, S. V. Ushakov, A. Navrotsky, A. A. Demkov, Monoclinic to tetragonal transformations in hafnia and zirconia: A combined calorimetric and density functional study, Phys. Rev. B - Condens. Matter Mater. Phys. 80 (2009) 134119. [2.55] M. Saeedian, M. Mahjour-Shafiei, E. Shojaee, M. R. Mohammadizadeh, Specific heat capacity of TiO2 nanoparticles, J. Comput. Theor. Nanosci. 9 (2012) 616–620. [2.56] M. H. Park, H. J. Kim, Y. J. Kim, T. Moon, K. Do Kim, C. S. Hwang, Toward a multifunctional monolithic device based on pyroelectricity and the electrocaloric effect of thin antiferroelectric HfxZr1-xO2 films, Nano Energy 12 (2015) 131–140. [3.1] J. G. Webster, Z. Kutnjak, B. Rožič, R. Pirc, Electrocaloric Effect: Theory, Measurements, and Applications, Wiley Encycl. Electr. Electron. Eng. 2015. [3.2] M. S. Cao, X. X. Wang, M. Zhang, J. C. Shu, W. Q. Cao, H. J. Yang, X. Y. Fang, J. Yuan, Electromagnetic response and energy conversion for functions and devices in low-dimensional materials, Adv. Funct. Mater. 29 (2019) 1807398. [3.3] M. Cao, X. Wang, W. Cao, X. Fang, B. Wen, J. Yuan, Thermally driven transport and relaxation switching self-powered electromagnetic energy conversion, Small. 14 (2018) 1800987. [3.4] M. Valant, Electrocaloric materials for future solid-state refrigeration technologies, Prog. Mater. Sci., 57 (2012) 980-1009. [3.5] A. Klkuchi, E. Sawaguchi, Electrocaloric effect in SrTiOs, J. Phys. Soc. Japan. 19 (1964) 1497–1498. [3.6] Q. Zhao, T. Sheng, L. Pang, G. He, J. Di, L. Zhao, Z. Hou, M. Cao, Highly efficient and giant negative electrocaloric effect of a Nb and Sn co-doped lead zirconate titanate antiferroelectric film near room temperature, RSC Adv. 9 (2019) 34114–34119. [3.7] A. Klkuchi, E. Sawaguchi, Electrocaloric Effect in SrTiOs, J. Phys. Soc. Japan. 19 (1964) 1497–1498. [3.8] J. F. Scott, Electrocaloric materials, Annu. Rev. Mater. Res. 41 (2011) 229-240. [3.9] G. Vats, A. Kumar, N. Ortega, C. R. Bowen, R. S. Katiyar, Giant pyroelectric energy harvesting and a negative electrocaloric effect in multilayered nanostructures, Energy Environ. Sci. 9 (2016) 1335-1345. [3.10] Restriction of Hazardous Substances (RoHS), European Union (EU). [3.11] A. Bradeško, L. Fulanović, M. Vrabelj, M. Otoničar, H. Uršič, A. Henriques, C. C. Chung, J. L. Jones, B. Malič, Z. Kutnjak, T. Rojac, Electrocaloric fatigue of lead magnesium niobate mediated by an electric-field-induced phase transformation, Acta Mater. 169 (2019) 275–283. [3.12] B. Allouche, H. J. Hwang, T. J. Yoo, B. H. Lee, A negative electrocaloric effect in an antiferroelectric zirconium dioxide thin film, Nanoscale. 12 (2020) 3894–3901. [3.13] A. Bradeško, L. Fulanović, M. Vrabelj, M. Otoničar, H. Uršič, A. Henriques, C. C. Chung, J. L. Jones, B. Malič, Z. Kutnjak, T. Rojac, Electrocaloric fatigue of lead magnesium niobate mediated by an electric-field-induced phase transformation, Acta Mater. 169 (2019) 275–283. [3.14] X. Hao, J. Zhai, X. Yao, Improved energy storage performance and fatigue endurance of Sr-doped PbZrO3 antiferroelectric thin films, J. Am. Ceram. Soc. 92 (2009) 1133–1135. [3.15] M. Guo, B. Sun, M. Wu, H. Sun, L. Zhang, Q. Liu, D. Wang, X. Lou, Effect of polarization fatigue on the electrocaloric effect of relaxor Pb0.92La0.08Zr0.65Ti0.35O3 thin film, Appl. Phys. Lett. 117 (2020) 202901. [3.16] K. Y. Chen, P. H. Chen, R. W. Kao, Y. X. Lin, Y. H. Wu, Impact of plasma treatment on reliability performance for HfZrOx-based metal-ferroelectric-metal capacitors, IEEE Electron Device Lett. 39 (2018) 87–90. [3.17] A. G. Chernikova, M. G. Kozodaev, D. V. Negrov, E. V. Korostylev, M. H. Park, U. Schroeder, C. S. Hwang, A. M. Markeev, Improved ferroelectric switching endurance of La-doped Hf0.5Zr0.5O2 thin films, ACS Appl. Mater. Interfaces. 10 (2018) 2701–2708. [3.18] S. Mueller, J. Mueller, A. Singh, S. Riedel, J. Sundqvist, U. Schroeder, T. Mikolajick, Incipient ferroelectricity in Al‐doped HfO2 thin films, Adv. Funct. Mater. 22 (2012) 2412-2417. [3.19] M. Pešić, M. Hoffmann, C. Richter, T. Mikolajick, U. Schroeder, Nonvolatile random access memory and energy storage based on antiferroelectric like hysteresis in ZrO2, Adv. Funct. Mater. 26 (2016) 7486–7494. [3.20] J. Málek, L. Beneš, T. Mitsuhashi, Powder diffraction data and rietveld refinement of metastable t-ZrO2 at low temperature, Powder Diffr. 12 (1997) 96–98. [3.21] Y. W. Yoo, W. Jeon, W. Lee, C. H. An, S. K. Kim, C. S. Hwang, Structure and electrical properties of Al-doped HfO2 and ZrO2 films grown via atomic layer deposition on Mo electrodes, ACS Appl. Mater. Interfaces. 6 (2014) 22474–22482. [3.22] R. D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides, Acta Cryst. 32 (1976) 751-767. [3.23] R. D. Shannon, C. T. Prewitt, Effective ionic radii in oxides and fluorides, Acta Crystallogr. Sect. B Struct. Crystallogr. Cryst. Chem. 25 (1969) 925–946. [3.24] C. Barbos, D. Blanc-Pelissier, A. Fave, C. Botella, P. Regreny, G. Grenet, E. Blanquet, A. Crisci, M. Lemiti, Al2O3 thin films deposited by thermal atomic layer deposition: Characterization for photovoltaic applications, Thin Solid Films. 617 (2016) 108–113. [3.25] K. W. Huang, T. J. Chang, C. Y. Wang, S. H. Yi, C. I. Wang, Y. SenJiang, Y. T. Yin, H. C. Lin, M. J. Chen, Leakage current lowering and film densification of ZrO2 high-k gate dielectrics by layer-by-layer, in-situ atomic layer hydrogen bombardment, Mater. Sci. Semicond. Process. 109 (2020) 104933. [3.26] T. J. Park, J. H. Kim, J. H. Jang, C. K. Lee, K. D. Na, S. Y. Lee, H. S. Jung, M. Kim, S. Han, C. S. Hwang, Reduction of electrical defects in atomic layer deposited HfO2 films by Al doping, Chem. Mater. 22 (2010) 4175–4184. [3.27] Z. Wang, A. A. Gaskell, M. Dopita, D. Kriegner, N. Tasneem, J. Mack, N. Mukherjee, Z. Karim, A. I. Khan, Antiferroelectricity in lanthanum doped zirconia without metallic capping layers and post-deposition/-metallization anneals, Appl. Phys. Lett. 112 (2018) 222902. [3.28] D. Panda, T. Y. Tseng, Growth, dielectric properties, and memory device applications of ZrO2 thin films, Thin Solid Films. 531 (2013) 1–20. [3.29] C. Rayssi, S. ElKossi, J. Dhahri, K. Khirouni, Frequency and temperature-dependence of dielectric permittivity and electric modulus studies of the solid solution Ca0.85Er0.1Ti1-XCo4x/3O3 (0 ≤ x ≤ 0.1), RSC Adv. 8 (2018) 17139–17150. [3.30] J. Li, H. Wu, J. Li, X. Su, R. Yin, S. Qin, D. Guo, Y. Su, L. Qiao, T. Lookman, Y. Bai, Room‐temperature symmetric giant positive and negative electrocaloric effect in PbMg0.5W0.5O3 antiferroelectric ceramic, Adv. Funct. Mater. (2021) 2101176. [3.31] X. Luo, W. Zhou, S. V. Ushakov, A. Navrotsky, A. A. Demkov, Monoclinic to tetragonal transformations in hafnia and zirconia: A combined calorimetric and density functional study, Phys. Rev. B - Condens. Matter Mater. Phys. 80 (2009) 134119. [3.32] Chase, M., NIST-JANAF Thermochemical Tables, 4th Edition, American Institute of Physics, 1998. [3.33] N. Liu, R. Liang, G. Zhang, Z. Zhou, S. Yan, X. Li, X. Dong, Colossal negative electrocaloric effects in lead-free bismuth ferrite-based bulk ferroelectric perovskite for solid-state refrigeration, J. Mater. Chem. C 6 (2018) 10415-10421. [4.1] M. H. Park, H. J. Kim, Y. J. Kim, T. Moon, K. Do Kim, C. S. Hwang, Toward a multifunctional monolithic device based on pyroelectricity and the electrocaloric effect of thin antiferroelectric HfxZr1-xO2 films, Nano Energy 12 (2015) 131–140. [4.2] M. Guo, B. Sun, M. Wu, H. Sun, L. Zhang, Q. Liu, D. Wang, X. Lou, Effect of polarization fatigue on the electrocaloric effect of relaxor Pb0.92La0.08Zr0.65Ti0.35O3 thin film, Appl. Phys. Lett. 117 (2020) 202901. [4.3] M. Valant, Electrocaloric materials for future solid-state refrigeration technologies, Prog. Mater. Sci. 57 (2012) 980–1009 [4.4] . M. H. Park, H. J. Kim, T. Moon, K. D. Kim, Y. H. Lee, S. D. Hyun, C. S. Hwang, Giant negative electrocaloric effects of Hf0.5Zr0.5O2 thin films, Adv. Mater. 28 (2016) 7956-7961. [4.5] B. Allouche, H. J. Hwang, T. J. Yoo, B. H. Lee, A negative electrocaloric effect in an antiferroelectric zirconium dioxide thin film, Nanoscale 12 (2020) 3894-3901. [4.6] K. Y. Chen, P. H. Chen, R. W. Kao, Y. X. Lin, Y. H. Wu, Impact of plasma treatment on reliability performance for HfZrOx-based metal-ferroelectric-metal capacitors, IEEE Electron Device Lett. 39 (2018) 87-90. [4.7] W. T. Weng, Y. J. Lee, H. C. Lin, T. Y. Huang, A comparison of plasma-induced damage on the reliability between high-k/metal-gate and SiO2/poly-gate complementary metal oxide semiconductor technology, Solid. State. Electron. 54 (2010) 368-377. [4.8] B. Y. Kim, H. W. Park, S. D. Hyun, Y. B. Lee, S. H. Lee, M. Oh, S. K. Ryoo, I. S. Lee, S. Byun, D. Shim, D. Y. Cho, M. H. Park, C. S. Hwang, Enhanced ferroelectric properties in Hf0.5Zr0.5O2 films using a HfO0.61N0.72 interfacial layer, Adv. Electron. Mater. 8 (2021) 2100042. [4.9] Y. K. Liang, J. S. Wu, C. Y. Teng, H. L. Ko, Q. H. Luc, C. J. Su, E. Y. Chang, C. H. Lin Demonstration of highly robust 5 nm Hf0.5Zr0.5O2 ultra-thin ferroelectric capacitor by improving interface quality, IEEE Electron Device Lett. 42 (2021) 1299-1302. [4.10] R. Kaufmann, H. Klewe‐Nebenius, H. Moers, G. Pfennig, H. Jenett, H. J. Ache, XPS studies of the thermal behaviour of passivated Zircaloy‐4 surfaces, Surf. Interface Anal. 11 (1988) 502-509. [4.11] P. O. Larsson, A. Andersson, L. R. Wallenberg, B. Svensson, Combustion of CO and toluene; characterisation of copper oxide supported on titania and activity comparisons with supported cobalt, iron, and manganese oxide, J. Catal. 163 (1996) 279-293. [4.12] Y. Lee, Y. Goh, J. Hwang, D. Das, S. Jeon, The influence of top and bottom metal electrodes on ferroelectricity of hafnia, IEEE Trans. Electron Devices 68 (2021) 523-528. [4.13] C. H. Choi, T. S. Jeon, R. Clark, D. L. Kwong, Electrical properties and thermal stability of CVD HfOxNy gate dielectric with poly-Si gate electrode, IEEE Electron Device Lett. 24 (2003) 215–217. [4.14] M. Pešić, M. Hoffmann, C. Richter, T. Mikolajick, U. Schroeder, Nonvolatile random access memory and energy storage based on antiferroelectric like hysteresis in ZrO2, Adv. Funct. Mater. 26 (2016) 7486–7494. [4.15] M. H. Park, H. J. Kim, Y. H. Lee, Y. J. Kim, T. Moon, K. Do Kim, S. D. Hyun, C. S. Hwang, Two-step polarization switching mediated by a nonpolar intermediate phase in Hf0.4Zr0.6O2 thin films, Nanoscale. 8 (2016) 13898–13907. [4.16] Y. H. Liu, L. H. Lin, S. H. Lu, H. C. Lu, J. C. Wang, Highly reliable electrocaloric behaviors of antiferroelectric Al:ZrO2 Thin films for solid-state cooling in integrated circuits, IEEE Trans. Electron Devices. 68 (2021) 6352–6358. [4.17] N. Liu, R. Liang, G. Zhang, Z. Zhou, S. Yan, X. Li, X. Dong, Colossal negative electrocaloric effects in lead-free bismuth ferrite-based bulk ferroelectric perovskite for solid-state refrigeration, J. Mater. Chem. C 6 (2018) 10415-10421. [5.1] M. Valant, Electrocaloric materials for future solid-state refrigeration technologies, Prog. Mater. Sci. 57 (2012) 980–1009. [5.2] W. Thomson, II. On the thermoelastic, thermomagnetic, and pyroelectric properties of matter, The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 5 (1878) 4-27. [5.3] M. H. Park, H. J. Kim, T. Moon, K. D. Kim, Y. H. Lee, S. D. Hyun, C. S. Hwang, Giant negative electrocaloric effects of Hf0.5Zr0.5O2 thin films, Adv. Mater., 28 (2016) 7956-7961. [5.4] R. Pirc, B. Rožič, J. Koruza, B. Malič, Z. Kutnjak, Negative electrocaloric effect in antiferroelectric PbZrO3, Epl. 107 (2014) 17002. [5.5] F. L. Goupil, A. Berenov, A. K. Axelsson, M. Valant, N. McN. Alford, Direct and indirect electrocaloric measurements on〈001〉–PbMg1/3Nb2/3O3-30PbTiO3 single crystal, J. Appl. Phys. 111 (2012) 124109-124116. [5.6] B. Allouche, H. J. Hwang, T. J. Yoo, B. H. Lee, A negative electrocaloric effect in an antiferroelectric zirconium dioxide thin film, Nanoscale 12 (2020) 3894–3901. [5.7] G. Qian, K. Zhu, X. Li, K. Yan, J. Wang, J. Liu, W. Huang, The electrocaloric effect of PBZ/PVDF flexible composite film near room temperature, J. Mater. Sci. Mater. Electron. 32 (2021) 12001–12016. [5.8] M. H. Park, H. J. Kim, Y. J. Kim, T. Moon, K. Do Kim, C. S. Hwang, Toward a multifunctional monolithic device based on pyroelectricity and the electrocaloric effect of thin antiferroelectric HfxZr1-xO2 films, Nano Energy 12 (2015) 131–140. [5.9] J. Müller, T. S. Böscke, U. Schröder, S. Mueller, D. Bräuhaus, U. Böttger, L. Frey, T. Mikolajick, Ferroelectricity in simple binary ZrO2 and HfO2, Nano Lett. 12 (2012) 4318–4323. [5.10] W. Lengauer, S. Binder, K. Aigner, P. Ettmayer, A. Guillou, J. Debuigne, G. Groboth, Solid state properties of group IVb carbonitrides, J. Alloys Compd. 217 (1995) 137–147. [5.11] A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, C. N. Lau, Superior thermal conductivity of single-layer graphene, Nano Lett. 8 (2008) 902–907. [5.12] M. Y. Cha, H. Liu, T. Y. Wang, L. Chen, H. Zhu, L. Ji, Q. Q. Sun, D. W. Zhang, MoS2-based ferroelectric field-effect transistor with atomic layer deposited Hf0.5Zr0.5O2films toward memory applications, AIP Adv. 10 (2020) 065107. [5.13] C. Y. Wang, C. I. Wang, S. H. Yi, T. J. Chang, C. Y. Chou, Y. T. Yin, M. Shiojiri, M. J. Chen, Paraelectric/antiferroelectric/ferroelectric phase transformation in As-deposited ZrO2 thin films by the TiN capping engineering, Mater. Des. 195 (2020) 109020. [5.14] P. D. Lomenzo, M. Materano, T. Mittmann, P. Buragohain, A. Gruverman, T. Kiguchi, T. Mikolajick, U. Schroeder, Harnessing phase transitions in antiferroelectric ZrO2 using the size effect, Adv. Electron. Mater. 8 (2022) 2100556. [5.15] B. T. Lin, Y. W. Lu, J. Shieh, M. J. Chen, Induction of ferroelectricity in nanoscale ZrO2 thin films on Pt electrode without post-annealing, J. Eur. Ceram. Soc. 37 (2017) 1135–1139.
|