跳到主要內容

臺灣博碩士論文加值系統

(44.201.72.250) 您好!臺灣時間:2023/09/27 09:58
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:劉雨華
研究生(外文):Yu Hua Liu
論文名稱:摻雜與界面處理技術於二氧化鋯反鐵電元件之電熱效應研究
論文名稱(外文):The Study of Electrocaloric Effect in Antiferroelectric ZrO2 Devices with Doping and Interface Modification
指導教授:王哲麒
指導教授(外文):J. C. Wang
學位類別:博士
校院名稱:長庚大學
系所名稱:電子工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2022
畢業學年度:110
語文別:英文
論文頁數:173
中文關鍵詞:二氧化鋯反鐵電能量儲存電熱效應摻雜界面層石墨烯
外文關鍵詞:ZrO2antiferroelectricenergy storageelectrocaloric effectdopinginterfacial layergraphene
相關次數:
  • 被引用被引用:0
  • 點閱點閱:48
  • 評分評分:
  • 下載下載:2
  • 收藏至我的研究室書目清單書目收藏:0
目前無法顯示摘要(摘要申請延後公開).
Abstract cannot be displayed(Abstract delay requested).
Contents
中文摘要 i
Abstract iii
Contents v
Figure captions ix
Table list xvii
Chapter 1 Introduction 1
1.1 Research background 1
1.2 Cooling 2
1.3 Electrocaloric effect 3
1.4 Antiferroelectricity 6
1.5 Zirconium dioxide 7
1.6 Motivation of this study 10
1.7 Methodology 11
1.8 Dissertation organization 12
Chapter 2 Ti-doped ZrO2 antiferroelectric capacitors via HiPIMS system 22
2.1 Introduction 22
2.2 Experimental 27
2.2.1 Preparation of Ti-doped ZrO2 antiferroelectric capacitors 27
2.2.2 Characterization of materials and devices 28
2.3 Results and discussion 29
2.3.1 Material analyses of Ti-doped ZrO2 thin films 29
2.3.2 Electrical behaviors of Ti-doped ZrO2 antiferroelectric MIM capacitors 32
2.3.3 Electrocaloric effects of Ti-doped ZrO2 antiferroelectric MIM capacitors 35
2.4 Summary 37
Chapter 3 Highly reliable ZrO2 antiferroelectric capacitors with Al2O3 incorporation 58
3.1 Introduction 58
3.2 Experimental 61
3.2.1 Preparation of ZrO2 antiferroelectric capacitors with Al2O3 incorporation 61
3.2.2 Characterization of materials and devices 62
3.3 Results and discussion 64
3.3.1 Material analysis of ZrO2 thin films with Al2O3 incorporation 64
3.3.2 Electrical behaviors of ZrO2 antiferroelectric capacitors with Al2O3 incorporation 66
3.3.3 Electrocaloric effects of ZrO2 antiferroelectric capacitors with Al2O3 incorporation 69
3.4 Summary 71
Chapter 4 High-performance ZrO2 antiferroelectric capacitors with ZrN interfacial layer 86
4.1 Introduction 86
4.2 Experimental 88
4.2.1 Preparation of ZrO2 antiferroelectric capacitors with ZrN interfacial layer 88
4.2.2 Characterization of materials and devices 89
4.3 Results and discussion 89
4.3.1 Material analysis of ZrO2 antiferroelectric thin films with ZrN interfacial layer 89
4.3.2 Electrical behaviors of ZrO2 antiferroelectric capacitors with ZrN interfacial layer 91
4.3.3 Electrocaloric effect of ZrO2 antiferroelectric capacitors with ZrN interfacial layer 94
4.4 Summary 95
Fig. 4-4 GIXRD patterns of ZrO2 thin films with different cycles of ZrN layer. 99
Fig. 4-5 Grain size of ZrO2 thin films with different cycles of ZrN layer. 99
Fig. 4-6 HRTEM images of (a) w/o and (b) ZrN_9. 100
Fig. 4-7 (a) I-V and (b) P–E hysteresis loops of AFE ZrO2 MIM capacitors with different cycles of ZrN layer. 101
Fig. 4-8 The values of (a) ESD and (b) efficiency of all samples obtained from the P–E curves. 101
Fig. 4-9 Cycling endurance characteristics of efficiency of all samples. . 102
Fig. 4-10 Isw-t curves under different electric field of (a) w/o and (b) ZrN_9. 102
Fig. 4-11 Isw0 −Ea curves to extract RL and Ec of (a)w/o and (b) ZrN_9. 103
Fig. 4-12 The schematic of the MIM capacitors with (a) w/o and (b) ZrN_9 before and after the RTA process. 103
Fig. 4-13 P–E curves of (a) w/o, (b) ZrN_3, (c) ZrN_6, (d) ZrN_9, and (e) ZrN_12 at temperatures ranging from 298K to 388K. . 104
Fig. 4-14 P–T curves of the MIM capacitors. . 105
Fig. 4-15 ΔT of all samples under different temperature. 105
Fig. 4-16 ΔT of all samples under different numbers of cycling endurance tests. 106
Fig. 4-17 COP of all samples under different numbers of cycling endurance tests. 106
Chapter 5 ZrO2 ferroelectric capacitors with graphene top electrode 108
5.1 Introduction 108
5.2 Experimental 109
5.2.1 Preparation of ZrO2 capacitors with graphene top electrode and ZrN interfacial layer 109
5.2.3 Characterization of materials and devices 110
5.3 Results and discussion 111
5.3.1 Material analysis of ZrO2 thin films with graphene top electrode and ZrN interfacial layer 111
5.3.2 Electrical behaviors of ZrO2 capacitors with graphene top electrode and ZrN interfacial layer 112
5.3.3 Electrocaloric effect of ZrO2 antiferroelectric capacitors with graphene top electrode and ZrN interfacial layer 114
5.4 Summary 115
Chapter 6 Conclusion and future works 124
6.1 Conclusion 124
6.2 Future works 125
References 126
Publication list 150


Figure captions
Fig. 1 1 Technological evolution. 15
Fig. 1 2 Issue of heat accumulation in 3D structure [1.35]. 15
Fig. 1 3 48 yeas of microprocessor trend data [1.36]. 16
Fig. 1 4 The mechanism of electrocaloric effect [1.37]. 16
Fig. 1 5 The polarization domain in antiferroelectric material [1.38]. 17
Fig. 1 6 The definition of energy storage in dielectric capacitor [1.39]. 17
Fig. 1 7 Charge accumulated in dielectric capacitor with and w/o polarization [1.40]. 18
Fig. 1 8 Comparison of the energy storage in paraelectric, antiferroelectric, ferroelectric, and relaxor [1.41]. 18
Fig. 1 9 Phase diagram of ZrO2 under different temperature and pressure [1.26]. 19
Fig. 1 10 Polarization characteristics in variation ratio of HfxZr1-xO2 [1.42]. 19
Fig. 1 11 Polarization characteristics of ZrO2 with different capping layer [1.43]. 20
Fig. 1 12 XRD patterns of HfO2, Hf0.5Zr0.5O2, and ZrO2 [1.42]. 20
Fig. 1 13 Phase transition of the antiferroelectric ZrO2 thin film [1.42]. 21
Fig. 2 1 (a) Schematic diagram of co-sputtering in HiPIMS with pure Ti and Zr targets. The pulsed powers of Ti and Zr targets were 50 W and 80 W, respectively. (b) Co-sputtering timetable to open (on) and close (off) the Ti and Zr shutters for the incorporation of Ti in ZrO2 films. 39
Fig. 2 2 The structure of Ti-doped ZrO2 antiferroelectric capacitor. 40
Fig. 2 3 (a) O 1s XPS spectra and (b) XPS PARs and binding energy shift of non-lattice oxygen of ZrO2 thin films with various argon-to-oxygen ratios. 41
Fig. 2 4 (a) O 1s XPS spectra and (b) cumulative distribution of PARs of Zr-O bonds, Ti-O bonds and non-lattice oxygen of Ti-doped ZrO2 thin films with various percentages of Ti doping. 42
Fig. 2 5 Zr 3d XPS spectra, and of Ti-doped ZrO2 thin films with various percentages of Ti doping. 43
Fig. 2 6 SIMS depth profiles of Ti-doped ZrO2 thin films with various percentages of Ti doping. 44
Fig. 2 7 GIXRD patterns of ZrO2 thin films with various argon-to-oxygen ratios. 45
Fig. 2 8 GIXRD patterns of Ti-doped ZrO2 thin films with various percentages of Ti doping. 46
Fig. 2 9 HRTEM images of (a) ZrO2 thin films and (b) Ti-doped ZrO2 thin films. 47
Fig. 2 10 The definition of energy storage (ESD) and energy loss. 48
Fig. 2 11 (a) P–E curves of AFE ZrO2 MIM capacitors with various argon-to-oxygen ratios at the pulse width of 3 ms and (b) the efficiency extracted from the P-E curves at different pulse width. 48
Fig. 2 12 P–E curves of ZrO2, (a) Zr0.9Ti0.1O2, (b) Zr0.85Ti0.15O2, and (c) Zr0.8Ti0.2O2 MIM capacitors. 49
Fig. 2 13 The statistical distribution of (a) ESD and (b) efficiency of Ti-doped ZrO2 MIM capacitors with various percentages of Ti doping. 50
Fig. 2 14 Endurance behaviors of Ti-doped ZrO2 MIM capacitors with various percentages of Ti doping. 50
Fig. 2 15 P–E curves of (a) ZrO2, (b)Zr0.9Ti0.1O2, (c) Zr0.85Ti0.15O2, and (d) Zr0.8Ti0.2O2 MIM capacitors. before and after a 106-cycle endurance test. 51
Fig. 2 16 J–t curves of ZrO2 MIM capacitors with various percentages of Ti doping at (a) positive bias and (b) negative bias. 52
Fig. 2 17 The waveform of (a) positive bias and (b) negative bias applied in the measurement of J-t curves. 52
Fig. 2 18 J–t curves of (a) ZrO2, (b)Zr0.9Ti0.1O2, (c) Zr0.85Ti0.15O2, and (d) Zr0.8Ti0.2O2 MIM capacitors before and after a 106-cycle endurance test at positive bias. 53
Fig. 2 19 J–t curves of (a) ZrO2, (b)Zr0.9Ti0.1O2, (c) Zr0.85Ti0.15O2, and (d) Zr0.8Ti0.2O2 MIM capacitors before and after a 106-cycle endurance test at negative bias. 54
Fig. 2 20 P–E curves of (a) ZrO2, (c) Zr0.9Ti0.1O2, (e) Zr0.85Ti0.15O2, and (g) Zr0.8Ti0.2O2 MIM capacitors at temperatures ranging from 298K to 388K and (b), (d), (f), and (h) the P–T curves at various electric fields. 55
Fig. 2 21 CP–T curve of each ZrO2 thin film at various temperatures. 56
Fig. 2 22 P–T curves of (a) ZrO2, (b)Zr0.9Ti0.1O2, (c) Zr0.85Ti0.15O2, and (d) Zr0.8Ti0.2O2 MIM capacitors measured at an electric field of 4 MV/cm. 56
Fig. 2 23 ΔT of Ti-doped ZrO2 thin films as the function of temperature estimated from 298K to 388K. 57
Fig. 3 1 The structure of ZrO2 antiferroelectric capacitor with Al2O3 incorporation. 72
Fig. 3 2 GIXRD patterns of ZrO2 thin films with different Al2O3 incorporation percentages. 72
Fig. 3 3 XRR spectra of ZrO2 thin films with different Al2O3 incorporation percentages. 73
Fig. 3 4 HRTEM images of (a) ZrO2 and (b) 1% Al:ZrO2 thin films. 74
Fig. 3 5 UV–Vis optical transmission spectra of ZrO2 thin films with different Al2O3 incorporation percentages. 75
Fig. 3 6 (a) I–V curves and (b) P–E hysteresis loops of AFE ZrO2 MIM capacitors with different Al2O3 incorporation percentages. 76
Fig. 3 7 The statistical distribution of (a) ESD and (b) efficiency of all samples obtained from the P–E curves. 76
Fig. 3 8 (a) I–V curves and (b) P–E hysteresis loops of AFE ZrO2 MIM capacitors with different Al2O3 incorporation percentages at higher bias. 77
Fig. 3 9 ε–V curves of AFE ZrO2 MIM capacitors with different Al2O3 incorporation percentages at the measurement frequency of 10 kHz. 77
Fig. 3 10 The (a) permittivity and (b) dielectric loss (tanδ) of all samples as a function of frequency measured at zero bias. 78
Fig. 3 11 The leakage current of AFE ZrO2 MIM capacitors with different Al2O3 incorporation percentages. 78
Fig. 3 12 (a), (c), (d), and (g) P–E curves of the MIM capacitors with pure ZrO2 and1% Al:ZrO2 thin films stressed for different cycles and (b), (d), (f), and (h) the cycling endurance characteristics of ESD and efficiency. 79
Fig. 3 13 DC I–V curves of the MIM capacitors with (a)-(b) pure ZrO2 and (c)-(d) 1% Al:ZrO2 thin films stressed for different cycles at positive and negative bias. 80
Fig. 3 14 ln(J/E) versus 1/kT characteristics of (a)-(b) pure ZrO2 and (c)-(d) 1% Al:ZrO2 MIM capacitors before and after a cycling endurance test of 106 cycles. 81
Fig. 3 15 The activation energy versus the square root of the electric field characteristics of (a) ZrO2 and (b) 1% Al:ZrO2 MIM capacitors under different numbers of cycling endurance tests with positive and negative bias. 82
Fig. 3 16 Cycling endurance characteristics of the trapping levels of the defects within the pure ZrO2 and 1% Al:ZrO2 thin films under the (a) BE and (b) TE injections. 82
Fig. 3 17 The energy band diagrams of the MIM capacitors with (a) pure ZrO2 and (b) 1% Al:ZrO2 thin films under the BE injection. The samples with 1% Al:ZrO2 thin films can suppress the tunneling probability of the electrons through the ZrO2 thin film for fewer defects generated within the dielectric layer. 83
Fig. 3 18 P–E curves of the MIM capacitors with (a) pure ZrO2 and (b) 1% Al:ZrO2 thin films at temperatures ranging from 298K to 388K. 83
Fig. 3 19 P–T curves of the MIM capacitors with (a) pure ZrO2 and (b) 1% Al:ZrO2 thin films measured at an electric field of 3 and 4 MV/cm, respectively, under different numbers of cycling endurance tests. 84
Fig. 3 20 ΔT of the MIM capacitors with (a) pure ZrO2 and (b) 1% Al:ZrO2 thin films as the function of temperature estimated from 298K to 388K under different numbers of cycling endurance tests. 84
Fig. 4 1 The structure of ZrO2 antiferroelectric capacitor with ZrN interfacial layer. 97
Fig. 4 2 The atomic percentage of all the elements under different Ar sputtering time during XPS detection. 97
Fig. 4 3 (a) O 1s XPS spectra of ZrO2 thin films with different cycles of ZrN layer and (b) XPS PARs of Ti-O under different Ar sputtering times. 98
Fig. 4 4 HRTEM images of (a) w/o and (b) ZrN_9. 100
Fig. 4 5 (a) I-V and (b) P–E hysteresis loops of AFE ZrO2 MIM capacitors with different cycles of ZrN layer. 101
Fig. 4 6 Cycling endurance characteristics of efficiency of all samples. 102
Fig. 4 7 Isw-t curves under different electric field of (a) w/o and (b) ZrN_9. 102
Fig. 4 8 "Isw0" −Ea curves to extract RL and Ec of (a)w/o and (b) ZrN_9. 103
Fig. 4 9 The schematic of the MIM capacitors with (a) w/o and (b) ZrN_9 before and after the RTA process. 103
Fig. 4 10 P–E curves of (a) w/o, (b) ZrN_3, (c) ZrN_6, (d) ZrN_9, and (e) ZrN_12 at temperatures ranging from 298K to 388K. 104
Fig. 4 11 P–T curves of the MIM capacitors with w/o and ZrN_9. 105
Fig. 4 12 ΔT of all samples under different temperature. 105
Fig. 4 13 ΔT of all samples under different numbers of cycling endurance tests. 106
Fig. 4 14 COP of all samples under different numbers of cycling endurance tests. 106
Fig. 5 1 The structure of ZrO2 capacitor with graphene top electrode and ZrN interfacial layer. 116
Fig. 5 2 GIXRD patterns of ZrO2 capacitor with graphene top electrode and ZrN interfacial layer and TiN/ZrO2/TiN capacitor. 116
Fig. 5 3 The d-spacing of ZrO2 capacitor with graphene top electrode and ZrN interfacial layer extracted from XRD patterns. 117
Fig. 5 4 HRTEM images of (a) GZrN_0 and (b) GZrN_9. 118
Fig. 5 5 NBED of (a) GZrN_0, (b) GZrN_3, (c) GZrN_6, (d) GZrN_9, (e) GZrN_12 and (f) TiN/ZrO2/TiN capacitor. 119
Fig. 5 6 I-V and P-E curves of GZrN_9. 120
Fig. 5 7 PUND measurement of GZrN_9. 120
Fig. 5 8 (a) I-V and (b) P-E curves of ZrO2 capacitor with graphene top electrode and ZrN interfacial layer measured via PUND method. 121
Fig. 5 9 ε–V curves of ZrO2 capacitor with graphene top electrode and ZrN interfacial layer. 121
Fig. 5 10 P–E curves of (a) GZrN_0, (b) GZrN_3, (c) GZrN_6, (d) GZrN_9, (e) GZrN_12 measured via PUND method at temperatures ranging from 298K to 388K. 122
Fig. 5 11 P–T curves of ZrO2 capacitor with graphene top electrode and ZrN interfacial layer at temperatures ranging from 298K to 388K. 123
Fig. 5 12 ΔT of ZrO2 capacitor with graphene top electrode and ZrN interfacial layer at temperatures ranging from 298K to 388K. 123


Table list
Table 2 1 AFE and EC behaviors of Ti-doped ZrO2 thin films with various percentages of Ti doping. 57
Table 3 1 Benchmarks of the energy storage properties of this and other works. 85
Table 3 2 Benchmarks of electrocaloric effect of this and other works. 85
Table 4 1 Benchmarks of the energy storage properties of this and other works. 107
Table 4 2 Benchmarks of electrocaloric effect of this and other works. 107

References

[1.1] M. H. Park, H. J. Kim, Y. J. Kim, T. Moon, K. Do Kim, Y. H. Lee, S.D. Hyun, C. S. Hwang, Giant negative electrocaloric effects of Hf0.5Zr0.5O2 thin films, Adv. Mater. 28 (2016) 7956–7961.
[1.2] M. Valant, Electrocaloric materials for future solid-state refrigeration technologies, Prog. Mater. Sci. 57 (2012) 980–1009.
[1.3] J. F. Scott, Electrocaloric materials, Annu. Rev. Mater. Res. 41 (2011) 229–240.
[1.4] F. Ali, X. Liu, D. Zhou, X. Yang, J. Xu, T. Schenk, J. Müller, U. Schroeder, F. Cao, X. Dong, Silicon-doped hafnium oxide anti-ferroelectric thin films for energy storage, J. Appl. Phys. 122 (2017) 144105.
[1.5] Y. Huang, F. Li, H. Hao, F. Xia, H. Liu, S. Zhang, (Bi0.51Na0.47)TiO3 based lead free ceramics with high energy density and efficiency, J. Mater. 5 (2019) 385–393.
[1.6] X. Liu, Y. Li, N. Sun, X. Hao, High energy-storage performance of PLZS antiferroelectric multilayer ceramic capacitors, Inorg. Chem. Front. 7 (2020) 756–764.
[1.7] C. W. Ahn, G. Amarsanaa, S. S. Won, S. A. Chae, D. S. Lee, I. W. Kim, Antiferroelectric Thin-film capacitors with high energy-storage densities, low energy losses, and fast discharge times, ACS Appl. Mater. Interfaces. 7 (2015) 26381–26386.
[1.8] T. O. Babarinde, S. A. Akinlabi, D. M. Madyira, Enhancing the performance of vapour compression refrigeration system using nano refrigerants: A review, IOP Conf. Ser. Mater. Sci. Eng. 413 (2018) 012068.
[1.9] G. S. Nolas, J. Sharp, J. Goldsmid, Thermoelectrics, Springer: Berlin, 2001.
[1.10] A. Gschneidner, V. K. Pecharsky, A. O. Tsokol, Recent developments in magnetocaloric materials, Reports Prog. Phys. 68 (2005) 1479–1539.
[1.11] Y. H. Liu, P. C. Wang, L. H. Lin, J. C. Wang, Antiferroelectric titanium-doped zirconia thin films deposited via HiPIMS for highly efficient electrocaloric applications, J. Eur. Ceram. Soc. 41 (2021) 3387–3396.
[1.12] J. G. Webster, Z. Kutnjak, B. Rožič, R. Pirc, Electrocaloric effect: Theory, measurements, and applications, Wiley Encycl. Electr. Electron. Eng. 2015.
[1.13] J. F. Scott, Electrocaloric materials, Annu. Rev. Mater. Res. 41 (2011) 229–240.
[1.14] M. Valant, Electrocaloric materials for future solid-state refrigeration technologies, Prog. Mater. Sci. 57 (2012) 980–1009.
[1.15] W. Thomson, II. On the thermoelastic, thermomagnetic, and pyroelectric properties of matter, The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 5 (1878) 4-27.
[1.16] J. F. Hautzenlaub, Electric and dielectric behaviour of potassium dihydrogen phosphate. PhD thesis, Massachusetts Institute of Technology, 1943.
[1.17] A. I. Karchevskii, Electrocaloric effect in polycrystalline BaTiO3, Soviet Physics -Solid State 3 (1962) 2249.
[1.18] A. S. Mischenko, Q. Zhang, J. F. Scott, R. W. Whatmore, N. D. Mathur, Giant electrocaloric effect in thin-film PbZr0.95Ti0.05O3., Science 37 (2006) 1270–1272.
[1.19] B. Neese, B. Chu, S.-G. Lu, Y. Wang, E. Furman, Q. M. Zhang, Large electrocaloric effect in ferroelectric polymers near room temperature, Science 321 (2008) 821-823.
[1.20] M. H. Park, H. J. Kim, Y. J. Kim, T. Moon, K. Do Kim, C. S. Hwang, Toward a multifunctional monolithic device based on pyroelectricity and the electrocaloric effect of thin antiferroelectric HfxZr1-xO2 films, Nano Energy 12 (2015) 131–140.
[1.21] C. Kittel, Theory of antiferroelectric crystals, Phys. Rev. 82 (1951) 729–732.
[1.22] S. E. Reyes-Lillo, K. F. Garrity, K. M. Rabe, Antiferroelectricity in thin-film ZrO2 from first principles, Phys. Rev. B 90 (2014) 140103.
[1.23] Z. Zhou, Q. Yang, M. Liu, Z. Zhang, X. Zhang, D. Sun, T. Nan, N. Sun, X. Chen, Antiferroelectric materials, applications and recent progress on multiferroic heterostructures, Spin. 5 (2015) 1530001.
[1.24] Y. Wang, X. Hao, J. Xu, Effects of PbO insert layer on the microstructure and energy storage performance of (042)-preferred PLZT antiferroelectric thick films, J. Mater. Res. 27 (2012) 1770–1775.
[1.25] Q. L. Zhao, Y. K. Wang, G. P. He, J. J. Di, L. Zhao, T. T. Su, M. Y. Zhang, Z. L. Hou, D. Wang, Energy storage and thermodynamics of PNZST thick films with coexisting antiferroelectric and ferroelectric phases, Int. J. Appl. Ceram. Technol. 18 (2021) 154–161.
[1.26] L. F. White, A. Černok, J. R. Darling, M. J. Whitehouse, K. H. Joy, C. Cayron, J. Dunlop, K. T. Tait, M. Anand, Evidence of extensive lunar crust formation in impact melt sheets 4,330 Myr ago, Nat. Astron. 4 (2020) 974–978.
[1.27] J. Chevalier, L. Gremillard, A. V. Virkar, D. R. Clarke, The tetragonal-monoclinic transformation in zirconia: Lessons learned and future trends, J. Am. Ceram. Soc. 92 (2009) 1901–1920.
[1.28] P. D. Lomenzo, M. Materano, T. Mittmann, P. Buragohain, A. Gruverman, T. Kiguchi, T. Mikolajick, U. Schroeder, Harnessing phase transitions in antiferroelectric ZrO2 using the size effect, Adv. Electron. Mater. 8 (2022) 2100556.
[1.29] S. K. Kim, C. S. Hwang, Atomic layer deposition of ZrO2 thin films with high dielectric constant on TiN substrates, Electrochem. Solid-State Lett. 11 (2008) 2007–2009.
[1.30] D. Martin, M. Grube, W. Weinreich, J. Müller, W. M. Weber, U. Schröder, H. Riechert, T. Mikolajick, Mesoscopic analysis of leakage current suppression in ZrO2/Al2O3/ZrO2 nano-laminates, J. Appl. Phys. 113 (2013) 194103.
[1.31] K. Y. Chen, P. H. Chen, R. W. Kao, Y. X. Lin, Y. H. Wu, Impact of plasma treatment on reliability performance for HfZrOx-based metal-ferroelectric-metal capacitors, IEEE Electron Device Lett., 39 (2018) 87-90.
[1.32] B. Y. Kim, H. W. Park, S. D. Hyun, Y. B. Lee, S. H. Lee, M. Oh, S. K. Ryoo, I. S. Lee, S. Byun, D. Shim, D. Y. Cho, M. H. Park, C. S. Hwang, “Enhanced ferroelectric properties in Hf0.5Zr0.5O2 films using a HfO0.61N0.72 interfacial layer,” Adv. Electron. Mater., 8 (2021) 2100042.
[1.33] Y. K. Liang, J. S. Wu, C. Y. Teng, H. L. Ko, Q. H. Luc, C. J. Su, E. Y. Chang, C. H. Lin “Demonstration of highly robust 5 nm Hf0.5Zr0.5O2 ultra-thin ferroelectric capacitor by improving interface quality,” IEEE Electron Device Lett., 42 (2021) 1299-1302.
[1.34] A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, C. N. Lau, Superior thermal conductivity of single-layer graphene, Nano Lett. 8 (2008) 902–907.
[1.35] P. Sun, N. Lu, L. Li, Y. Li, H. Wang, H. Lv, Q. Liu, S. Long, S. Liu, M. Liu, Thermal crosstalk in 3-dimensional RRAM crossbar array, Sci. Rep. 5 (2015) 13504.
[1.36] https://github.com/karlrupp/microprocessor-trend-data
[1.37] M. Ožbolt, A. Kitanovski, J. Tušek, A. Poredoš, Electrocaloric refrigeration: Thermodynamics, state of the art and future perspectives, Int. J. Refrig. 40 (2014) 174–188.
[1.38] H. Palneedi, M. Peddigari, G. T. Hwang, D. Y. Jeong, J. Ryu, High-performance dielectric ceramic films for energy storage capacitors: progress and outlook, Adv. Funct. Mater. 28 (2018) 1803665.
[1.39] S. H. Yi, H. C. Lin, M. J. Chen, Ultra-high energy storage density and scale-up of antiferroelectric TiO2/ZrO2/TiO2 stacks for supercapacitors, J. Mater. Chem. A. 9 (2021) 9081–9091.
[1.40] M. H. Park, H. J. Kim, Y. H. Lee, Y. J. Kim, T. Moon, K. Do Kim, S. D. Hyun, C. S. Hwang, Two-step polarization switching mediated by a nonpolar intermediate phase in Hf0.4Zr0.6O2 thin films, Nanoscale. 8 (2016) 13898–13907.
[1.41] A. Chauhan, S. Patel, R. Vaish, C. R. Bowen, Anti-ferroelectric ceramics for high energy density capacitors, Materials (Basel). 8 (2015) 8009–8031.
[1.42] J. Müller, T. S. Böscke, U. Schröder, S. Mueller, D. Bräuhaus, U. Böttger, L. Frey, T. Mikolajick, Ferroelectricity in simple binary ZrO2 and HfO2, Nano Lett. 12 (2012) 4318–4323.
[1.43] C. Y. Wang, C. I. Wang, S. H. Yi, T. J. Chang, C. Y. Chou, Y. T. Yin, M. Shiojiri, M. J. Chen, Paraelectric/antiferroelectric/ferroelectric phase transformation in As-deposited ZrO2 thin films by the TiN capping engineering, Mater. Des. 195 (2020) 109020.
[2.1] J. G. Webster, Z. Kutnjak, B. Rožič, R. Pirc, Electrocaloric effect: Theory, measurements, and applications, Wiley Encycl. Electr. Electron. Eng. 2015.
[2.2] G. S. Nolas, J. Sharp, J. Goldsmid, Thermoelectrics, Springer: Berlin, 2001.
[2.3] A. Gschneidner, V. K. Pecharsky, A. O. Tsokol, Recent developments in magnetocaloric materials, Reports Prog. Phys. 68 (2005) 1479–1539.
[2.4] V. K. Pecharsky, A. P. Holm, K. A. Gschneidner, R. Rink, Massive magnetic-field-induced structural transformation in Gd5Ge4 and the nature of the giant magnetocaloric effect, Phys. Rev. Lett. 91 (2003) 5–8.
[2.5] M. Valant, Electrocaloric materials for future solid-state refrigeration technologies, Prog. Mater. Sci. 57 (2012) 980–1009
[2.6] J. F. Scott, Electrocaloric materials, Annu. Rev. Mater. Res. 41 (2011) 229–240.
[2.7] I. Ponomareva, S. Lisenkov, Bridging the macroscopic and atomistic descriptions of the electrocaloric effect, Phys. Rev. Lett. 108 (2012) 167604.
[2.8] B. Peng, H. Fan, Q. Zhang, A giant electrocaloric effect in nanoscale antiferroelectric and ferroelectric phases coexisting in a relaxor Pb0.8Ba0.2ZrO3 thin film at room temperature, Adv. Funct. Mater. 23 (2013) 2987–2992.
[2.9] Y. Bai, G. P. Zheng, S. Q. Shi, Abnormal electrocaloric effect of Na0.5Bi0.5TiO3-BaTiO3 lead-free ferroelectric ceramics above room temperature, Mater. Res. Bull. 46 (2011) 1866–1869.
[2.10] B. Li, J. B. Wang, X. L. Zhong, F. Wang, Y. K. Zeng, Y. C. Zhou, The coexistence of the negative and positive electrocaloric effect in ferroelectric thin films for solid-state refrigeration, Epl. 102 (2013) 47004.
[2.11] B. Allouche, H. J. Hwang, T. J. Yoo, B. H. Lee, A negative electrocaloric effect in an antiferroelectric zirconium dioxide thin film, Nanoscale 12 (2020) 3894–3901.
[2.12] R. Pirc, B. Rožič, J. Koruza, B. Malič, Z. Kutnjak, Negative electrocaloric effect in antiferroelectric PbZrO3, Epl. 107 (2014) 17002.
[2.13] F. L. Goupil, A. Berenov, A.-K. Axelsson, M. Valant, N. McN. Alford, Direct and indirect electrocaloric measurements on〈001〉–PbMg1/3Nb2/3O3-30PbTiO3 single crystal, J. Appl. Phys. 111 (2012) 124109-124116.
[2.14] Y. Liu, J. F. Scott, B. Dkhil, Direct and indirect measurements on electrocaloric effect: Recent developments and perspectives, Appl. Phys. Rev. 3 (2016) 031102.
[2.15] T. L. Ren, H. Chen, X. M. Wu, Y. Yang, L. T. Liu, Giant electrocaloric effect in lead-free thin film of strontium bismuth tantalite, Appl. Phys. Lett. 94 (2009) 2007–2010.
[2.16] M. H. Park, H. J. Kim, Y. J. Kim, T. Moon, K. D. Kim, C. S. Hwang, Thin HfxZr1-xO2 films: A new lead-free system for electrostatic supercapacitors with large energy storage density and robust thermal stability, Adv. Energy Mater. 4 (2014) 1400610.
[2.17] T. S. Böscke, J. Müller, D. Bräuhaus, U. Schröder, U. Böttger, Ferroelectricity in hafnium oxide thin films, Appl. Phys. Lett. 99 (2011) 102903.
[2.18] T. S. Böscke, S. Teichert, D. Bräuhaus, J. Müller, U. Schröder, U. Böttger, T. Mikolajick, Phase transitions in ferroelectric silicon doped hafnium oxide, Appl. Phys. Lett. 99 (2011) 10–13.
[2.19] J. Müller, U. Schröder, T. S. Böscke, I. Müller, U. Böttger, L. Wilde, J. Sundqvist, M. Lemberger, P. Kücher, T. Mikolajick, L. Frey, Ferroelectricity in yttrium-doped hafnium oxide, J. Appl. Phys. 110 (2011) 114113.
[2.20] S. Mueller, J. Mueller, A. Singh, S. Riedel, J. Sundqvist, U. Schroeder, T. Mikolajick, Incipient ferroelectricity in Al‐doped HfO2 thin films, Adv. Funct. Mater. 22 (2012) 2412-2417.
[2.21] Z. Wang, A. A. Gaskell, M. Dopita, D. Kriegner, N. Tasneem, J. Mack, N. Mukherjee, Z. Karim, A. I. Khan, Antiferroelectricity in lanthanum doped zirconia without metallic capping layers and post-deposition/-metallization anneals, Appl. Phys. Lett. 112 (2018) 222902.
[2.22] T. Lu, A. J. Studer, L. Noren, W. Hu, D. Yu, B. McBride, Y. Feng, R. L. Withers, H. Chen, Z. Xu, Y. Liu, Electric-field-induced AFE-FE transitions and associated strain/preferred orientation in antiferroelectric PLZST, Sci. Rep. 6 (2016) 23659.
[2.23] M. Ye, T. Li, Q. Sun, Z. Liu, B. Peng, C. Huang, P. Lin, S. Ke, X. Zeng, X. Peng, L. Chen, H. Huang, A giant negative electrocaloric effect in Eu-doped PbZrO3 thin films, J. Mater. Chem. C 4 (2016) 3375–3378.
[2.24] S. H. Yi, B. T. Lin, T. Y. Hsu, J. Shieh, M. J. Chen, Modulation of ferroelectricity and antiferroelectricity of nanoscale ZrO2 thin films using ultrathin interfacial layers, J. Eur. Ceram. Soc. 39 (2019) 4038–4045.
[2.25] M. Wu, D. Song, M. Guo, J. Bian, J. Li, Y. Yang, H. Huang, S. J. Pennycook, X. Lou, Remarkably enhanced negative electrocaloric effect in PbZrO3 thin film by interface engineering, ACS Appl. Mater. Interfaces 11 (2019) 36863–36870.
[2.26] Restriction of Hazardous Substances (RoHS), European Union (EU), 2003.
[2.27] M. Pešić, S. Knebel, K. Cho, C. Jung, J. Chang, H. Lim, N. Kolomiiets, V. V. Afanas’ev, T. Mikolajick, U. Schroeder, Conduction barrier offset engineering for DRAM capacitor scaling, Solid. State. Electron. 115 (2016) 133–139.
[2.28] J. Müller, T. S. Böscke, U. Schröder, S. Mueller, D. Bräuhaus, U. Böttger, L. Frey, T. Mikolajick, Ferroelectricity in simple binary ZrO2 and HfO2, Nano Lett. 12 (2012) 4318–4323.
[2.29] M. Pešić, M. Hoffmann, C. Richter, T. Mikolajick, U. Schroeder, Nonvolatile random access memory and energy storage based on antiferroelectric like hysteresis in ZrO2, Adv. Funct. Mater. 26 (2016) 7486–7494.
[2.30] P. O. Oviroh, R. Akbarzadeh, D. Pan, R. A. M. Coetzee, T. C. Jen, New development of atomic layer deposition: processes, methods and applications, Sci. Technol. Adv. Mater. 20 (2019) 465–496.
[2.31] X. Zhao, J. Jin, J. C. Cheng, J. W. Lee, K. H. Wu, K. C. Lin, J. R. Tsai, K. C. Liu, Structural and optical properties of zirconia thin films deposited by reactive high-power impulse magnetron sputtering, Thin Solid Films 570 (2014) 404–411.
[2.32] C. L. Chang, S. G. Shih, P. H. Chen, W. C. Chen, C. T. Ho, W. Y. Wu, Effect of duty cycles on the deposition and characteristics of high power impulse magnetron sputtering deposited TiN thin films, Surf. Coatings Technol. 259 (2014) 232–237.
[2.33] C. Sleigh, A. P. Pijpers, A. Jaspers, B. Coussens, R. J. Meier, On the determination of atomic charge via ESCA including application to organometallics, J. Electron Spectrosc. Relat. Phenom. 77 (1996) 41–57.
[2.34] M. Chen, X. Wang, Y. H. Yu, Z. L. Pei, X. D. Bai, C. Sun, R. F. Huang, L. S. Wen, X-ray photoelectron spectroscopy and auger electron spectroscopy studies of Al-doped ZnO films, Appl. Surf. Sci. 158 (2000) 134–140.
[2.35] C. S. Lee, C. H. Jeon, B. T. Lee, S. H. Jeong, Abrupt conversion of the conductivity and band-gap in the sputter grown Ga-doped ZnO films by a change in growth ambient: Effects of oxygen partial pressure, J. Alloys Compd. 742 (2018) 977–985.
[2.36] S. K. Appani, A. K. Yadav, D. S. Sutar, S. N. Jha, D. Bhattacharyya, S. S. Major, X-ray absorption spectroscopy study of Ga-doping in reactively sputtered ZnO films, Thin Solid Films 701 (2020) 137966.
[2.37] S. Sinha, S. Badrinarayanan, A. P. B. Sinha, Interaction of oxygen with Zr76Fe24 metglass: An X-ray photoelectron spectroscopy study, J. Less-Common Met. 125 (1986) 85–95.
[2.38] C. O. DeGonzález, E. A. García, An X-ray photoelectron spectroscopy study of the surface oxidation of zirconium, Surf. Sci. 193 (1988) 305–320.
[2.39] J. B. Mann, T. L. Meek, E. T. Knight, J. F. Capitani, L. C. Allen, Configuration energies of the d-block elements, J. Am. Chem. Soc. 122 (2000) 5132–5137.
[2.40] H. Ikawa, T. Yamada, K. Kojima, S. Matsumoto, X‐ray photoelectron spectroscopy study of high‐ and low‐temperature forms of zirconium titanate, J. Am. Ceram. Soc. 74 (1991) 1459–1462.
[2.41] J. Málek, L. Beneš, T. Mitsuhashi, Powder diffraction data and Rietveld refinement of metastable t-ZrO2 at low temperature, Powder Diffr. 12 (1997) 96–98.
[2.42] S. K. Kim, C. S. Hwang, Atomic layer deposition of ZrO2 thin films with high dielectric constant on TiN substrates, Electrochem. Solid-State Lett. 11 (2008) 2007–2009.
[2.43] R. D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides, Acta Cryst. 32 (1976) 751–767.
[2.44] R. D. Shannon, C. T. Prewitt, Effective ionic radii in oxides and fluorides, Acta Crystallogr. Sect. B Struct. Crystallogr. Cryst. Chem. 25 (1969) 925–946.
[2.45] B. Ma, D. K. Kwon, M. Narayanan, U. Balachandran, Dielectric properties and energy storage capability of antiferroelectric Pb0.92La0.08Zr0.95Ti0.05O3 film-on-foil capacitors, J. Mater. Res. 24 (2009) 2993–2996.
[2.46] X. Lyu, M. Si, X. Sun, M. A. Capano, H. Wang, P. D. Ye, Ferroelectric and anti-ferroelectric hafnium zirconium oxide: Scaling limit, switching speed and record high polarization density, Dig. Tech. Pap. - Symp. VLSI Technol. 2019-June (2019) T44–T45.
[2.47] R. Meyer, R. Waser, K. Prume, T. Schmitz, S. Tiedke, Dynamic leakage current compensation in ferroelectric thin-film capacitor structures, Appl. Phys. Lett. 86 (2005) 142907.
[2.48] Y. H. Lee, H. J. Kim, T. Moon, K. Do Kim, S. D. Hyun, H. W. Park, Y. B. Lee, M. H. Park, C. S. Hwang, Preparation and characterization of ferroelectric Hf0.5Zr0.5O2 thin films grown by reactive sputtering, Nanotechnology 28 (2017) 305703.
[2.49] M. Pešić, F. P. G. Fengler, L. Larcher, A. Padovani, T. Schenk, E. D. Grimley, X. Sang, J. M. LeBeau, S. Slesazeck, U. Schroeder, T. Mikolajick, Physical mechanisms behind the field-cycling behavior of HfO2-based ferroelectric capacitors, Adv. Funct. Mater. 26 (2016) 4601–4612.
[2.50] M. Pesic, F. P. G. Fengler, S. Slesazeck, U. Schroeder, T. Mikolajick, L. Larcher, A. Padovani, Root cause of degradation in novel HfO2-based ferroelectric memories, IEEE Int. Reliab. Phys. Symp. Proc. (2016) MY31–MY35.
[2.51] H. J. Kim, M. H. Park, Y. J. Kim, Y. H. Lee, T. Moon, K. Do Kim, S. D. Hyun, C. S. Hwang, A study on the wake-up effect of ferroelectric Hf0.5Zr0.5O2 films by pulse-switching measurement, Nanoscale 8 (2016) 1383–1389.
[2.52] B. Peng, Q. Zhang, B. Gang, G. J. T. Leighton, C. Shaw, S. J. Milne, B. Zou, W. Sun, H. Huang, Z. Wang, Phase-transition induced giant negative electrocaloric effect in a lead-free relaxor ferroelectric thin film, Energy Environ. Sci. 12 (2019) 1708–1717.
[2.53] S. Di Mo, W. Y. Ching, Electronic and optical properties of three phases of titanium dioxide: Rutile, anatase, and brookite, Phys. Rev. B 51 (1995) 13023–13032.
[2.54] X. Luo, W. Zhou, S. V. Ushakov, A. Navrotsky, A. A. Demkov, Monoclinic to tetragonal transformations in hafnia and zirconia: A combined calorimetric and density functional study, Phys. Rev. B - Condens. Matter Mater. Phys. 80 (2009) 134119.
[2.55] M. Saeedian, M. Mahjour-Shafiei, E. Shojaee, M. R. Mohammadizadeh, Specific heat capacity of TiO2 nanoparticles, J. Comput. Theor. Nanosci. 9 (2012) 616–620.
[2.56] M. H. Park, H. J. Kim, Y. J. Kim, T. Moon, K. Do Kim, C. S. Hwang, Toward a multifunctional monolithic device based on pyroelectricity and the electrocaloric effect of thin antiferroelectric HfxZr1-xO2 films, Nano Energy 12 (2015) 131–140.
[3.1] J. G. Webster, Z. Kutnjak, B. Rožič, R. Pirc, Electrocaloric Effect: Theory, Measurements, and Applications, Wiley Encycl. Electr. Electron. Eng. 2015.
[3.2] M. S. Cao, X. X. Wang, M. Zhang, J. C. Shu, W. Q. Cao, H. J. Yang, X. Y. Fang, J. Yuan, Electromagnetic response and energy conversion for functions and devices in low-dimensional materials, Adv. Funct. Mater. 29 (2019) 1807398.
[3.3] M. Cao, X. Wang, W. Cao, X. Fang, B. Wen, J. Yuan, Thermally driven transport and relaxation switching self-powered electromagnetic energy conversion, Small. 14 (2018) 1800987.
[3.4] M. Valant, Electrocaloric materials for future solid-state refrigeration technologies, Prog. Mater. Sci., 57 (2012) 980-1009.
[3.5] A. Klkuchi, E. Sawaguchi, Electrocaloric effect in SrTiOs, J. Phys. Soc. Japan. 19 (1964) 1497–1498.
[3.6] Q. Zhao, T. Sheng, L. Pang, G. He, J. Di, L. Zhao, Z. Hou, M. Cao, Highly efficient and giant negative electrocaloric effect of a Nb and Sn co-doped lead zirconate titanate antiferroelectric film near room temperature, RSC Adv. 9 (2019) 34114–34119.
[3.7] A. Klkuchi, E. Sawaguchi, Electrocaloric Effect in SrTiOs, J. Phys. Soc. Japan. 19 (1964) 1497–1498.
[3.8] J. F. Scott, Electrocaloric materials, Annu. Rev. Mater. Res. 41 (2011) 229-240.
[3.9] G. Vats, A. Kumar, N. Ortega, C. R. Bowen, R. S. Katiyar, Giant pyroelectric energy harvesting and a negative electrocaloric effect in multilayered nanostructures, Energy Environ. Sci. 9 (2016) 1335-1345.
[3.10] Restriction of Hazardous Substances (RoHS), European Union (EU).
[3.11] A. Bradeško, L. Fulanović, M. Vrabelj, M. Otoničar, H. Uršič, A. Henriques, C. C. Chung, J. L. Jones, B. Malič, Z. Kutnjak, T. Rojac, Electrocaloric fatigue of lead magnesium niobate mediated by an electric-field-induced phase transformation, Acta Mater. 169 (2019) 275–283.
[3.12] B. Allouche, H. J. Hwang, T. J. Yoo, B. H. Lee, A negative electrocaloric effect in an antiferroelectric zirconium dioxide thin film, Nanoscale. 12 (2020) 3894–3901.
[3.13] A. Bradeško, L. Fulanović, M. Vrabelj, M. Otoničar, H. Uršič, A. Henriques, C. C. Chung, J. L. Jones, B. Malič, Z. Kutnjak, T. Rojac, Electrocaloric fatigue of lead magnesium niobate mediated by an electric-field-induced phase transformation, Acta Mater. 169 (2019) 275–283.
[3.14] X. Hao, J. Zhai, X. Yao, Improved energy storage performance and fatigue endurance of Sr-doped PbZrO3 antiferroelectric thin films, J. Am. Ceram. Soc. 92 (2009) 1133–1135.
[3.15] M. Guo, B. Sun, M. Wu, H. Sun, L. Zhang, Q. Liu, D. Wang, X. Lou, Effect of polarization fatigue on the electrocaloric effect of relaxor Pb0.92La0.08Zr0.65Ti0.35O3 thin film, Appl. Phys. Lett. 117 (2020) 202901.
[3.16] K. Y. Chen, P. H. Chen, R. W. Kao, Y. X. Lin, Y. H. Wu, Impact of plasma treatment on reliability performance for HfZrOx-based metal-ferroelectric-metal capacitors, IEEE Electron Device Lett. 39 (2018) 87–90.
[3.17] A. G. Chernikova, M. G. Kozodaev, D. V. Negrov, E. V. Korostylev, M. H. Park, U. Schroeder, C. S. Hwang, A. M. Markeev, Improved ferroelectric switching endurance of La-doped Hf0.5Zr0.5O2 thin films, ACS Appl. Mater. Interfaces. 10 (2018) 2701–2708.
[3.18] S. Mueller, J. Mueller, A. Singh, S. Riedel, J. Sundqvist, U. Schroeder, T. Mikolajick, Incipient ferroelectricity in Al‐doped HfO2 thin films, Adv. Funct. Mater. 22 (2012) 2412-2417.
[3.19] M. Pešić, M. Hoffmann, C. Richter, T. Mikolajick, U. Schroeder, Nonvolatile random access memory and energy storage based on antiferroelectric like hysteresis in ZrO2, Adv. Funct. Mater. 26 (2016) 7486–7494.
[3.20] J. Málek, L. Beneš, T. Mitsuhashi, Powder diffraction data and rietveld refinement of metastable t-ZrO2 at low temperature, Powder Diffr. 12 (1997) 96–98.
[3.21] Y. W. Yoo, W. Jeon, W. Lee, C. H. An, S. K. Kim, C. S. Hwang, Structure and electrical properties of Al-doped HfO2 and ZrO2 films grown via atomic layer deposition on Mo electrodes, ACS Appl. Mater. Interfaces. 6 (2014) 22474–22482.
[3.22] R. D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides, Acta Cryst. 32 (1976) 751-767.
[3.23] R. D. Shannon, C. T. Prewitt, Effective ionic radii in oxides and fluorides, Acta Crystallogr. Sect. B Struct. Crystallogr. Cryst. Chem. 25 (1969) 925–946.
[3.24] C. Barbos, D. Blanc-Pelissier, A. Fave, C. Botella, P. Regreny, G. Grenet, E. Blanquet, A. Crisci, M. Lemiti, Al2O3 thin films deposited by thermal atomic layer deposition: Characterization for photovoltaic applications, Thin Solid Films. 617 (2016) 108–113.
[3.25] K. W. Huang, T. J. Chang, C. Y. Wang, S. H. Yi, C. I. Wang, Y. SenJiang, Y. T. Yin, H. C. Lin, M. J. Chen, Leakage current lowering and film densification of ZrO2 high-k gate dielectrics by layer-by-layer, in-situ atomic layer hydrogen bombardment, Mater. Sci. Semicond. Process. 109 (2020) 104933.
[3.26] T. J. Park, J. H. Kim, J. H. Jang, C. K. Lee, K. D. Na, S. Y. Lee, H. S. Jung, M. Kim, S. Han, C. S. Hwang, Reduction of electrical defects in atomic layer deposited HfO2 films by Al doping, Chem. Mater. 22 (2010) 4175–4184.
[3.27] Z. Wang, A. A. Gaskell, M. Dopita, D. Kriegner, N. Tasneem, J. Mack, N. Mukherjee, Z. Karim, A. I. Khan, Antiferroelectricity in lanthanum doped zirconia without metallic capping layers and post-deposition/-metallization anneals, Appl. Phys. Lett. 112 (2018) 222902.
[3.28] D. Panda, T. Y. Tseng, Growth, dielectric properties, and memory device applications of ZrO2 thin films, Thin Solid Films. 531 (2013) 1–20.
[3.29] C. Rayssi, S. ElKossi, J. Dhahri, K. Khirouni, Frequency and temperature-dependence of dielectric permittivity and electric modulus studies of the solid solution Ca0.85Er0.1Ti1-XCo4x/3O3 (0 ≤ x ≤ 0.1), RSC Adv. 8 (2018) 17139–17150.
[3.30] J. Li, H. Wu, J. Li, X. Su, R. Yin, S. Qin, D. Guo, Y. Su, L. Qiao, T. Lookman, Y. Bai, Room‐temperature symmetric giant positive and negative electrocaloric effect in PbMg0.5W0.5O3 antiferroelectric ceramic, Adv. Funct. Mater. (2021) 2101176.
[3.31] X. Luo, W. Zhou, S. V. Ushakov, A. Navrotsky, A. A. Demkov, Monoclinic to tetragonal transformations in hafnia and zirconia: A combined calorimetric and density functional study, Phys. Rev. B - Condens. Matter Mater. Phys. 80 (2009) 134119.
[3.32] Chase, M., NIST-JANAF Thermochemical Tables, 4th Edition, American Institute of Physics, 1998.
[3.33] N. Liu, R. Liang, G. Zhang, Z. Zhou, S. Yan, X. Li, X. Dong, Colossal negative electrocaloric effects in lead-free bismuth ferrite-based bulk ferroelectric perovskite for solid-state refrigeration, J. Mater. Chem. C 6 (2018) 10415-10421.
[4.1] M. H. Park, H. J. Kim, Y. J. Kim, T. Moon, K. Do Kim, C. S. Hwang, Toward a multifunctional monolithic device based on pyroelectricity and the electrocaloric effect of thin antiferroelectric HfxZr1-xO2 films, Nano Energy 12 (2015) 131–140.
[4.2] M. Guo, B. Sun, M. Wu, H. Sun, L. Zhang, Q. Liu, D. Wang, X. Lou, Effect of polarization fatigue on the electrocaloric effect of relaxor Pb0.92La0.08Zr0.65Ti0.35O3 thin film, Appl. Phys. Lett. 117 (2020) 202901.
[4.3] M. Valant, Electrocaloric materials for future solid-state refrigeration technologies, Prog. Mater. Sci. 57 (2012) 980–1009
[4.4] . M. H. Park, H. J. Kim, T. Moon, K. D. Kim, Y. H. Lee, S. D. Hyun, C. S. Hwang, Giant negative electrocaloric effects of Hf0.5Zr0.5O2 thin films, Adv. Mater. 28 (2016) 7956-7961.
[4.5] B. Allouche, H. J. Hwang, T. J. Yoo, B. H. Lee, A negative electrocaloric effect in an antiferroelectric zirconium dioxide thin film, Nanoscale 12 (2020) 3894-3901.
[4.6] K. Y. Chen, P. H. Chen, R. W. Kao, Y. X. Lin, Y. H. Wu, Impact of plasma treatment on reliability performance for HfZrOx-based metal-ferroelectric-metal capacitors, IEEE Electron Device Lett. 39 (2018) 87-90.
[4.7] W. T. Weng, Y. J. Lee, H. C. Lin, T. Y. Huang, A comparison of plasma-induced damage on the reliability between high-k/metal-gate and SiO2/poly-gate complementary metal oxide semiconductor technology, Solid. State. Electron. 54 (2010) 368-377.
[4.8] B. Y. Kim, H. W. Park, S. D. Hyun, Y. B. Lee, S. H. Lee, M. Oh, S. K. Ryoo, I. S. Lee, S. Byun, D. Shim, D. Y. Cho, M. H. Park, C. S. Hwang, Enhanced ferroelectric properties in Hf0.5Zr0.5O2 films using a HfO0.61N0.72 interfacial layer, Adv. Electron. Mater. 8 (2021) 2100042.
[4.9] Y. K. Liang, J. S. Wu, C. Y. Teng, H. L. Ko, Q. H. Luc, C. J. Su, E. Y. Chang, C. H. Lin Demonstration of highly robust 5 nm Hf0.5Zr0.5O2 ultra-thin ferroelectric capacitor by improving interface quality, IEEE Electron Device Lett. 42 (2021) 1299-1302.
[4.10] R. Kaufmann, H. Klewe‐Nebenius, H. Moers, G. Pfennig, H. Jenett, H. J. Ache, XPS studies of the thermal behaviour of passivated Zircaloy‐4 surfaces, Surf. Interface Anal. 11 (1988) 502-509.
[4.11] P. O. Larsson, A. Andersson, L. R. Wallenberg, B. Svensson, Combustion of CO and toluene; characterisation of copper oxide supported on titania and activity comparisons with supported cobalt, iron, and manganese oxide, J. Catal. 163 (1996) 279-293.
[4.12] Y. Lee, Y. Goh, J. Hwang, D. Das, S. Jeon, The influence of top and bottom metal electrodes on ferroelectricity of hafnia, IEEE Trans. Electron Devices 68 (2021) 523-528.
[4.13] C. H. Choi, T. S. Jeon, R. Clark, D. L. Kwong, Electrical properties and thermal stability of CVD HfOxNy gate dielectric with poly-Si gate electrode, IEEE Electron Device Lett. 24 (2003) 215–217.
[4.14] M. Pešić, M. Hoffmann, C. Richter, T. Mikolajick, U. Schroeder, Nonvolatile random access memory and energy storage based on antiferroelectric like hysteresis in ZrO2, Adv. Funct. Mater. 26 (2016) 7486–7494.
[4.15] M. H. Park, H. J. Kim, Y. H. Lee, Y. J. Kim, T. Moon, K. Do Kim, S. D. Hyun, C. S. Hwang, Two-step polarization switching mediated by a nonpolar intermediate phase in Hf0.4Zr0.6O2 thin films, Nanoscale. 8 (2016) 13898–13907.
[4.16] Y. H. Liu, L. H. Lin, S. H. Lu, H. C. Lu, J. C. Wang, Highly reliable electrocaloric behaviors of antiferroelectric Al:ZrO2 Thin films for solid-state cooling in integrated circuits, IEEE Trans. Electron Devices. 68 (2021) 6352–6358.
[4.17] N. Liu, R. Liang, G. Zhang, Z. Zhou, S. Yan, X. Li, X. Dong, Colossal negative electrocaloric effects in lead-free bismuth ferrite-based bulk ferroelectric perovskite for solid-state refrigeration, J. Mater. Chem. C 6 (2018) 10415-10421.
[5.1] M. Valant, Electrocaloric materials for future solid-state refrigeration technologies, Prog. Mater. Sci. 57 (2012) 980–1009.
[5.2] W. Thomson, II. On the thermoelastic, thermomagnetic, and pyroelectric properties of matter, The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 5 (1878) 4-27.
[5.3] M. H. Park, H. J. Kim, T. Moon, K. D. Kim, Y. H. Lee, S. D. Hyun, C. S. Hwang, Giant negative electrocaloric effects of Hf0.5Zr0.5O2 thin films, Adv. Mater., 28 (2016) 7956-7961.
[5.4] R. Pirc, B. Rožič, J. Koruza, B. Malič, Z. Kutnjak, Negative electrocaloric effect in antiferroelectric PbZrO3, Epl. 107 (2014) 17002.
[5.5] F. L. Goupil, A. Berenov, A. K. Axelsson, M. Valant, N. McN. Alford, Direct and indirect electrocaloric measurements on〈001〉–PbMg1/3Nb2/3O3-30PbTiO3 single crystal, J. Appl. Phys. 111 (2012) 124109-124116.
[5.6] B. Allouche, H. J. Hwang, T. J. Yoo, B. H. Lee, A negative electrocaloric effect in an antiferroelectric zirconium dioxide thin film, Nanoscale 12 (2020) 3894–3901.
[5.7] G. Qian, K. Zhu, X. Li, K. Yan, J. Wang, J. Liu, W. Huang, The electrocaloric effect of PBZ/PVDF flexible composite film near room temperature, J. Mater. Sci. Mater. Electron. 32 (2021) 12001–12016.
[5.8] M. H. Park, H. J. Kim, Y. J. Kim, T. Moon, K. Do Kim, C. S. Hwang, Toward a multifunctional monolithic device based on pyroelectricity and the electrocaloric effect of thin antiferroelectric HfxZr1-xO2 films, Nano Energy 12 (2015) 131–140.
[5.9] J. Müller, T. S. Böscke, U. Schröder, S. Mueller, D. Bräuhaus, U. Böttger, L. Frey, T. Mikolajick, Ferroelectricity in simple binary ZrO2 and HfO2, Nano Lett. 12 (2012) 4318–4323.
[5.10] W. Lengauer, S. Binder, K. Aigner, P. Ettmayer, A. Guillou, J. Debuigne, G. Groboth, Solid state properties of group IVb carbonitrides, J. Alloys Compd. 217 (1995) 137–147.
[5.11] A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, C. N. Lau, Superior thermal conductivity of single-layer graphene, Nano Lett. 8 (2008) 902–907.
[5.12] M. Y. Cha, H. Liu, T. Y. Wang, L. Chen, H. Zhu, L. Ji, Q. Q. Sun, D. W. Zhang, MoS2-based ferroelectric field-effect transistor with atomic layer deposited Hf0.5Zr0.5O2films toward memory applications, AIP Adv. 10 (2020) 065107.
[5.13] C. Y. Wang, C. I. Wang, S. H. Yi, T. J. Chang, C. Y. Chou, Y. T. Yin, M. Shiojiri, M. J. Chen, Paraelectric/antiferroelectric/ferroelectric phase transformation in As-deposited ZrO2 thin films by the TiN capping engineering, Mater. Des. 195 (2020) 109020.
[5.14] P. D. Lomenzo, M. Materano, T. Mittmann, P. Buragohain, A. Gruverman, T. Kiguchi, T. Mikolajick, U. Schroeder, Harnessing phase transitions in antiferroelectric ZrO2 using the size effect, Adv. Electron. Mater. 8 (2022) 2100556.
[5.15] B. T. Lin, Y. W. Lu, J. Shieh, M. J. Chen, Induction of ferroelectricity in nanoscale ZrO2 thin films on Pt electrode without post-annealing, J. Eur. Ceram. Soc. 37 (2017) 1135–1139.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊