跳到主要內容

臺灣博碩士論文加值系統

(44.220.247.152) 您好!臺灣時間:2024/09/13 17:46
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:王伊庭
研究生(外文):WANG,YI-TING
論文名稱:用於次世代益生菌的益生元與其對戈氏副擬桿菌多醣基因合成區 A 的調控
論文名稱(外文):Prebiotics for next generation probiotics and regulation of polysaccharide region A synthesis in Parabacteroides goldsteinii
指導教授:賴信志賴信志引用關係
指導教授(外文):H. C. Lai
學位類別:碩士
校院名稱:長庚大學
系所名稱:醫學生物技術暨檢驗學系
學門:醫藥衛生學門
學類:醫學技術及檢驗學類
論文種類:學術論文
論文出版年:2022
畢業學年度:110
語文別:英文
論文頁數:64
中文關鍵詞:戈氏副擬桿菌多醣莢膜部分水解瓜爾豆膠慢性發炎腸道菌相
外文關鍵詞:Parabacteroides goldsteiniipolysaccharide capsulepartially hydrolyzed guar gumchronic inflammationintestinal flora
相關次數:
  • 被引用被引用:0
  • 點閱點閱:86
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
Contents
中文摘要 i
Abstract ii
Contents iii
List of Figures vi
List of Tables iv

Chapter 1. Introduction 1
1.1.1 Gut microbiota dysbiosis is a causing factor initiating chronic
inflammation related diseases 1
1.1.2 Traditional probiotics and their functional mechanism 1
1.1.3 Effects of traditional probiotics in diseases amelioration are
controversial 3
1.2.1 Next generation probiotics (NGP) 6
1.2.2 Microbiota and NGP 7
1.2.3 NGP target specific diseases 9
1.2.4 Basic NGP regulations and requirements 10
1.3.1 Prebiotics 11
1.3.2 Prebiotics function 13
1.3.3 Enhancement of NGP proliferation by prebiotics 14
1.4 Development of synbiotic 15
1.5 Bacteroides fragilis and capsular polysaccharides (CPS) PSA 15
1.6 Research aims 17

Chapter 2. Materials and methods 18
2.1 Reagent and formula 18
2.1.1 Brain Heart Infusion medium (BHIS) 18
2.1.2 Phosphate Buffered Saline (PBS) 18
2.1.3 Minimal medium 19
2.2 Animal model: High-fat high-fructose diet (HFHFD) mice 19
2.3 Prebiotics for bacterial cultures 20
2.4 Regulation of polysaccharide region A expression in P. goldsteinii
MTS01 in vitro 21
2.5 DNA extraction by using EasyPure Genomic DNA Spin Kit (BIOMAN
SCIENTIFIC CO., LTD) 22
2.6 DNA extraction by using QIAamp® Fast DNA Stool Mini Kit (QIAGEN)
24
2.7 Validation of PSApg promoter inversion by PCR/digestion in vitro 26
2.8 Validation of PSApg promoter inversion by PCR/digestion in vivo 27

Chapter 3. Results 30
3.1 Effect of monosaccharides on growth of NGPs 30
3.2 Effect of disaccharides on growth of NGPs 30
3.3 Effect of polysaccharides on growth of NGPs 30
3.4 Comparison of growth effects on P. goldsteinii MTS01 31
3.5 Comparison of growth effects on Bacteroides A 31
3.6 Comparison of growth effects on Bacteroides B 32
3.7 Comparison of growth effects on Bacteroides C 32
3.8 Comparison of growth effects on Parabacteroides D 32
3.9 Regulation of partially hydrolyzed guar gum (PHGG) to DNA inversion of PSA in vitro 32
3.10 Regulation of partially hydrolyzed guar gum (PHGG) to DNA inversion of PSA in vivo 33

Chapter 4. Discussion 34
Chapter 5. Appendix 39
Chapter 6. Reference 46

List of Tables
Table 1. Primers used in PCR/digestion technique demonstrates PSA
promoter orientations under different conditions 39

List of Figures
Figure 1. Effect of saccharides on growth of next-generation probiotics
(NGPs) 40
Figure 2. Comparison of growth effects of carbohydrates on microbiota
bacteria 42
Figure 3. Effect of PHGG on promoter DNA inversion of P. goldsteinii
capsular PSA gene was not observed in vitro 43
Figure 4. Regulation of PHGG on DNA inversion of P. goldsteinii capsular PSA promoter in vivo 44
1. DeGruttola, A.K., et al., Current Understanding of Dysbiosis in Disease in Human and Animal Models. Inflamm Bowel Dis, 2016. 22(5): p. 1137-50.
2. Tzu-Lung Lin, C.-C.S., Wei-Fan Lai, Chi-Meng, Tzeng, Hsin-Chih Lai, Chia-Chen Lu, Investiture of next generation probiotics on amelioration of diseases – Strains do matter. Medicine in Microecology, 2019.
3. Albenberg, L.G. and G.D. Wu, Diet and the intestinal microbiome: associations, functions, and implications for health and disease. Gastroenterology, 2014. 146(6): p. 1564-72.
4. Martin, R. and P. Langella, Emerging Health Concepts in the Probiotics Field: Streamlining the Definitions. Front Microbiol, 2019. 10: p. 1047.
5. Tlaskalova-Hogenova, H., et al., The role of gut microbiota (commensal bacteria) and the mucosal barrier in the pathogenesis of inflammatory and autoimmune diseases and cancer: contribution of germ-free and gnotobiotic animal models of human diseases. Cell Mol Immunol, 2011. 8(2): p. 110-20.
6. Ivaylo I Ivanov, K.H., Intestinal commensal microbes as immune modulators. Cell Host Microbe., 2012.
7. Lin, C.S., et al., Impact of the gut microbiota, prebiotics, and probiotics on human health and disease. Biomed J, 2014. 37(5): p. 259-68.
8. Maria Kechagia, D.B., Stavroula Konstantopoulou, Dimitra Dimitriadi, Konstantina Gyftopoulou, Nikoletta Skarmoutsou, and Eleni Maria Fakiri, Health Benefits of Probiotics: A Review. ISRN Nutr., 2013.
9. Koutnikova, H., et al., Impact of bacterial probiotics on obesity, diabetes and non-alcoholic fatty liver disease related variables: a systematic review and meta-analysis of randomised controlled trials. BMJ Open, 2019. 9(3): p. e017995.
10. Hezaveh, K., et al., Tryptophan-derived microbial metabolites activate the aryl hydrocarbon receptor in tumor-associated macrophages to suppress anti-tumor immunity. Immunity, 2022. 55(2): p. 324-340 e8.
11. Mogensen, T.H., Pathogen recognition and inflammatory signaling in innate immune defenses. Clin Microbiol Rev, 2009. 22(2): p. 240-73, Table of Contents.
12. Willing, B.P., N. Gill, and B.B. Finlay, The role of the immune system in regulating the microbiota. Gut Microbes, 2010. 1(4): p. 213-223.
13. Belkaid, Y. and T.W. Hand, Role of the microbiota in immunity and inflammation. Cell, 2014. 157(1): p. 121-41.
14. Tsai, Y.L., et al., Probiotics, prebiotics and amelioration of diseases. J Biomed Sci, 2019. 26(1): p. 3.
15. Milner, E., et al., Utilizing Probiotics for the Prevention and Treatment of Gastrointestinal Diseases. Front Microbiol, 2021. 12: p. 689958.
16. Cani, P.D., Human gut microbiome: hopes, threats and promises. Gut, 2018. 67(9): p. 1716-1725.
17. Luo, G., et al., Major Traditional Probiotics: Comparative Genomic Analyses and Roles in Gut Microbiome of Eight Cohorts. Front Microbiol, 2019. 10: p. 712.
18. Petrof, E.O., et al., Probiotics in the critically ill: a systematic review of the randomized trial evidence. Crit Care Med, 2012. 40(12): p. 3290-302.
19. Zhang, G.Q., et al., Probiotics for Preventing Late-Onset Sepsis in Preterm Neonates: A PRISMA-Compliant Systematic Review and Meta-Analysis of Randomized Controlled Trials. Medicine (Baltimore), 2016. 95(8): p. e2581.
20. Steinberg, R.S., et al., Safety and protective effectiveness of two strains of Lactobacillus with probiotic features in an experimental model of salmonellosis. Int J Environ Res Public Health, 2014. 11(9): p. 8755-76.
21. Sung, V., et al., Lactobacillus reuteri DSM 17938 for managing infant colic: protocol for an individual participant data meta-analysis. BMJ Open, 2014. 4(12): p. e006475.
22. Szymanski, H. and H. Szajewska, Lack of Efficacy of Lactobacillus reuteri DSM 17938 for the Treatment of Acute Gastroenteritis: A Randomized Controlled Trial. Pediatr Infect Dis J, 2019. 38(10): p. e237-e242.
23. Patro-Golab, B. and H. Szajewska, Systematic Review with Meta-Analysis: Lactobacillus reuteri DSM 17938 for Treating Acute Gastroenteritis in Children. An Update. Nutrients, 2019. 11(11).
24. Freedman, S.B., et al., Multicenter Trial of a Combination Probiotic for Children with Gastroenteritis. N Engl J Med, 2018. 379(21): p. 2015-2026.
25. Schnadower, D., et al., Lactobacillus rhamnosus GG versus Placebo for Acute Gastroenteritis in Children. N Engl J Med, 2018. 379(21): p. 2002-2014.
26. Niv Zmora, G.Z.-S., Jotham Suez, Uria Mor, Mally Dori-Bachash, Stavros Bashiardes, Eran Kotler, Maya Zur, Dana Regev-Lehavi, Rotem Ben-Zeev Brik, Sara Federici, Yotam Cohen, Raquel Linevsky, Daphna Rothschild, Andreas E Moor, Shani Ben-Moshe, Alon Harmelin, Shalev Itzkovitz, Nitsan Maharshak, Oren Shibolet, Hagit Shapiro, Meirav Pevsner-Fischer, Itai Sharon, Zamir Halpern, Eran Segal, Eran Elinav, Personalized Gut Mucosal Colonization Resistance to Empiric Probiotics Is Associated with Unique Host and Microbiome Features. Cell, 2018.
27. Wang, T., et al., Lactobacillus fermentum NS9 restores the antibiotic induced physiological and psychological abnormalities in rats. Benef Microbes, 2015. 6(5): p. 707-17.
28. Yelin, I., et al., Genomic and epidemiological evidence of bacterial transmission from probiotic capsule to blood in ICU patients. Nat Med, 2019. 25(11): p. 1728-1732.
29. Gagliardi, A., et al., Rebuilding the Gut Microbiota Ecosystem. Int J Environ Res Public Health, 2018. 15(8).
30. Navarro-Tapia, E., et al., Probiotic Supplementation During the Perinatal and Infant Period: Effects on Gut Dysbiosis and Disease. Nutrients, 2020. 12(8).
31. Chang, C.J., et al., Next generation probiotics in disease amelioration. J Food Drug Anal, 2019. 27(3): p. 615-622.
32. Kassam, Z., et al., Fecal microbiota transplantation for Clostridium difficile infection: systematic review and meta-analysis. Am J Gastroenterol, 2013. 108(4): p. 500-8.
33. Kaklamanos, E.G., et al., A single-centre investigator-blinded randomised parallel group clinical trial to investigate the effect of probiotic strains Streptococcus salivarius M18 and Lactobacillus acidophilus on gingival health of paediatric patients undergoing treatment with fixed orthodontic appliances: study protocol. BMJ Open, 2019. 9(9): p. e030638.
34. Pecora, F., et al., Gut Microbiota in Celiac Disease: Is There Any Role for Probiotics? Frontiers in Immunology, 2020. 11.
35. Schwartz, D.J., O.N. Rebeck, and G. Dantas, Complex interactions between the microbiome and cancer immune therapy. Critical Reviews in Clinical Laboratory Sciences, 2019. 56(8): p. 567-585.
36. Langella, P., F. Guarner, and R. Martin, Editorial: Next-Generation Probiotics: From Commensal Bacteria to Novel Drugs and Food Supplements. Front Microbiol, 2019. 10: p. 1973.
37. Cani, P.D. and M. Van Hul, Novel opportunities for next-generation probiotics targeting metabolic syndrome. Curr Opin Biotechnol, 2015. 32: p. 21-27.
38. Brandelli, A., A. Brandelli, and Elsevier, Probiotics : advanced food and health applications. First edition. ed. 2021, London: Elsevier Academic Press.
39. Paone, P. and P.D. Cani, Mucus barrier, mucins and gut microbiota: the expected slimy partners? Gut, 2020. 69(12): p. 2232-2243.
40. Zmora, N., J. Suez, and E. Elinav, You are what you eat: diet, health and the gut microbiota. Nature Reviews Gastroenterology & Hepatology, 2019. 16(1): p. 35-56.
41. Fei, Y., et al., Role of prebiotics in enhancing the function of next-generation probiotics in gut microbiota. Crit Rev Food Sci Nutr, 2021: p. 1-18.
42. Song, Q.Q., et al., Review of the relationships among polysaccharides, gut microbiota, and human health. Food Research International, 2021. 140.
43. George Kerry, R., et al., Benefaction of probiotics for human health: A review. J Food Drug Anal, 2018. 26(3): p. 927-939.
44. Danneskiold-Samsoe, N.B., et al., Interplay between food and gut microbiota in health and disease. Food Research International, 2019. 115: p. 23-31.
45. Davani-Davari, D., et al., Prebiotics: Definition, Types, Sources, Mechanisms, and Clinical Applications. Foods, 2019. 8(3).
46. Gibson, G.R. and M.B. Roberfroid, Dietary modulation of the human colonic microbiota: introducing the concept of prebiotics. J Nutr, 1995. 125(6): p. 1401-12.
47. Glenn R. Gibson, K.P.S., Robert A. Rastall, Kieran M. Tuohy, Arland Hotchkiss, Alix Dubert-Ferrandon, Melanie Gareau, Eileen F. Murphy, Delphine Saulnier, Gunnar Loh, Sandra Macfarlane, Nathalie Delzenne, Yehuda Ringel, Gunhild Kozianowski, Robin Dickmann, Irene Lenoir-Wijnkoop, Carey Walker and Randal Buddington, Dietary prebiotics: current status and new definition. Food Science and Technology Bulletin: Functional Foods, 2010.
48. Scott, K.P., et al., The influence of diet on the gut microbiota. Pharmacol Res, 2013. 69(1): p. 52-60.
49. Walker, A.W., et al., Dominant and diet-responsive groups of bacteria within the human colonic microbiota. Isme Journal, 2011. 5(2): p. 220-230.
50. Gibson, G.R., et al., Dietary modulation of the human colonic microbiota: updating the concept of prebiotics. Nutr Res Rev, 2004. 17(2): p. 259-75.
51. Bouhnik, Y., et al., The capacity of nondigestible carbohydrates to stimulate fecal bifidobacteria in healthy humans: a double-blind, randomized, placebo-controlled, parallel-group, dose-response relation study. Am J Clin Nutr, 2004. 80(6): p. 1658-64.
52. Flint, H.J., et al., The role of the gut microbiota in nutrition and health. Nat Rev Gastroenterol Hepatol, 2012. 9(10): p. 577-89.
53. Turroni, F., et al., Molecular dialogue between the human gut microbiota and the host: a Lactobacillus and Bifidobacterium perspective. Cellular and Molecular Life Sciences, 2014. 71(2): p. 183-203.
54. Roberfroid, M.B., Health benefits of non-digestible oligosaccharides. Adv Exp Med Biol, 1997. 427: p. 211-9.
55. Shokri, D., et al., The Inhibition Effect of Lactobacilli Against Growth and Biofilm Formation of Pseudomonas aeruginosa. Probiotics Antimicrob Proteins, 2018. 10(1): p. 34-42.
56. Slavin, J., Fiber and prebiotics: mechanisms and health benefits. Nutrients, 2013. 5(4): p. 1417-35.
57. DAVID C. HERNOT, T.W.B., LAURA L. BAUER, INGMAR S. MIDDELBOS, MICHAEL R. MURPHY, KELLY S. SWANSON, AND GEORGE C. FAHEY, JR, In Vitro Fermentation Profiles, Gas Production Rates, and Microbiota Modulation as Affected by Certain Fructans, Galactooligosaccharides, and Polydextrose. American Chemical Society, 2009.
58. Zhou, Z., et al., Starch structure modulates metabolic activity and gut microbiota profile. Anaerobe, 2013. 24: p. 71-8.
59. Gijs den Besten , K.v.E., Albert K. Groen , Koen Venema , Dirk-Jan Reijngoud , and Barbara M. Bakker, The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. Journal of Lipid Research, 2013.
60. Stinson, L.F., M.S. Payne, and J.A. Keelan, Planting the seed: Origins, composition, and postnatal health significance of the fetal gastrointestinal microbiota. Crit Rev Microbiol, 2017. 43(3): p. 352-369.
61. Clarke, T.B., et al., Recognition of peptidoglycan from the microbiota by Nod1 enhances systemic innate immunity. Nat Med, 2010. 16(2): p. 228-31.
62. Garcia-Vello, P., et al., Lipopolysaccharide lipid A: A promising molecule for new immunity-based therapies and antibiotics. Pharmacol Ther, 2022. 230: p. 107970.
63. Hamer, H.M., et al., Review article: the role of butyrate on colonic function. Aliment Pharmacol Ther, 2008. 27(2): p. 104-19.
64. Trompette, A., et al., Gut microbiota metabolism of dietary fiber influences allergic airway disease and hematopoiesis. Nat Med, 2014. 20(2): p. 159-66.
65. Hasan, N. and H. Yang, Factors affecting the composition of the gut microbiota, and its modulation. PeerJ, 2019. 7: p. e7502.
66. Farag, M.A., et al., Metabolomics reveals impact of seven functional foods on metabolic pathways in a gut microbiota model. J Adv Res, 2020. 23: p. 47-59.
67. Henriques, S.F., et al., Metabolic cross-feeding in imbalanced diets allows gut microbes to improve reproduction and alter host behaviour. Nat Commun, 2020. 11(1): p. 4236.
68. Collins, M.D. and G.R. Gibson, Probiotics, prebiotics, and synbiotics: approaches for modulating the microbial ecology of the gut. Am J Clin Nutr, 1999. 69(5): p. 1052S-1057S.
69. Markowiak, P. and K. Slizewska, Effects of Probiotics, Prebiotics, and Synbiotics on Human Health. Nutrients, 2017. 9(9).
70. Pandey, K.R., S.R. Naik, and B.V. Vakil, Probiotics, prebiotics and synbiotics- a review. Journal of Food Science and Technology-Mysore, 2015. 52(12): p. 7577-7587.
71. Sakamoto, M. and Y. Benno, Reclassification of Bacteroides distasonis, Bacteroides goldsteinii and Bacteroides merdae as Parabacteroides distasonis gen. nov., comb. nov., Parabacteroides goldsteinii comb. nov. and Parabacteroides merdae comb. nov. Int J Syst Evol Microbiol, 2006. 56(Pt 7): p. 1599-1605.
72. Alexandrov, P.N., et al., Aluminum-induced generation of lipopolysaccharide (LPS) from the human gastrointestinal (GI)-tract microbiome-resident Bacteroides fragilis. J Inorg Biochem, 2020. 203: p. 110886.
73. Porter, N.T., et al., A Subset of Polysaccharide Capsules in the Human Symbiont Bacteroides thetaiotaomicron Promote Increased Competitive Fitness in the Mouse Gut. Cell Host Microbe, 2017. 22(4): p. 494-506 e8.
74. Avci, F.Y. and D.L. Kasper, How Bacterial Carbohydrates Influence the Adaptive Immune System. Annual Review of Immunology, Vol 28, 2010. 28: p. 107-130.
75. Troy, E.B. and D.L. Kasper, Beneficial effects of Bacteroides fragilis polysaccharides on the immune system. Front Biosci (Landmark Ed), 2010. 15(1): p. 25-34.
76. Lai, Y.-C., Regulation of Parabacteroides goldsteinii capsular polysaccharide synthesis region A. 2020.
77. Bacic, M.K. and C.J. Smith, Laboratory maintenance and cultivation of bacteroides species. Curr Protoc Microbiol, 2008. Chapter 13: p. Unit 13C 1.
78. Cockburn, D.W. and N.M. Koropatkin, Polysaccharide Degradation by the Intestinal Microbiota and Its Influence on Human Health and Disease. J Mol Biol, 2016. 428(16): p. 3230-3252.
79. Sonnenburg, E.D., et al., Specificity of Polysaccharide Use in Intestinal Bacteroides Species Determines Diet-Induced Microbiota Alterations. Cell, 2010. 141(7): p. 1241-U256.
80. Round, J.L. and S.K. Mazmanian, Inducible Foxp3+ regulatory T-cell development by a commensal bacterium of the intestinal microbiota. Proc Natl Acad Sci U S A, 2010. 107(27): p. 12204-9.
81. Okubo, T., et al., Effects of Partially Hydrolyzed Guar Gum Intake on Human Intestinal Microflora and Its Metabolism. Bioscience Biotechnology and Biochemistry, 1994. 58(8): p. 1364-1369.
電子全文 電子全文(網際網路公開日期:20270728)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top