|
1. DeGruttola, A.K., et al., Current Understanding of Dysbiosis in Disease in Human and Animal Models. Inflamm Bowel Dis, 2016. 22(5): p. 1137-50. 2. Tzu-Lung Lin, C.-C.S., Wei-Fan Lai, Chi-Meng, Tzeng, Hsin-Chih Lai, Chia-Chen Lu, Investiture of next generation probiotics on amelioration of diseases – Strains do matter. Medicine in Microecology, 2019. 3. Albenberg, L.G. and G.D. Wu, Diet and the intestinal microbiome: associations, functions, and implications for health and disease. Gastroenterology, 2014. 146(6): p. 1564-72. 4. Martin, R. and P. Langella, Emerging Health Concepts in the Probiotics Field: Streamlining the Definitions. Front Microbiol, 2019. 10: p. 1047. 5. Tlaskalova-Hogenova, H., et al., The role of gut microbiota (commensal bacteria) and the mucosal barrier in the pathogenesis of inflammatory and autoimmune diseases and cancer: contribution of germ-free and gnotobiotic animal models of human diseases. Cell Mol Immunol, 2011. 8(2): p. 110-20. 6. Ivaylo I Ivanov, K.H., Intestinal commensal microbes as immune modulators. Cell Host Microbe., 2012. 7. Lin, C.S., et al., Impact of the gut microbiota, prebiotics, and probiotics on human health and disease. Biomed J, 2014. 37(5): p. 259-68. 8. Maria Kechagia, D.B., Stavroula Konstantopoulou, Dimitra Dimitriadi, Konstantina Gyftopoulou, Nikoletta Skarmoutsou, and Eleni Maria Fakiri, Health Benefits of Probiotics: A Review. ISRN Nutr., 2013. 9. Koutnikova, H., et al., Impact of bacterial probiotics on obesity, diabetes and non-alcoholic fatty liver disease related variables: a systematic review and meta-analysis of randomised controlled trials. BMJ Open, 2019. 9(3): p. e017995. 10. Hezaveh, K., et al., Tryptophan-derived microbial metabolites activate the aryl hydrocarbon receptor in tumor-associated macrophages to suppress anti-tumor immunity. Immunity, 2022. 55(2): p. 324-340 e8. 11. Mogensen, T.H., Pathogen recognition and inflammatory signaling in innate immune defenses. Clin Microbiol Rev, 2009. 22(2): p. 240-73, Table of Contents. 12. Willing, B.P., N. Gill, and B.B. Finlay, The role of the immune system in regulating the microbiota. Gut Microbes, 2010. 1(4): p. 213-223. 13. Belkaid, Y. and T.W. Hand, Role of the microbiota in immunity and inflammation. Cell, 2014. 157(1): p. 121-41. 14. Tsai, Y.L., et al., Probiotics, prebiotics and amelioration of diseases. J Biomed Sci, 2019. 26(1): p. 3. 15. Milner, E., et al., Utilizing Probiotics for the Prevention and Treatment of Gastrointestinal Diseases. Front Microbiol, 2021. 12: p. 689958. 16. Cani, P.D., Human gut microbiome: hopes, threats and promises. Gut, 2018. 67(9): p. 1716-1725. 17. Luo, G., et al., Major Traditional Probiotics: Comparative Genomic Analyses and Roles in Gut Microbiome of Eight Cohorts. Front Microbiol, 2019. 10: p. 712. 18. Petrof, E.O., et al., Probiotics in the critically ill: a systematic review of the randomized trial evidence. Crit Care Med, 2012. 40(12): p. 3290-302. 19. Zhang, G.Q., et al., Probiotics for Preventing Late-Onset Sepsis in Preterm Neonates: A PRISMA-Compliant Systematic Review and Meta-Analysis of Randomized Controlled Trials. Medicine (Baltimore), 2016. 95(8): p. e2581. 20. Steinberg, R.S., et al., Safety and protective effectiveness of two strains of Lactobacillus with probiotic features in an experimental model of salmonellosis. Int J Environ Res Public Health, 2014. 11(9): p. 8755-76. 21. Sung, V., et al., Lactobacillus reuteri DSM 17938 for managing infant colic: protocol for an individual participant data meta-analysis. BMJ Open, 2014. 4(12): p. e006475. 22. Szymanski, H. and H. Szajewska, Lack of Efficacy of Lactobacillus reuteri DSM 17938 for the Treatment of Acute Gastroenteritis: A Randomized Controlled Trial. Pediatr Infect Dis J, 2019. 38(10): p. e237-e242. 23. Patro-Golab, B. and H. Szajewska, Systematic Review with Meta-Analysis: Lactobacillus reuteri DSM 17938 for Treating Acute Gastroenteritis in Children. An Update. Nutrients, 2019. 11(11). 24. Freedman, S.B., et al., Multicenter Trial of a Combination Probiotic for Children with Gastroenteritis. N Engl J Med, 2018. 379(21): p. 2015-2026. 25. Schnadower, D., et al., Lactobacillus rhamnosus GG versus Placebo for Acute Gastroenteritis in Children. N Engl J Med, 2018. 379(21): p. 2002-2014. 26. Niv Zmora, G.Z.-S., Jotham Suez, Uria Mor, Mally Dori-Bachash, Stavros Bashiardes, Eran Kotler, Maya Zur, Dana Regev-Lehavi, Rotem Ben-Zeev Brik, Sara Federici, Yotam Cohen, Raquel Linevsky, Daphna Rothschild, Andreas E Moor, Shani Ben-Moshe, Alon Harmelin, Shalev Itzkovitz, Nitsan Maharshak, Oren Shibolet, Hagit Shapiro, Meirav Pevsner-Fischer, Itai Sharon, Zamir Halpern, Eran Segal, Eran Elinav, Personalized Gut Mucosal Colonization Resistance to Empiric Probiotics Is Associated with Unique Host and Microbiome Features. Cell, 2018. 27. Wang, T., et al., Lactobacillus fermentum NS9 restores the antibiotic induced physiological and psychological abnormalities in rats. Benef Microbes, 2015. 6(5): p. 707-17. 28. Yelin, I., et al., Genomic and epidemiological evidence of bacterial transmission from probiotic capsule to blood in ICU patients. Nat Med, 2019. 25(11): p. 1728-1732. 29. Gagliardi, A., et al., Rebuilding the Gut Microbiota Ecosystem. Int J Environ Res Public Health, 2018. 15(8). 30. Navarro-Tapia, E., et al., Probiotic Supplementation During the Perinatal and Infant Period: Effects on Gut Dysbiosis and Disease. Nutrients, 2020. 12(8). 31. Chang, C.J., et al., Next generation probiotics in disease amelioration. J Food Drug Anal, 2019. 27(3): p. 615-622. 32. Kassam, Z., et al., Fecal microbiota transplantation for Clostridium difficile infection: systematic review and meta-analysis. Am J Gastroenterol, 2013. 108(4): p. 500-8. 33. Kaklamanos, E.G., et al., A single-centre investigator-blinded randomised parallel group clinical trial to investigate the effect of probiotic strains Streptococcus salivarius M18 and Lactobacillus acidophilus on gingival health of paediatric patients undergoing treatment with fixed orthodontic appliances: study protocol. BMJ Open, 2019. 9(9): p. e030638. 34. Pecora, F., et al., Gut Microbiota in Celiac Disease: Is There Any Role for Probiotics? Frontiers in Immunology, 2020. 11. 35. Schwartz, D.J., O.N. Rebeck, and G. Dantas, Complex interactions between the microbiome and cancer immune therapy. Critical Reviews in Clinical Laboratory Sciences, 2019. 56(8): p. 567-585. 36. Langella, P., F. Guarner, and R. Martin, Editorial: Next-Generation Probiotics: From Commensal Bacteria to Novel Drugs and Food Supplements. Front Microbiol, 2019. 10: p. 1973. 37. Cani, P.D. and M. Van Hul, Novel opportunities for next-generation probiotics targeting metabolic syndrome. Curr Opin Biotechnol, 2015. 32: p. 21-27. 38. Brandelli, A., A. Brandelli, and Elsevier, Probiotics : advanced food and health applications. First edition. ed. 2021, London: Elsevier Academic Press. 39. Paone, P. and P.D. Cani, Mucus barrier, mucins and gut microbiota: the expected slimy partners? Gut, 2020. 69(12): p. 2232-2243. 40. Zmora, N., J. Suez, and E. Elinav, You are what you eat: diet, health and the gut microbiota. Nature Reviews Gastroenterology & Hepatology, 2019. 16(1): p. 35-56. 41. Fei, Y., et al., Role of prebiotics in enhancing the function of next-generation probiotics in gut microbiota. Crit Rev Food Sci Nutr, 2021: p. 1-18. 42. Song, Q.Q., et al., Review of the relationships among polysaccharides, gut microbiota, and human health. Food Research International, 2021. 140. 43. George Kerry, R., et al., Benefaction of probiotics for human health: A review. J Food Drug Anal, 2018. 26(3): p. 927-939. 44. Danneskiold-Samsoe, N.B., et al., Interplay between food and gut microbiota in health and disease. Food Research International, 2019. 115: p. 23-31. 45. Davani-Davari, D., et al., Prebiotics: Definition, Types, Sources, Mechanisms, and Clinical Applications. Foods, 2019. 8(3). 46. Gibson, G.R. and M.B. Roberfroid, Dietary modulation of the human colonic microbiota: introducing the concept of prebiotics. J Nutr, 1995. 125(6): p. 1401-12. 47. Glenn R. Gibson, K.P.S., Robert A. Rastall, Kieran M. Tuohy, Arland Hotchkiss, Alix Dubert-Ferrandon, Melanie Gareau, Eileen F. Murphy, Delphine Saulnier, Gunnar Loh, Sandra Macfarlane, Nathalie Delzenne, Yehuda Ringel, Gunhild Kozianowski, Robin Dickmann, Irene Lenoir-Wijnkoop, Carey Walker and Randal Buddington, Dietary prebiotics: current status and new definition. Food Science and Technology Bulletin: Functional Foods, 2010. 48. Scott, K.P., et al., The influence of diet on the gut microbiota. Pharmacol Res, 2013. 69(1): p. 52-60. 49. Walker, A.W., et al., Dominant and diet-responsive groups of bacteria within the human colonic microbiota. Isme Journal, 2011. 5(2): p. 220-230. 50. Gibson, G.R., et al., Dietary modulation of the human colonic microbiota: updating the concept of prebiotics. Nutr Res Rev, 2004. 17(2): p. 259-75. 51. Bouhnik, Y., et al., The capacity of nondigestible carbohydrates to stimulate fecal bifidobacteria in healthy humans: a double-blind, randomized, placebo-controlled, parallel-group, dose-response relation study. Am J Clin Nutr, 2004. 80(6): p. 1658-64. 52. Flint, H.J., et al., The role of the gut microbiota in nutrition and health. Nat Rev Gastroenterol Hepatol, 2012. 9(10): p. 577-89. 53. Turroni, F., et al., Molecular dialogue between the human gut microbiota and the host: a Lactobacillus and Bifidobacterium perspective. Cellular and Molecular Life Sciences, 2014. 71(2): p. 183-203. 54. Roberfroid, M.B., Health benefits of non-digestible oligosaccharides. Adv Exp Med Biol, 1997. 427: p. 211-9. 55. Shokri, D., et al., The Inhibition Effect of Lactobacilli Against Growth and Biofilm Formation of Pseudomonas aeruginosa. Probiotics Antimicrob Proteins, 2018. 10(1): p. 34-42. 56. Slavin, J., Fiber and prebiotics: mechanisms and health benefits. Nutrients, 2013. 5(4): p. 1417-35. 57. DAVID C. HERNOT, T.W.B., LAURA L. BAUER, INGMAR S. MIDDELBOS, MICHAEL R. MURPHY, KELLY S. SWANSON, AND GEORGE C. FAHEY, JR, In Vitro Fermentation Profiles, Gas Production Rates, and Microbiota Modulation as Affected by Certain Fructans, Galactooligosaccharides, and Polydextrose. American Chemical Society, 2009. 58. Zhou, Z., et al., Starch structure modulates metabolic activity and gut microbiota profile. Anaerobe, 2013. 24: p. 71-8. 59. Gijs den Besten , K.v.E., Albert K. Groen , Koen Venema , Dirk-Jan Reijngoud , and Barbara M. Bakker, The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. Journal of Lipid Research, 2013. 60. Stinson, L.F., M.S. Payne, and J.A. Keelan, Planting the seed: Origins, composition, and postnatal health significance of the fetal gastrointestinal microbiota. Crit Rev Microbiol, 2017. 43(3): p. 352-369. 61. Clarke, T.B., et al., Recognition of peptidoglycan from the microbiota by Nod1 enhances systemic innate immunity. Nat Med, 2010. 16(2): p. 228-31. 62. Garcia-Vello, P., et al., Lipopolysaccharide lipid A: A promising molecule for new immunity-based therapies and antibiotics. Pharmacol Ther, 2022. 230: p. 107970. 63. Hamer, H.M., et al., Review article: the role of butyrate on colonic function. Aliment Pharmacol Ther, 2008. 27(2): p. 104-19. 64. Trompette, A., et al., Gut microbiota metabolism of dietary fiber influences allergic airway disease and hematopoiesis. Nat Med, 2014. 20(2): p. 159-66. 65. Hasan, N. and H. Yang, Factors affecting the composition of the gut microbiota, and its modulation. PeerJ, 2019. 7: p. e7502. 66. Farag, M.A., et al., Metabolomics reveals impact of seven functional foods on metabolic pathways in a gut microbiota model. J Adv Res, 2020. 23: p. 47-59. 67. Henriques, S.F., et al., Metabolic cross-feeding in imbalanced diets allows gut microbes to improve reproduction and alter host behaviour. Nat Commun, 2020. 11(1): p. 4236. 68. Collins, M.D. and G.R. Gibson, Probiotics, prebiotics, and synbiotics: approaches for modulating the microbial ecology of the gut. Am J Clin Nutr, 1999. 69(5): p. 1052S-1057S. 69. Markowiak, P. and K. Slizewska, Effects of Probiotics, Prebiotics, and Synbiotics on Human Health. Nutrients, 2017. 9(9). 70. Pandey, K.R., S.R. Naik, and B.V. Vakil, Probiotics, prebiotics and synbiotics- a review. Journal of Food Science and Technology-Mysore, 2015. 52(12): p. 7577-7587. 71. Sakamoto, M. and Y. Benno, Reclassification of Bacteroides distasonis, Bacteroides goldsteinii and Bacteroides merdae as Parabacteroides distasonis gen. nov., comb. nov., Parabacteroides goldsteinii comb. nov. and Parabacteroides merdae comb. nov. Int J Syst Evol Microbiol, 2006. 56(Pt 7): p. 1599-1605. 72. Alexandrov, P.N., et al., Aluminum-induced generation of lipopolysaccharide (LPS) from the human gastrointestinal (GI)-tract microbiome-resident Bacteroides fragilis. J Inorg Biochem, 2020. 203: p. 110886. 73. Porter, N.T., et al., A Subset of Polysaccharide Capsules in the Human Symbiont Bacteroides thetaiotaomicron Promote Increased Competitive Fitness in the Mouse Gut. Cell Host Microbe, 2017. 22(4): p. 494-506 e8. 74. Avci, F.Y. and D.L. Kasper, How Bacterial Carbohydrates Influence the Adaptive Immune System. Annual Review of Immunology, Vol 28, 2010. 28: p. 107-130. 75. Troy, E.B. and D.L. Kasper, Beneficial effects of Bacteroides fragilis polysaccharides on the immune system. Front Biosci (Landmark Ed), 2010. 15(1): p. 25-34. 76. Lai, Y.-C., Regulation of Parabacteroides goldsteinii capsular polysaccharide synthesis region A. 2020. 77. Bacic, M.K. and C.J. Smith, Laboratory maintenance and cultivation of bacteroides species. Curr Protoc Microbiol, 2008. Chapter 13: p. Unit 13C 1. 78. Cockburn, D.W. and N.M. Koropatkin, Polysaccharide Degradation by the Intestinal Microbiota and Its Influence on Human Health and Disease. J Mol Biol, 2016. 428(16): p. 3230-3252. 79. Sonnenburg, E.D., et al., Specificity of Polysaccharide Use in Intestinal Bacteroides Species Determines Diet-Induced Microbiota Alterations. Cell, 2010. 141(7): p. 1241-U256. 80. Round, J.L. and S.K. Mazmanian, Inducible Foxp3+ regulatory T-cell development by a commensal bacterium of the intestinal microbiota. Proc Natl Acad Sci U S A, 2010. 107(27): p. 12204-9. 81. Okubo, T., et al., Effects of Partially Hydrolyzed Guar Gum Intake on Human Intestinal Microflora and Its Metabolism. Bioscience Biotechnology and Biochemistry, 1994. 58(8): p. 1364-1369.
|