跳到主要內容

臺灣博碩士論文加值系統

(34.204.172.188) 您好!臺灣時間:2023/09/27 19:27
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:ASIF ALI BHAT
研究生(外文):BHAT ASIF ALI
論文名稱:Zerumbone 誘導人黑色素瘤細胞中 ROS 介導的自噬細胞死亡:一項體外和體內研究。
論文名稱(外文):Zerumbone induced ROS-mediated autophagic cell death in human melanoma cells: An in vitro and in vivo study.
指導教授:許游章楊新玲楊新玲引用關係
指導教授(外文):HSEU, YOU-CHENGYANG, HSIN-LING
口試委員:何元順許游章張嘉哲
口試委員(外文):HO, YUAN-SOONHSEU, YOU-CHENGCHANG, CHIA-CHE
口試日期:2023-07-07
學位類別:碩士
校院名稱:中國醫藥大學
系所名稱:生物醫學研究所碩士班
學門:生命科學學門
學類:生物化學學類
論文種類:學術論文
論文出版年:2023
畢業學年度:111
語文別:英文
論文頁數:88
中文關鍵詞:球薑酮黑色素瘤活性氧化物自噬
外文關鍵詞:ZerumboneMelanomaROSAutophagy
DOI:0000-0001-7178-9238
ORCID或ResearchGate:Google Scholars Asif Ali Bhat
相關次數:
  • 被引用被引用:0
  • 點閱點閱:19
  • 評分評分:
  • 下載下載:3
  • 收藏至我的研究室書目清單書目收藏:0
Zerumbone (Zer) is a sesquiterpene phytochemical substance extracted from the subtropical plant Zingiber zerumbet's rhizomes. It has been scientifically investigated to have anti-oxidant, anti-inflammatory, and anti-cancer characteristics in addition to other biological actions. This work reviewed the molecular basis behind Zer's in vivo and in vitro anti-cancer potency at different doses of Zer (15–45 μM) on A375 and A2058 (15–60 μM) melanoma cells. Zer substantially reduced the viability of the cells. The triggering of ROS activation, Caspase-3 activation, PARP cleavage, and Bax/Bcl-2 dysregulation, LC3-II accumulation, AVOs appearance, and Beclin-1/Bcl-2 dysregulation and signaling by caspase-3 and LC3-II accumulation was correlated, highlighting the mechanism of apoptotic and autophagic activation. Elevated LC3-II appearance and AVO synthesis were evidence of Zer-induced autophagy. Paradoxically, 3-MA and CQ potentiated Zer-mediated cell death, referring to the potential significance of autophagy as a cell death approach. Additionally, A2058 and A375 cells treated with Zer generated more intracellular ROS, while antioxidant NAC controlled apoptosis and autophagy and immediately turned back autophagic channels. Intriguingly, the PARP cleavage and Beclin-1/Bcl-2 upregulating were activated to promote Zer-controlled apoptotic signaling and autophagic responses. Based on in-vivo investigations, Zer dramatically reduced tumor progression in nude mice with A2058-xenografts; in mice with A2058 xenografts treated with Zer, a Western blot revealed activation of apoptosis (PARP cleavage and Bcl-2 inhibition), and autophagy (LC3-II and Beclin-1) overexpression). The present findings revealed that the anticancer drug Zerumbone stimulates ROS-mediated apoptosis and autophagy in both melanoma cell lines.
ACKNOWLEDGEMENT 5
ABSTRACT 6
I. GRAPHICAL MECHANISM/ABSTRACT 7
7
ABBREVIATIONS: 11
1. INTRODUCTION 12
1.1 . THE CONVERSION OF TYPICAL MELANOCYTES INTO MELANOMA CELLS 16
1.2 . SYNTHESIS OF MELANIN 19
1.3 . THE SYNTHESIS OF ROS IN THE SKIN. 20
1.4 . THE COMPARATIVE DIFFERENCE AND SIGNIFICANCE OF A375 AND A2058 MELANOMA CELL LINES: 23
2. MATERIALS AND METHODS 25
2.1 REAGENTS 25
2.2. CELL CULTURE 26
2.3. MTT ASSAY 26
2.4. CELL LYSATE PREPARATION 26
2.5. WESTERN BLOTTING 27
2.6. ACRIDINE ORANGE STAINING 27
2.7. SIRNA TRANSFECTION 28
2.9. MEASUREMENT OF INTRACELLULAR ROS 28
2.10. IN VIVO EXPERIMENTS 29
2.11. XENOGRAFTING OF A375 OR A2058 CELLS 29
2.12 STUDY OF XENOGRAFT TUMORS EMPLOYING THE WESTERN BLOTTING APPROACH 29
2.13. STATISTICAL DATA ANALYSIS 30
3. RESULTS 31
3.1 ZER REDUCED CELL PROLIFERATION AND CELLULAR APPEARANCE IN BOTH CELLS 31
3.2 ZER IMPEDED COLONY FORMATION IN A375 AND A2058 CELLS. 31
AS THE CONCENTRATION OF ZER IMPROVED FROM 0–45 OR 0–60 µM, THE CAPACITY FOR A375 AND A2058 CELLS TO FORM COLONIES WERE REDUCED (FIG 2 A-B). IN BOTH CELL LINES, COLONY NUMBER WAS DRASTICALLY DECREASED WITH ZER (FIG 2 C-D). 31
3.3 IN BOTH MELANOMA CELLS, ZER PROMPTED APOPTOSIS. 31
3.4. IN A2058 AND A375 CELLS, ZER FAVORS THE FORMATION OF AUTOPHAGY AND APOPTOSIS. 32
3.5. ZER ENABLES MELANOMA CELLS TO DEVELOP AVOS ACCUMULATION 34
3.7 ZER ACTIVATED AUTOPHAGIC SIGNALING IN BOTH MELANOMA CELLS AS A MARKER OF CELL DEATH STRATEGY 35
3.8 IN A2058 AND A375 CELLS, ZER ACCELERATES DNA DISINTEGRATION AND TRIGGERS LATE APOPTOSIS. 35
3.9. RELATIONSHIPS INVOLVING THE EVENTS OF APOPTOSIS AND AUTOPHAGY 36
3.10 ZER-INDUCED APOPTOSIS IN BOTH MELANOMA CELLS WAS DIMINISHED BY AUTOPHAGIC DEGRADATION. 37
3.11. ZER ACCUMULATED ROS STIMULATION IN MELANOMA CELLS. 38
3.12. ROS DOWN-REGULATION BY NAC DETERMINED ZER-REGULATED APOPTOSIS AND AUTOPHAGY IN A375 OR A2058 38
3.13 ZER AND ZZ EXTRACTS REDUCED THE TUMOR WEIGHT AND VOLUME IN NAKED MICE. 39
3.13 AUTOPHAGY AND APOPTOTIC RESPONSES WERE LINKED TO ZER-MEDIATED AND ZZ EXTRACTS DECLINE IN TUMOR APPEARANCE AND TUMOR WEIGHT IN NAKED MICE. 40
3. DISCUSSION 41
4. SUMMARY 47
5. CONCLUDING REMARK 50
6. FUTURE STUDIES 51
1. EXPLORING THE DIVERSE BIO-CHEMICAL SIGNALING CHANNELS: 51
2. ASSESSING THE IMPACT OF THE SPECIFIC MICROENVIRONMENT ON THE EVOLUTION OF THE TUMOR: 51
3. OPTIMIZING THE PROCEDURE FOR DELIVERY OF THE ZERUMBONE: 52
4. THERAPIES THAT COMBINE SEVERAL DIFFERENT COMPONENTS: 52
5. PRECLINICAL/CLINICAL TRIALS: 53
7. GENERAL MECHANISTIC OVER-VIEW OF THIS STUDY 55
1. STRUCTURE OF ZER AND ITS DIFFERENT MOLECULAR/SIGNALING TARGETS TO TREAT SEVERAL DISEASES. 55
56
2. MECHANISM OF MELANIN GENERATION AND ITS MOLECULAR STRUCTURE 56
3. DESCRIPTION OF A COLLECTION OF METABOLIC PROCESSES THAT RESULT IN THE PRODUCTION OF HUMAN MELANIN, (A) PHEOMELANIN, (B) EUMELANIN AND (C) BASIC MECHANISM OF MELANIN SYNTHESIS. 57
4. STEPS AND MECHANISM OF AUTOPHAGIC EVENTS 58
5. ZERUMBONE ACTIVATED APOPTOTIC SIGNALING MECHANISM. 59
7. MECHANISM OF ROS PRODUCTION AND ZER RESULT IN CELLULAR DAMAGE AND APOPTOTIC SIGNALING CELL DEATH. 61
8. MECHANISM OF ZER TRIGGERED AN AUTOPHAGIC AND APOPTOTIC RESPONSE MEANWHILE APOPTOSIS INHIBITS AUTOPHAGY LEADING TO ZER STIMULATED CELL DEATH. 62
8. FIGURE AND LEGENDS 63
FIG. 1. ZERUMBONE (ZER) INHIBITS CELL PROLIFERATION MELANOMA CELLS. 63
FIG. 2. ZER LIMITED COLONY APPEARANCE IN A375 AND A2058 CELLS. 64
FIG. 3. IN A375 AND A2058, ZER INITIATED THE APOPTOTIC MECHANISM. 65
FIG. 4. ZER INDUCED LC3-II STIMULATION LEADING TO EXHIBIT AUTOPHAGY IN A375 AND A2058 CELLS. 66
FIG. 5. ZER TRIGGERS AVO ACCUMULATION IN MELANOMA CELLS. 67
FIG. 6. IN A375 AND A2058 CELLS, ZER DOSE-DEPENDENTLY UPREGULATED BAX/BCL-2 LEVELS. 68
FIG. 7. ZER FAVORS AUTOPHAGY, WHICH PRIMARILY SERVES AS A MODE OF CELL DEATH, IN A375 AND A2058 CELLS. 69
FIG. 8. IN A375 OR A2058 CELLS, ZER PROMOTED LATE APOPTOTIC CONTROLLED/PROGRAMMED CELL DEATH. 70
FIG. 9. THE ASSOCIATION INVOLVING BOTH AUTOPHAGIC AND APOPTOTIC CELL DEATH RESULTED FROM ZER IN A375 CELLS. 71
FIG. 10. ZER IN A375 CELLS DEVELOPED THE AUTOPHAGIC AND APOPTOTIC CROSS-LINK AS A CELL DEATH PROCESS IN A2058. 72
FIG. 11. ZER TRIGGERS ROS APPEARANCE IN A375 AND A2058 CELLS. 73
FIG. 12. ZER TRIGGERS ROS REGULATED AUTOPHAGIC AND APOPTOTIC CHANNELS IN A375 OR A2058 CELLS. 74
FIG. 13. ZER AND ZZ DISPLAYED A TUMOR-SUPPRESSIVE EFFECT IN XENOGRAFTED NAKED MICE. 75
FIG. 14. ZER AND ZZ INHIBITED A375 AND A2058 XENOGRAFTED TUMORS IN MICE. 76
9. REFERENCE: 78


Mishra, R., Patel, H., Yuan, L., & Garrett, J. T. (2018). Role of reactive oxygen species and targeted therapy in metastatic melanoma. Cancer Res Front, 4, 101-130.
Alicea, G. M., & Rebecca, V. W. (2021). Emerging strategies to treat rare and intractable subtypes of melanoma. Pigment cell & melanoma research, 34(1), 44-58.
Allegra, A., Caserta, S., Genovese, S., Pioggia, G., & Gangemi, S. (2023). Gender Differences in Oxidative Stress in Relation to Cancer Susceptibility and Survival. Antioxidants, 12(6), 1255.
Amaldoss, M. J. N. (2022). Nanocatalytic CePO4· H2O (Rhabdophane): Mitochondrial-Targeting, Cell-Discriminative, ROS-Mediated Cancer Therapy UNSW Sydney].
Chapman, P. B., Hauschild, A., Robert, C., Haanen, J. B., Ascierto, P., Larkin, J., Dummer, R., Garbe, C., Testori, A., & Maio, M. (2011). Improved survival with vemurafenib in melanoma with BRAF V600E mutation. New England Journal of Medicine, 364(26), 2507-2516.
Chen, S.-J., Hseu, Y.-C., Gowrisankar, Y. V., Chung, Y.-T., Zhang, Y.-Z., Way, T.-D., & Yang, H.-L. (2021). The anti-melanogenic effects of 3-O-ethyl ascorbic acid via Nrf2-mediated α-MSH inhibition in UVA-irradiated keratinocytes and autophagy induction in melanocytes. Free Radical Biology and Medicine, 173, 151-169.
CR, J. M., & Rotaru, M. (2023). The Key Factors to Melanomagenesis. Life (Basel, Switzerland), 13(1), 181-181.
Gall Trošelj, K., Tomljanović, M., Jaganjac, M., Matijević Glavan, T., Čipak Gašparović, A., Milković, L., Borović Šunjić, S., Buttari, B., Profumo, E., & Saha, S. (2022). Oxidative stress and cancer heterogeneity orchestrate NRF2 roles relevant for therapy response. Molecules, 27(5), 1468.
Ghosh, D., Chatterjee, P., Mitra, T., & Roy, S. S. (2022). Association of Oxidative Stress and Mitochondrial Dysfunction to Gynecological Malignancies. In Handbook of Oxidative Stress in Cancer: Mechanistic Aspects (pp. 165-183). Springer.
Giacomoni, P. U. (2020). Appropriate technologies to accompany sunscreens in the battle against ultraviolet, superoxide, and singlet oxygen. Antioxidants, 9(11), 1091.
Islam, F., Bepary, S., Nafady, M. H., Islam, M. R., Emran, T. B., Sultana, S., Huq, M. A., Mitra, S., Chopra, H., & Sharma, R. (2022). Polyphenols targeting oxidative stress in spinal cord injury: Current status and future vision. Oxidative Medicine and Cellular Longevity, 2022.
Johnson, D. B., Zhao, F., Noel, M., Riely, G. J., Mitchell, E. P., Wright, J. J., Chen, H. X., Gray, R. J., Li, S., & McShane, L. M. (2020). Trametinib activity in patients with solid tumors and lymphomas harboring BRAF non-V600 mutations or fusions: results from NCI-MATCH (EAY131). Clinical Cancer Research, 26(8), 1812-1819.
Kenny, C., Dilshat, R., Seberg, H. E., Van Otterloo, E., Bonde, G., Helverson, A., Franke, C. M., Steingrímsson, E., & Cornell, R. A. (2022). TFAP2 paralogs facilitate chromatin access for MITF at pigmentation and cell proliferation genes. PLoS Genetics, 18(5), e1010207.
Le, D. D., Lee, Y. E., & Lee, M. (2022). Triterpenoids from the leaves of Osmanthus fragrans var. aurantiacus with their anti-melanogenesis and anti-tyrosinase activities. Natural Product Research, 36(24), 6414-6420.
Lu, Y., Pan, Q., Gao, W., Pu, Y., Luo, K., He, B., & Gu, Z. (2022). Leveraging disulfiram to treat cancer: mechanisms of action, delivery strategies, and treatment regimens. Biomaterials, 281, 121335.
Luke, J. J., Flaherty, K. T., Ribas, A., & Long, G. V. (2017). Targeted agents and immunotherapies: optimizing outcomes in melanoma. Nature reviews Clinical oncology, 14(8), 463-482.
Mishra, R., Patel, H., Yuan, L., & Garrett, J. T. (2018). Role of reactive oxygen species and targeted therapy in metastatic melanoma. Cancer Res Front, 4, 101-130.
Neale, R. E., Barnes, P. W., Robson, T. M., Neale, P. J., Williamson, C. E., Zepp, R. G., Wilson, S. R., Madronich, S., Andrady, A. L., & Heikkilä, A. M. (2021). Environmental effects of stratospheric ozone depletion, UV radiation, and interactions with climate change: UNEP Environmental Effects Assessment Panel, Update 2020. Photochemical & Photobiological Sciences, 20(1), 1-67.
Patel, H. (2022). Mechanisms of Resistance to BRAF and MEK inhibitors in BRAF-mutant melanoma University of Cincinnati].
Raza, M. H., Siraj, S., Arshad, A., Waheed, U., Aldakheel, F., Alduraywish, S., & Arshad, M. (2017). ROS-modulated therapeutic approaches in cancer treatment. Journal of cancer research and clinical oncology, 143, 1789-1809.
Rout, S. K., Priya, V., Setia, A., Mehata, A. K., Mohan, S., Albratty, M., Najmi, A., Meraya, A. M., Makeen, H. A., & Tambuwala, M. M. (2022). Mitochondrial targeting theranostic nanomedicine and molecular biomarkers for efficient cancer diagnosis and therapy. Biomedicine & Pharmacotherapy, 153, 113451.
Zhou, X., An, B., Lin, Y., Ni, Y., Zhao, X., & Liang, X. (2023). Molecular mechanisms of ROS-modulated cancer chemoresistance and therapeutic strategies. Biomedicine & Pharmacotherapy, 165, 115036.


Ashkenazi, A. (2002). "Targeting death and decoy receptors of the tumour-necrosis factor superfamily." Nat Rev Cancer 2(6): 420-430.
Bensaad, K., E. C. Cheung and K. H. Vousden (2009). "Modulation of intracellular ROS levels by TIGAR controls autophagy." EMBO J 28(19): 3015-3026.
Bensaad, K., A. Tsuruta, M. A. Selak, M. N. Vidal, K. Nakano, R. Bartrons, E. Gottlieb and K. H. Vousden (2006). "TIGAR, a p53-inducible regulator of glycolysis and apoptosis." Cell 126(1): 107-120.
Chang, C. T., Y. C. Hseu, V. Thiyagarajan, K. Y. Lin, T. D. Way, M. Korivi, J. W. Liao and H. L. Yang (2017). "Chalcone flavokawain B induces autophagic-cell death via reactive oxygen species-mediated signaling pathways in human gastric carcinoma and suppresses tumor growth in nude mice." Arch Toxicol 91(10): 3341-3364.
Cheng, P., I. Alberts and X. Li (2013). "The role of ERK1/2 in the regulation of proliferation and differentiation of astrocytes in developing brain." Int J Dev Neurosci 31(8): 783-789.
Eischen, C. M., G. Packham, J. Nip, B. E. Fee, S. W. Hiebert, G. P. Zambetti and J. L. Cleveland (2001). "Bcl-2 is an apoptotic target suppressed by both c-Myc and E2F-1." Oncogene 20(48): 6983-6993.
Franke, T. F., D. R. Kaplan and L. C. Cantley (1997). "PI3K: downstream AKTion blocks apoptosis." Cell 88(4): 435-437.
Guicciardi, M. E. and G. J. Gores (2009). "Life and death by death receptors." FASEB J 23(6): 1625-1637.
Hodi, F. S., S. J. O'Day, D. F. McDermott, R. W. Weber, J. A. Sosman, J. B. Haanen, R. Gonzalez, C. Robert, D. Schadendorf, J. C. Hassel, W. Akerley, A. J. van den Eertwegh, J. Lutzky, P. Lorigan, J. M. Vaubel, G. P. Linette, D. Hogg, C. H. Ottensmeier, C. Lebbe, C. Peschel, I. Quirt, J. I. Clark, J. D. Wolchok, J. S. Weber, J. Tian, M. J. Yellin, G. M. Nichol, A. Hoos and W. J. Urba (2010). "Improved survival with ipilimumab in patients with metastatic melanoma." N Engl J Med 363(8): 711-723.
Hommes, D. W., M. P. Peppelenbosch and S. J. van Deventer (2003). "Mitogen activated protein (MAP) kinase signal transduction pathways and novel anti-inflammatory targets." Gut 52(1): 144-151.
Hseu, Y. C., M. S. Lee, C. R. Wu, H. J. Cho, K. Y. Lin, G. H. Lai, S. Y. Wang, Y. H. Kuo, K. J. Kumar and H. L. Yang (2012). "The chalcone flavokawain B induces G2/M cell-cycle arrest and apoptosis in human oral carcinoma HSC-3 cells through the intracellular ROS generation and downregulation of the Akt/p38 MAPK signaling pathway." J Agric Food Chem 60(9): 2385-2397.
Hseu, Y. C., V. Thiyagarajan, H. T. Tsou, K. Y. Lin, H. J. Chen, C. M. Lin, J. W. Liao and H. L. Yang (2016). "In vitro and in vivo anti-tumor activity of CoQ0 against melanoma cells: inhibition of metastasis and induction of cell-cycle arrest and apoptosis through modulation of Wnt/beta-catenin signaling pathways." Oncotarget 7(16): 22409-22426.
Indran, I. R., G. Tufo, S. Pervaiz and C. Brenner (2011). "Recent advances in apoptosis, mitochondria and drug resistance in cancer cells." Biochimica et Biophysica Acta (BBA)-Bioenergetics 1807(6): 735-745.
Janku, F., D. J. McConkey, D. S. Hong and R. Kurzrock (2011). "Autophagy as a target for anticancer therapy." Nature Reviews Clinical Oncology 8(9): 528-539.
Jimbo, A., E. Fujita, Y. Kouroku, J. Ohnishi, N. Inohara, K. Kuida, K. Sakamaki, S. Yonehara and T. Momoi (2003). "ER stress induces caspase-8 activation, stimulating cytochrome c release and caspase-9 activation." Exp Cell Res 283(2): 156-166.
Joaquin, M., A. Gubern and F. Posas (2012). "A novel G1 checkpoint mediated by the p57 CDK inhibitor and p38 SAPK promotes cell survival upon stress." Cell Cycle 11(18): 3339-3340.
Kabeya, Y., N. Mizushima, T. Ueno, A. Yamamoto, T. Kirisako, T. Noda, E. Kominami, Y. Ohsumi and T. Yoshimori (2000). "LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing." EMBO J 19(21): 5720-5728.
Kanematsu, S., N. Uehara, H. Miki, K. Yoshizawa, A. Kawanaka, T. Yuri and A. Tsubura (2010). "Autophagy inhibition enhances Sulforaphane-induced apoptosis in human breast cancer cells." Anticancer Research 30(9): 3381-3390.
Kang, R., H. Zeh, M. Lotze and D. Tang (2011). "The Beclin 1 network regulates autophagy and apoptosis." Cell Death & Differentiation 18(4): 571-580.
Kang, R., H. J. Zeh, M. T. Lotze and D. Tang (2011). "The Beclin 1 network regulates autophagy and apoptosis." Cell Death Differ 18(4): 571-580.
Kondo, Y., T. Kanzawa, R. Sawaya and S. Kondo (2005). "The role of autophagy in cancer development and response to therapy." Nature Reviews Cancer 5(9): 726-734.
Lakshmi, S., G. Padmaja and P. Remani (2011). "Antitumour effects of isocurcumenol isolated from Curcuma zedoaria rhizomes on human and murine cancer cells." International Journal of Medicinal Chemistry 2011.
Leiter, U. and C. Garbe (2008). "Epidemiology of melanoma and nonmelanoma skin cancer--the role of sunlight." Adv Exp Med Biol 624: 89-103.
Ly, J. D., D. R. Grubb and A. Lawen (2003). "The mitochondrial membrane potential (Δψm) in apoptosis; an update." Apoptosis 8(2): 115-128.
Mai, T. T., J. Moon, Y. Song, P. Q. Viet, P. Van Phuc, J. M. Lee, T.-H. Yi, M. Cho and S. K. Cho (2012). "Ginsenoside F2 induces apoptosis accompanied by protective autophagy in breast cancer stem cells." Cancer letters 321(2): 144-153.
Maiuri, M. C., E. Zalckvar, A. Kimchi and G. Kroemer (2007). "Self-eating and self-killing: crosstalk between autophagy and apoptosis." Nature Reviews Molecular Cell Biology 8(9): 741-752.
Marzagalli, M., M. Raimondi, F. Fontana, M. M. Marelli, R. M. Moretti and P. Limonta (2019). Cellular and molecular biology of cancer stem cells in melanoma: Possible therapeutic implications. Seminars in Cancer Biology, Elsevier.
Memari, F., F. Mirzavi, M. Jalili‐Nik, A. R. Afshari, A. Ghorbani and M. Soukhtanloo (2022). "Tumor-inhibitory effects of zerumbone against HT-29 human colorectal cancer cells." International journal of toxicology 41(5): 402-411.
Mishra, R., H. Patel, L. Yuan and J. T. Garrett (2018). "Role of reactive oxygen species and targeted therapy in metastatic melanoma." Cancer Res Front 4: 101-130.
Morishima, N., K. Nakanishi, H. Takenouchi, T. Shibata and Y. Yasuhiko (2002). "An endoplasmic reticulum stress-specific caspase cascade in apoptosis. Cytochrome c-independent activation of caspase-9 by caspase-12." J Biol Chem 277(37): 34287-34294.
Park, S.-H., J.-H. Kim, G. Y. Chi, G.-Y. Kim, Y.-C. Chang, S.-K. Moon, S.-W. Nam, W.-J. Kim, Y. H. Yoo and Y. H. Choi (2012). "Induction of apoptosis and autophagy by sodium selenite in A549 human lung carcinoma cells through generation of reactive oxygen species." Toxicology Letters 212(3): 252-261.
Pattingre, S., C. Bauvy and P. Codogno (2003). "Amino acids interfere with the ERK1/2-dependent control of macroautophagy by controlling the activation of Raf-1 in human colon cancer HT-29 cells." J Biol Chem 278(19): 16667-16674.
Pattingre, S., A. Tassa, X. Qu, R. Garuti, X. H. Liang, N. Mizushima, M. Packer, M. D. Schneider and B. Levine (2005). "Bcl-2 antiapoptotic proteins inhibit Beclin 1-dependent autophagy." Cell 122(6): 927-939.
Ravikumar, P. and P. Tatke (2019). "Advances in encapsulated dermal formulations in chemoprevention of melanoma: An overview." Journal of cosmetic dermatology 18(6): 1606-1612.
Sakamuro, D., V. Eviner, K. J. Elliott, L. Showe, E. White and G. C. Prendergast (1995). "c-Myc induces apoptosis in epithelial cells by both p53-dependent and p53-independent mechanisms." Oncogene 11(11): 2411-2418.
Shackelford, R. E., W. K. Kaufmann and R. S. Paules (1999). "Cell cycle control, checkpoint mechanisms, and genotoxic stress." Environ Health Perspect 107 Suppl 1: 5-24.
Shiraishi, H., H. Okamoto, A. Yoshimura and H. Yoshida (2006). "ER stress-induced apoptosis and caspase-12 activation occurs downstream of mitochondrial apoptosis involving Apaf-1." J Cell Sci 119(Pt 19): 3958-3966.
Singh, N. (2007). "Apoptosis in health and disease and modulation of apoptosis for therapy: an overview." Indian Journal of Clinical Biochemistry 22(2): 6-16.
Sui, X., R. Chen, Z. Wang, Z. Huang, N. Kong, M. Zhang, W. Han, F. Lou, J. Yang, Q. Zhang, X. Wang, C. He and H. Pan (2013). "Autophagy and chemotherapy resistance: a promising therapeutic target for cancer treatment." Cell Death Dis 4: e838.
Thiyagarajan, V., K. S. Sivalingam, V. P. Viswanadha and C. F. Weng (2016). "16-hydroxy-cleroda-3,13-dien-16,15-olide induced glioma cell autophagy via ROS generation and activation of p38 MAPK and ERK-1/2." Environ Toxicol Pharmacol 45: 202-211.
Walczak, H. and P. H. Krammer (2000). "The CD95 (APO-1/Fas) and the TRAIL (APO-2L) apoptosis systems." Exp Cell Res 256(1): 58-66.
Wang, X., J. L. Martindale and N. J. Holbrook (2000). "Requirement for ERK activation in cisplatin-induced apoptosis." J Biol Chem 275(50): 39435-39443.
White, E. and R. S. DiPaola (2009). "The double-edged sword of autophagy modulation in cancer." Clin Cancer Res 15(17): 5308-5316.
Xiong, S., T. Mu, G. Wang and X. Jiang (2014). "Mitochondria-mediated apoptosis in mammals." Protein & cell 5(10): 737-749.
Yang, H. L., V. Thiyagarajan, J. W. Liao, Y. L. Chu, C. T. Chang, P. J. Huang, C. J. Hsu and Y. C. Hseu (2017). "Toona sinensis Inhibits Murine Leukemia WEHI-3 Cells and Promotes Immune Response In Vivo." Integr Cancer Ther 16(3): 308-318.
Zhang, N., Y. Qi, C. Wadham, L. Wang, A. Warren, W. Di and P. Xia (2010). "FTY720 induces necrotic cell death and autophagy in ovarian cancer cells: A protective role of autophagy." Autophagy 6(8): 1157-1167.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊