跳到主要內容

臺灣博碩士論文加值系統

(44.192.94.177) 您好!臺灣時間:2024/07/16 23:54
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:鄭絜
研究生(外文):CHENG, CHIEH
論文名稱:木犀草素減弱脂多醣誘導的骨髓衍生巨噬細胞LOX-1表達和NLRP3發炎體活化
論文名稱(外文):Luteolin attenuates lipopolysaccharide (LPS)-induced lectin-like ox-LDL scavenger receptor-1 (LOX-1) expression and NLRP3 inflammasome activation in bone marrow-derived macrophages
指導教授:陳暉雯
指導教授(外文):CHEN, HAW-WEN
口試委員:陳暉雯李宗貴李健群
口試委員(外文):CHEN, HAW-WENLII, CHONG-KUEILI, CHIEN-CHUN
口試日期:2022-06-22
學位類別:碩士
校院名稱:中國醫藥大學
系所名稱:營養學系碩士班
學門:醫藥衛生學門
學類:營養學類
論文種類:學術論文
論文出版年:2022
畢業學年度:110
語文別:中文
論文頁數:90
中文關鍵詞:NLRP3發炎體脂多醣骨髓衍生巨噬細胞木犀草素
外文關鍵詞:Lectin-like ox-LDL scavenger receptor-1 (LOX-1)Bone marrow-derived macrophages (BMDMs)LuteolinNLRP3 inflammasomeLipopolysaccharide (LPS)
相關次數:
  • 被引用被引用:0
  • 點閱點閱:157
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
中文摘要 II
英文摘要 III
目錄 V
圖目錄 VIII
表目錄 X
第一部分 1
第一章、前言 2
第二章、文獻探討 3
壹、 動脈粥樣硬化 3
一、 動脈粥樣硬化介紹 3
二、 動脈粥樣硬化病程 4
三、 動脈粥樣硬化與清道夫接受器 6
四、 動脈粥樣硬化與發炎 8
貳、 發炎反應 11
一、 發炎體(inflammasome) 11
二、 NLRP3發炎體與脂多醣 13
參、 自噬 15
一、 自噬介紹 15
二、 粒線體自噬(mitophagy) 18
三、 自噬與動脈粥樣硬化 20
肆、 木犀草素(Luteolin) 22
一、簡介 22
二、木犀草素生理功效 23
三、木犀草素與動脈粥樣硬化 25
第三章、研究目的 26
第四章、實驗架構 27
第五章、參考文獻 28
第二部分 39
1. Introduction 40
2. Materials and Methods 43
2.1 Chemicals 43
2.2 Isolation of bone marrow-derived monocytes 43
2.3 Bone marrow-derived macrophages (BMDMs) culture 45
2.4 Cell viability assay 46
2.5 IL-1β secretion assay 47
2.6 Western blot analysis 47
2.7 RNA isolation and quantitative real-time polymerase chain reaction (qPCR) 49
2.8 Mitochondrial ROS measurement 50
2.9 Immunoprecipitation 50
2.10 Reactive oxygen species measurement 51
2.11 NF-κB reporter assay 51
2.12 Oil red staining 52
2.13 Statistical analysis 52
3. Results 53
3.1 Lipopolysaccharide (LPS) induces protein expression of LOX-1 and NLRP3 inflammasome as well as activates autophagy in mouse bone marrow-derived macrophages (BMDMs) 53
3.2 Effect of luteolin on LPS-induced LOX-1 expression and IKK/NF-κB activation in BMDMs 53
3.3 Luteolin attenuates LPS-induced NLRP3 inflammasome activation and IL-1β release in BMDMs 54
3.4 Luteolin inhibits LPS-induced ROS and mitochondrial ROS generation in BMDMs 55
3.5 Luteolin affects LPS-induced autophagic flux in BMDMs 56
3.6 Luteolin attenuates LPS-induced ox-LDL uptake in BMDMs 57
4. Discussion 72
5. Reference 75



Reference
Afonina, I. S., Zhong, Z., Karin, M., & Beyaert, R. (2017). Limiting inflammation-the negative regulation of NF-kappaB and the NLRP3 inflammasome. Nat Immunol, 18, 861-869.
Back, M., Yurdagul, A., Jr., Tabas, I., Oorni, K., & Kovanen, P. T. (2019). Inflammation and its resolution in atherosclerosis: mediators and therapeutic opportunities. Nat Rev Cardiol, 16, 389-406.
Baldwin, A. G., Brough, D., & Freeman, S. (2016). Inhibiting the inflammasome: a chemical perspective. J Med Chem, 59, 1691-1710.
Barreto, J., Karathanasis, S. K., Remaley, A., & Sposito, A. C. (2021). Role of LOX-1 (lectin-like oxidized low-density lipoprotein receptor 1) as a cardiovascular risk predictor: mechanistic insight and potential clinical use. Arterioscler Thromb Vasc Biol, 41, 153-166.
Bekkering, S., Quintin, J., Joosten, L. A., van der Meer, J. W., Netea, M. G., & Riksen, N. P. (2014). Oxidized low-density lipoprotein induces long-term proinflammatory cytokine production and foam cell formation via epigenetic reprogramming of monocytes. Arterioscler Thromb Vasc Biol, 34, 1731-1738.
Berger, M., Fesler, P., & Roubille, C. (2021). Arterial stiffness, the hidden face of cardiovascular risk in autoimmune and chronic inflammatory rheumatic diseases. Autoimmun Rev, 20, 102891.
Bhatia, D., & Choi, M. E. (2019). The Emerging Role of Mitophagy in Kidney Diseases. J Life Sci (Westlake Village), 1, 13-22.
Birt, D. F., Hendrich, S., & Wang, W. (2001). Dietary agents in cancer prevention: flavonoids and isoflavonoids. Pharmacol Ther, 90, 157-177.
Boeing, T., de Souza, P., Speca, S., Somensi, L. B., Mariano, L. N. B., Cury, B. J., Ferreira Dos Anjos, M., Quintao, N. L. M., Dubuqoy, L., Desreumax, P., da Silva, L. M., & de Andrade, S. F. (2020). Luteolin prevents irinotecan-induced intestinal mucositis in mice through antioxidant and anti-inflammatory properties. Br J Pharmacol, 177, 2393-2408.
Broz, P., & Dixit, V. M. (2016). Inflammasomes: mechanism of assembly, regulation and signalling. Nat Rev Immunol, 16, 407-420.
Caesar, R., Fak, F., & Backhed, F. (2010). Effects of gut microbiota on obesity and atherosclerosis via modulation of inflammation and lipid metabolism. J Intern Med, 268, 320-328.
Caporali, S., De Stefano, A., Calabrese, C., Giovannelli, A., Pieri, M., Savini, I., Tesauro, M., Bernardini, S., Minieri, M., & Terrinoni, A. (2022). Anti-inflammatory and active biological properties of the plant-derived bioactive compounds luteolin and luteolin 7-glucoside. Nutrients, 14, 1155.
Chang, N. C. (2020). Autophagy and stem cells: self-eating for self-renewal. Front Cell Dev Biol, 8, 138.
Chistiakov, D. A., Melnichenko, A. A., Orekhov, A. N., & Bobryshev, Y. V. (2017). How do macrophages sense modified low-density lipoproteins? Int J Cardiol, 230, 232-240.
Christian, F., Smith, E. L., & Carmody, R. J. (2016). The regulation of NF-kappaB subunits by phosphorylation. Cells, 5, 12.
Cuervo, A. M. (2004). Autophagy: in sickness and in health. Trends Cell Biol, 14, 70-77.
Czaja, M. J. (2011). Functions of autophagy in hepatic and pancreatic physiology and disease. Gastroenterology, 140, 1895-1908.
Desai, M. S., Seekatz, A. M., Koropatkin, N. M., Kamada, N., Hickey, C. A., Wolter, M., Pudlo, N. A., Kitamoto, S., Terrapon, N., Muller, A., Young, V. B., Henrissat, B., Wilmes, P., Stappenbeck, T. S., Nunez, G., & Martens, E. C. (2016). A dietary fiber-deprived gut microbiota degrades the colonic mucus barrier and enhances pathogen susceptibility. Cell, 167, 1339-1353.
Dhaliwal, B. S., & Steinbrecher, U. P. (1999). Scavenger receptors and oxidized low density lipoproteins. Clin Chim Acta, 286, 191-205.
Ding, X., Liu, S., Wang, X., Dai, Y., Khaidakov, M., Deng, X., Fan, Y., Xiang, D., & Mehta, J. L. (2014). LOX-1, mtDNA damage, and NLRP3 inflammasome activation in macrophages: implications in atherogenesis. Cardiovasc Res, 103, 619-628.
Ding, X., Liu, S., Wang, X., Theus, S., Deng, X., Fan, Y., Zhou, S., & Mehta, J. L. (2018). PCSK9 regulates expression of scavenger receptors and ox-LDL uptake in macrophages. Cardiovasc Res, 114, 1145-1153.
Ding, X., Zheng, L., Yang, B., Wang, X., & Ying, Y. (2019). Luteolin attenuates atherosclerosis via modulating signal transducer and activator of transcription 3-mediated inflammatory response. Drug Des Devel Ther, 13, 3899-3911.
Eiyama, A., & Okamoto, K. (2015). PINK1/Parkin-mediated mitophagy in mammalian cells. Curr Opin Cell Biol, 33, 95-101.
Fearon, W. F., & Fearon, D. T. (2008). Inflammation and cardiovascular disease: role of the interleukin-1 receptor antagonist. Circulation, 117, 2577-2579.
Fei, J., Liang, B., Jiang, C., Ni, H., & Wang, L. (2019). Luteolin inhibits IL-1beta-induced in flammation in rat chondrocytes and attenuates osteoarthritis progression in a rat model. Biomed Pharmacother, 109, 1586-1592.
Furman, D., Campisi, J., Verdin, E., Carrera-Bastos, P., Targ, S., Franceschi, C., Ferrucci, L., Gilroy, D. W., Fasano, A., Miller, G. W., Miller, A. H., Mantovani, A., Weyand, C. M., Barzilai, N., Goronzy, J. J., Rando, T. A., Effros, R. B., Lucia, A., Kleinstreuer, N., & Slavich, G. M. (2019). Chronic inflammation in the etiology of disease across the life span. Nat Med, 25, 1822-1832.
Galluzzi, L., Baehrecke, E. H., Ballabio, A., Boya, P., Bravo-San Pedro, J. M., Cecconi, F., Choi, A. M., Chu, C. T., Codogno, P., Colombo, M. I., Cuervo, A. M., Debnath, J., Deretic, V., Dikic, I., Eskelinen, E. L., Fimia, G. M., Fulda, S., Gewirtz, D. A., Green, D. R., Hansen, M., Harper, J. W., Jaattela, M., Johansen, T., Juhasz, G., Kimmelman, A. C., Kraft, C., Ktistakis, N. T., Kumar, S., Levine, B., Lopez-Otin, C., Madeo, F., Martens, S., Martinez, J., Melendez, A., Mizushima, N., Munz, C., Murphy, L. O., Penninger, J. M., Piacentini, M., Reggiori, F., Rubinsztein, D. C., Ryan, K. M., Santambrogio, L., Scorrano, L., Simon, A. K., Simon, H. U., Simonsen, A., Tavernarakis, N., Tooze, S. A., Yoshimori, T., Yuan, J., Yue, Z., Zhong, Q., & Kroemer, G. (2017). Molecular definitions of autophagy and related processes. EMBO J, 36, 1811-1836.
Geisler, S., Holmstrom, K. M., Skujat, D., Fiesel, F. C., Rothfuss, O. C., Kahle, P. J., & Springer, W. (2010). PINK1/Parkin-mediated mitophagy is dependent on VDAC1 and p62/SQSTM1. Nat Cell Biol, 12, 119-131.
Gendrisch, F., Esser, P. R., Schempp, C. M., & Wolfle, U. (2021). Luteolin as a modulator of skin aging and inflammation. Biofactors, 47, 170-180.
Geovanini, G. R., & Libby, P. (2018). Atherosclerosis and inflammation: overview and updates. Clin Sci (Lond), 132, 1243-1252.
Gimbrone, M. A., Jr., & Garcia-Cardena, G. (2016). Endothelial cell dysfunction and the pathobiology of atherosclerosis. Circ Res, 118, 620-636.
Gomes, A. C., Hoffmann, C., & Mota, J. F. (2018). The human gut microbiota: Metabolism and perspective in obesity. Gut Microbes, 9, 308-325.
Grebe, A., Hoss, F., & Latz, E. (2018). NLRP3 Inflammasome and the IL-1 pathway in atherosclerosis. Circ Res, 122, 1722-1740.
Greene, A. W., Grenier, K., Aguileta, M. A., Muise, S., Farazifard, R., Haque, M. E., McBride, H. M., Park, D. S., & Fon, E. A. (2012). Mitochondrial processing peptidase regulates PINK1 processing, import and Parkin recruitment. EMBO Rep, 13, 378-385.
Grootaert, M. O. J., Roth, L., Schrijvers, D. M., De Meyer, G. R. Y., & Martinet, W. (2018). Defective autophagy in atherosclerosis: to die or to senesce? Oxid Med Cell Longev, 2018, 7687083.
He, Y., Hara, H., & Nunez, G. (2016). Mechanism and Regulation of NLRP3 Inflammasome Activation. Trends Biochem Sci, 41, 1012-1021.
Hein, T. W., Xu, X., Ren, Y., Xu, W., Tsai, S. H., Thengchaisri, N., & Kuo, L. (2019). Requisite roles of LOX-1, JNK, and arginase in diabetes-induced endothelial vasodilator dysfunction of porcine coronary arterioles. J Mol Cell Cardiol, 131, 82-90.
Hofnagel, O., Luechtenborg, B., Stolle, K., Lorkowski, S., Eschert, H., Plenz, G., & Robenek, H. (2004). Proinflammatory cytokines regulate LOX-1 expression in vascular smooth muscle cells. Arterioscler Thromb Vasc Biol, 24, 1789-1795.
Hoseini, Z., Sepahvand, F., Rashidi, B., Sahebkar, A., Masoudifar, A., & Mirzaei, H. (2018). NLRP3 inflammasome: Its regulation and involvement in atherosclerosis. J Cell Physiol, 233, 2116-2132.
Hu, J., Man, W., Shen, M., Zhang, M., Lin, J., Wang, T., Duan, Y., Li, C., Zhang, R., Gao, E., Wang, H., & Sun, D. (2016). Luteolin alleviates post-infarction cardiac dysfunction by up-regulating autophagy through Mst1 inhibition. J Cell Mol Med, 20, 147-156.
Hu, W., Xu, T., Wu, P., Pan, D., Chen, J., Chen, J., Zhang, B., Zhu, H., & Li, D. (2017). Luteolin improves cardiac dysfunction in heart failure rats by regulating sarcoplasmic reticulum Ca(2+)-ATPase 2a. Sci Rep, 7, 41017.
Inoki, K., Zhu, T., & Guan, K. L. (2003). TSC2 mediates cellular energy response to control cell growth and survival. Cell, 115, 577-590.
Jaipersad, A. S., Lip, G. Y., Silverman, S., & Shantsila, E. (2014). The role of monocytes in angiogenesis and atherosclerosis. J Am Coll Cardiol, 63, 1-11.
Jeong, Y. J., Choi, Y. J., Choi, J. S., Kwon, H. M., Kang, S. W., Bae, J. Y., Lee, S. S., Kang, J. S., Han, S. J., & Kang, Y. H. (2007). Attenuation of monocyte adhesion and oxidised LDL uptake in luteolin-treated human endothelial cells exposed to oxidised LDL. Br J Nutr, 97, 447-457.
Jia, Z., Nallasamy, P., Liu, D., Shah, H., Li, J. Z., Chitrakar, R., Si, H., McCormick, J., Zhu, H., Zhen, W., & Li, Y. (2015). Luteolin protects against vascular inflammation in mice and TNF-alpha-induced monocyte adhesion to endothelial cells via suppressing IKappaBalpha/NF-kappaB signaling pathway. J Nutr Biochem, 26, 293-302.
Jiang, Z. B., Wang, W. J., Xu, C., Xie, Y. J., Wang, X. R., Zhang, Y. Z., Huang, J. M., Huang, M., Xie, C., Liu, P., Fan, X. X., Ma, Y. P., Yan, P. Y., Liu, L., Yao, X. J., Wu, Q. B., & Lai-Han Leung, E. (2021). Luteolin and its derivative apigenin suppress the inducible PD-L1 expression to improve anti-tumor immunity in KRAS-mutant lung cancer. Cancer Lett, 515, 36-48.
Jo, E. K., Kim, J. K., Shin, D. M., & Sasakawa, C. (2016). Molecular mechanisms regulating NLRP3 inflammasome activation. Cell Mol Immunol, 13, 148-159.
Kang, K. A., Piao, M. J., Hyun, Y. J., Zhen, A. X., Cho, S. J., Ahn, M. J., Yi, J. M., & Hyun, J. W. (2019). Luteolin promotes apoptotic cell death via upregulation of Nrf2 expression by DNA demethylase and the interaction of Nrf2 with p53 in human colon cancer cells. Exp Mol Med, 51, 1-14.
Karanasios, E., Walker, S. A., Okkenhaug, H., Manifava, M., Hummel, E., Zimmermann, H., Ahmed, Q., Domart, M. C., Collinson, L., & Ktistakis, N. T. (2016). Autophagy initiation by ULK complex assembly on ER tubulovesicular regions marked by ATG9 vesicles. Nat Commun, 7, 12420.
Katsuragi, Y., Ichimura, Y., & Komatsu, M. (2015). p62/SQSTM1 functions as a signaling hub and an autophagy adaptor. FEBS J, 282, 4672-4678.
Kattoor, A. J., Goel, A., & Mehta, J. L. (2019). LOX-1: Regulation, signaling and its role in atherosclerosis. Antioxidants (Basel), 8.
Kattoor, A. J., Pothineni, N. V. K., Palagiri, D., & Mehta, J. L. (2017). Oxidative stress in atherosclerosis. Curr Atheroscler Rep, 19, 42.
Kelley, N., Jeltema, D., Duan, Y., & He, Y. (2019). The NLRP3 inflammasome: An overview of mechanisms of activation and regulation. Int J Mol Sci, 20.
Khatana, C., Saini, N. K., Chakrabarti, S., Saini, V., Sharma, A., Saini, R. V., & Saini, A. K. (2020). Mechanistic insights into the oxidized low-density lipoprotein-induced atherosclerosis. Oxid Med Cell Longev, 2020, 5245308.
Kim, Gu, W., Lee, I. A., Joh, E. H., & Kim, D. H. (2012). High fat diet-induced gut microbiota exacerbates inflammation and obesity in mice via the TLR4 signaling pathway. PLoS One, 7, e47713.
Kim, & Jobin. (2005). The flavonoid luteolin prevents lipopolysaccharide-induced NF-kappaB signalling and gene expression by blocking IkappaB kinase activity in intestinal epithelial cells and bone-marrow derived dendritic cells. Immunology, 115, 375-387.
Kim, J., Kundu, M., Viollet, B., & Guan, K. L. (2011). AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat Cell Biol, 13, 132-141.
Komatsu, M., Kurokawa, H., Waguri, S., Taguchi, K., Kobayashi, A., Ichimura, Y., Sou, Y. S., Ueno, I., Sakamoto, A., Tong, K. I., Kim, M., Nishito, Y., Iemura, S., Natsume, T., Ueno, T., Kominami, E., Motohashi, H., Tanaka, K., & Yamamoto, M. (2010). The selective autophagy substrate p62 activates the stress responsive transcription factor Nrf2 through inactivation of Keap1. Nat Cell Biol, 12, 213-223.
Kozarov, E. V., Dorn, B. R., Shelburne, C. E., Dunn, W. A., Jr., & Progulske-Fox, A. (2005). Human atherosclerotic plaque contains viable invasive actinobacillus actinomycetemcomitans and porphyromonas gingivalis. Arterioscler Thromb Vasc Biol, 25, e17-18.
Krymskaya, V. P. (2008). Smooth muscle-like cells in pulmonary lymphangioleiomyomatosis. Proc Am Thorac Soc, 5, 119-126.
Lechner, K., von Schacky, C., McKenzie, A. L., Worm, N., Nixdorff, U., Lechner, B., Krankel, N., Halle, M., Krauss, R. M., & Scherr, J. (2020). Lifestyle factors and high-risk atherosclerosis: Pathways and mechanisms beyond traditional risk factors. Eur J Prev Cardiol, 27, 394-406.
Li, A. C. & Glass, C. K. (2002). The macrophage foam cell as a target for therapeutic intervention. Nat Med, 8, 1235-1242.
Li, L., Luo, W., Qian, Y., Zhu, W., Qian, J., Li, J., Jin, Y., Xu, X., & Liang, G. (2019). Luteolin protects against diabetic cardiomyopathy by inhibiting NF-kappaB-mediated inflammation and activating the Nrf2-mediated antioxidant responses. Phytomedicine, 59, 152774.
Li, J., Baud, O., Vartanian, T., Volpe, J. J., & Rosenberg, P. A. (2005). Peroxynitrite generated by inducible nitric oxide synthase and NADPH oxidase mediates microglial toxicity to oligodendrocytes. Proc Natl Acad Sci U S A, 102, 9936-9941.
Liao, X., Sluimer, J. C., Wang, Y., Subramanian, M., Brown, K., Pattison, J. S., Robbins, J., Martinez, J., & Tabas, I. (2012). Macrophage autophagy plays a protective role in advanced atherosclerosis. Cell Metab, 15, 545-553.
Libby, P. (2002). Inflammation in atherosclerosis. Nature, 420, 868-874.
Libby, P. (2017). Interleukin-1 beta as a target for atherosclerosis therapy: Biological basis of CANTOS and beyond. J Am Coll Cardiol, 70, 2278-2289.
Libby, P., Buring, J. E., Badimon, L., Hansson, G. K., Deanfield, J., Bittencourt, M. S., Tokgozoglu, L., & Lewis, E. F. (2019). Atherosclerosis. Nat Rev Dis Primers, 5, 56.
Lim, S. M., Mohamad Hanif, E. A., & Chin, S. F. (2021). Is targeting autophagy mechanism in cancer a good approach? The possible double-edge sword effect. Cell Biosci, 11, 56.
Lin, K., Chen, H., Chen, X., Qian, J., Huang, S., & Huang, W. (2020). Efficacy of curcumin on aortic atherosclerosis: A systematic review and meta-analysis in mouse studies and insights into possible mechanisms. Oxid Med Cell Longev, 2020, 1520747.
Lopategi, A., Flores-Costa, R., Rius, B., Lopez-Vicario, C., Alcaraz-Quiles, J., Titos, E., & Claria, J. (2019). Frontline Science: Specialized proresolving lipid mediators inhibit the priming and activation of the macrophage NLRP3 inflammasome. J Leukoc Biol, 105, 25-36.
Lopez-Lazaro, M. (2009). Distribution and biological activities of the flavonoid luteolin. Mini Rev Med Chem, 9, 31-59.
Martinet, W., & De Meyer, G. R. (2009). Autophagy in atherosclerosis: a cell survival and death phenomenon with therapeutic potential. Circ Res, 104, 304-317.
Matsumoto, G., Wada, K., Okuno, M., Kurosawa, M., & Nukina, N. (2011). Serine 403 phosphorylation of p62/SQSTM1 regulates selective autophagic clearance of ubiquitinated proteins. Mol Cell, 44, 279-289.
Matsunaga, T., Hokari, S., Koyama, I., Harada, T., & Komoda, T. (2003). NF-kappa B activation in endothelial cells treated with oxidized high-density lipoprotein. Biochem Biophys Res Commun, 303, 313-319.
Mehta, J. L., Chen, J., Hermonat, P. L., Romeo, F., & Novelli, G. (2006). Lectin-like, oxidized low-density lipoprotein receptor-1 (LOX-1): a critical player in the development of atherosclerosis and related disorders. Cardiovasc Res, 69, 36-45.
Mehta, J. L., Saldeen, T. G., & Rand, K. (1998). Interactive role of infection, inflammation and traditional risk factors in atherosclerosis and coronary artery disease. J Am Coll Cardiol, 31, 1217-1225.
Mentrup, T., Cabrera-Cabrera, F., & Schroder, B. (2020). Proteolytic Regulation of the Lectin-Like Oxidized Lipoprotein Receptor LOX-1. Front Cardiovasc Med, 7, 594441.
Mentrup, T., Theodorou, K., Cabrera-Cabrera, F., Helbig, A. O., Happ, K., Gijbels, M., Gradtke, A. C., Rabe, B., Fukumori, A., Steiner, H., Tholey, A., Fluhrer, R., Donners, M., & Schroder, B. (2019). Atherogenic LOX-1 signaling is controlled by SPPL2-mediated intramembrane proteolysis. J Exp Med, 216, 807-830.
Mitra, S., Goyal, T., & Mehta, J. L. (2011). Oxidized LDL, LOX-1 and atherosclerosis. Cardiovasc Drugs Ther, 25, 419-429.
Mizushima, N. (2007). Autophagy: process and function. Genes Dev, 21, 2861-2873.
Mizushima, N., & Levine, B. (2020). Autophagy in Human Diseases. N Engl J Med, 383, 1564-1576.
Mizushima, N., Ohsumi, Y., & Yoshimori, T. (2002). Autophagosome formation in mammalian cells. Cell Struct Funct, 27, 421-429.
Nagase, M., Abe, J., Takahashi, K., Ando, J., Hirose, S., & Fujita, T. (1998). Genomic organization and regulation of expression of the lectin-like oxidized low-density lipoprotein receptor (LOX-1) gene. J Biol Chem, 273, 33702-33707.
Namazi, N., Larijani, B., & Azadbakht, L. (2018). Dietary inflammatory index and its association with the risk of cardiovascular diseases, metabolic syndrome, and mortality: A systematic review and meta-analysis. Horm Metab Res, 50, 345-358.
Okatsu, K., Uno, M., Koyano, F., Go, E., Kimura, M., Oka, T., Tanaka, K., & Matsuda, N. (2013). A dimeric PINK1-containing complex on depolarized mitochondria stimulates Parkin recruitment. J Biol Chem, 288, 36372-36384.
Paik, S., Kim, J. K., Silwal, P., Sasakawa, C., & Jo, E. K. (2021). An update on the regulatory mechanisms of NLRP3 inflammasome activation. Cell Mol Immunol, 18, 1141-1160.
Peng, M., Watanabe, S., Chan, K. W. K., He, Q., Zhao, Y., Zhang, Z., Lai, X., Luo, D., Vasudevan, S. G., & Li, G. (2017). Luteolin restricts dengue virus replication through inhibition of the proprotein convertase furin. Antiviral Res, 143, 176-185.
Pirillo, A., Norata, G. D., & Catapano, A. L. (2013). LOX-1, Ox-LDL, and atherosclerosis. Mediators Inflamm, 2013, 152786.
Poznyak, A. V., Nikiforov, N. G., Starodubova, A. V., Popkova, T. V., & Orekhov, A. N. (2021). Macrophages and foam cells: brief overview of their role, linkage, and targeting potential in atherosclerosis. Biomedicines, 9.
Pratheeshkumar, P., Son, Y. O., Divya, S. P., Roy, R. V., Hitron, J. A., Wang, L., Kim, D., Dai, J., Asha, P., Zhang, Z., Wang, Y., & Shi, X. (2014). Luteolin inhibits Cr(VI)-induced malignant cell transformation of human lung epithelial cells by targeting ROS mediated multiple cell signaling pathways. Toxicol Appl Pharmacol, 281, 230-241.
Quiroga, I. Y., Pellon-Maison, M., Gonzalez, M. C., Coleman, R. A., & Gonzalez-Baro, M. R. (2021). Triacylglycerol synthesis directed by glycerol-3-phosphate acyltransferases -3 and -4 is required for lipid droplet formation and the modulation of the inflammatory response during macrophage to foam cell transition. Atherosclerosis, 316, 1-7.
Rajamaki, K., Mayranpaa, M. I., Risco, A., Tuimala, J., Nurmi, K., Cuenda, A., Eklund, K. K., Oorni, K., & Kovanen, P. T. (2016). p38delta MAPK: A novel regulator of NLRP3 inflammasome activation with increased expression in coronary atherogenesis. Arterioscler Thromb Vasc Biol, 36, 1937-1946.
Razani, B., Feng, C., Coleman, T., Emanuel, R., Wen, H., Hwang, S., Ting, J. P., Virgin, H. W., Kastan, M. B., & Semenkovich, C. F. (2012). Autophagy links inflammasomes to atherosclerotic progression. Cell Metab, 15, 534-544.
Ridker, P. M., Howard, C. P., Walter, V., Everett, B., Libby, P., Hensen, J., Thuren, T., & Group, C. P. I. (2012). Effects of interleukin-1beta inhibition with canakinumab on hemoglobin A1c, lipids, C-reactive protein, interleukin-6, and fibrinogen: a phase IIb randomized, placebo-controlled trial. Circulation, 126, 2739-2748.
Ridker, P. M., Thuren, T., Zalewski, A., & Libby, P. (2011). Interleukin-1beta inhibition and the prevention of recurrent cardiovascular events: rationale and design of the Canakinumab Anti-inflammatory Thrombosis Outcomes Study (CANTOS). Am Heart J, 162, 597-605.
Rietschel, E. T., Kirikae, T., Schade, F. U., Mamat, U., Schmidt, G., Loppnow, H., Ulmer, A. J., Zahringer, U., Seydel, U., Di Padova, F., & et al. (1994). Bacterial endotoxin: molecular relationships of structure to activity and function. FASEB J, 8, 217-225.
Ruiz-Leon, A. M., Lapuente, M., Estruch, R., & Casas, R. (2019). Clinical advances in immunonutrition and atherosclerosis: A review. Front Immunol, 10, 837.
Sakakura, K., Nakano, M., Otsuka, F., Ladich, E., Kolodgie, F. D., & Virmani, R. (2013). Pathophysiology of atherosclerosis plaque progression. Heart Lung Circ, 22, 399-411.
Sarawek, S., Derendorf, H., & Butterweck, V. (2008). Pharmacokinetics of Luteolin and metabolites in Rats. Natural Product Communications, 3, 2029-2036.
Schaeffer, D. F., Riazy, M., Parhar, K. S., Chen, J. H., Duronio, V., Sawamura, T., & Steinbrecher, U. P. (2009). LOX-1 augments oxLDL uptake by lysoPC-stimulated murine macrophages but is not required for oxLDL clearance from plasma. J Lipid Res, 50, 1676-1684.
Scherz-Shouval, R., & Elazar, Z. (2007). ROS, mitochondria and the regulation of autophagy. Trends Cell Biol, 17(9), 422-427.
Schroeder, B. O., Birchenough, G. M. H., Stahlman, M., Arike, L., Johansson, M. E. V., Hansson, G. C., & Backhed, F. (2018). Bifidobacteria or Fiber Protects against Diet-Induced Microbiota-Mediated Colonic Mucus Deterioration. Cell Host Microbe, 23(1), 27-40 e27.
Schumann, R. R., Belka, C., Reuter, D., Lamping, N., Kirschning, C. J., Weber, J. R., & Pfeil, D. (1998). Lipopolysaccharide activates caspase-1 (interleukin-1-converting enzyme) in cultured monocytic and endothelial cells. Blood, 91(2), 577-584.
Selvendiran, K., Koga, H., Ueno, T., Yoshida, T., Maeyama, M., Torimura, T., Yano, H., Kojiro, M., & Sata, M. (2006). Luteolin promotes degradation in signal transducer and activator of transcription 3 in human hepatoma cells: an implication for the antitumor potential of flavonoids. Cancer Res, 66(9), 4826-4834.
Shao, B. Z., Han, B. Z., Zeng, Y. X., Su, D. F., & Liu, C. (2016). The roles of macrophage autophagy in atherosclerosis. Acta Pharmacol Sin, 37(2), 150-156.
Simonsen, A., & Tooze, S. A. (2009). Coordination of membrane events during autophagy by multiple class III PI3-kinase complexes. J Cell Biol, 186(6), 773-782.
Singh, S., & Gautam, A. S. (2019). Upregulated LOX-1 Receptor: Key Player of the Pathogenesis of Atherosclerosis. Curr Atheroscler Rep, 21(10), 38.
Siracusa, R., Paterniti, I., Impellizzeri, D., Cordaro, M., Crupi, R., Navarra, M., Cuzzocrea, S., & Esposito, E. (2015). The Association of Palmitoylethanolamide with Luteolin Decreases Neuroinflammation and Stimulates Autophagy in Parkinson's Disease Model. CNS Neurol Disord Drug Targets, 14(10), 1350-1365.
Swanson, K. V., Deng, M., & Ting, J. P. (2019). The NLRP3 inflammasome: molecular activation and regulation to therapeutics. Nat Rev Immunol, 19(8), 477-489.
Tedgui, A., & Mallat, Z. (2006). Cytokines in atherosclerosis: pathogenic and regulatory pathways. Physiol Rev, 86(2), 515-581.
Tian, K., Ogura, S., Little, P. J., Xu, S. W., & Sawamura, T. (2019). Targeting LOX-1 in atherosclerosis and vasculopathy: current knowledge and future perspectives. Ann N Y Acad Sci, 1443(1), 34-53.
Tur, J., Pereira-Lopes, S., Vico, T., Marin, E. A., Munoz, J. P., Hernandez-Alvarez, M., Cardona, P. J., Zorzano, A., Lloberas, J., & Celada, A. (2020). Mitofusin 2 in Macrophages Links Mitochondrial ROS Production, Cytokine Release, Phagocytosis, Autophagy, and Bactericidal Activity. Cell Rep, 32(8), 108079.
van der Heijden, T., Kritikou, E., Venema, W., van Duijn, J., van Santbrink, P. J., Slutter, B., Foks, A. C., Bot, I., & Kuiper, J. (2017). NLRP3 Inflammasome Inhibition by MCC950 Reduces Atherosclerotic Lesion Development in Apolipoprotein E-Deficient Mice-Brief Report. Arterioscler Thromb Vasc Biol, 37(8), 1457-1461.
Voloshyna, I., Hai, O., Littlefield, M. J., Carsons, S., & Reiss, A. B. (2013). Resveratrol mediates anti-atherogenic effects on cholesterol flux in human macrophages and endothelium via PPARgamma and adenosine. Eur J Pharmacol, 698(1-3), 299-309.
Wang, Z., Zeng, M., Wang, Z., Qin, F., Chen, J., & He, Z. (2021). Dietary Luteolin: A Narrative Review Focusing on Its Pharmacokinetic Properties and Effects on Glycolipid Metabolism. J Agric Food Chem, 69(5), 1441-1454.
Xu, Liu, X., Yin, D., Ren, G., & Zhao, Y. (2020). PP2A alleviates oxidized LDL-induced endothelial dysfunction by regulating LOX-1/ROS/MAPK axis. Life Sci, 243, 117270.
Xu, Ogura, S., Chen, J., Little, P. J., Moss, J., & Liu, P. (2013). LOX-1 in atherosclerosis: biological functions and pharmacological modifiers. Cell Mol Life Sci, 70(16), 2859-2872.
Yang, Bian, Y. F., Zhang, H. P., Gao, F., Xiao, C. S., Liang, B., Li, J., Zhang, N. N., & Yang, Z. M. (2015). LOX-1 is implicated in oxidized low-density lipoprotein-induced oxidative stress of macrophages in atherosclerosis. Molecular Medicine Reports, 12(4), 5335-5341.
Yang, Wang, H., Kouadir, M., Song, H., & Shi, F. (2019). Recent advances in the mechanisms of NLRP3 inflammasome activation and its inhibitors. Cell Death Dis, 10(2), 128.
Yoboua, F., Martel, A., Duval, A., Mukawera, E., & Grandvaux, N. (2010). Respiratory syncytial virus-mediated NF-kappa B p65 phosphorylation at serine 536 is dependent on RIG-I, TRAF6, and IKK beta. J Virol, 84(14), 7267-7277.
Yu, X., Lan, P., Hou, X., Han, Q., Lu, N., Li, T., Jiao, C., Zhang, J., Zhang, C., & Tian, Z. (2017). HBV inhibits LPS-induced NLRP3 inflammasome activation and IL-1beta production via suppressing the NF-kappaB pathway and ROS production. J Hepatol, 66(4), 693-702.
Yuan, Y., Li, P., & Ye, J. (2012). Lipid homeostasis and the formation of macrophage-derived foam cells in atherosclerosis. Protein Cell, 3(3), 173-181.
Yun, H. R., Jo, Y. H., Kim, J., Shin, Y., Kim, S. S., & Choi, T. G. (2020). Roles of Autophagy in Oxidative Stress. Int J Mol Sci, 21(9).
Zachari, M., & Ganley, I. G. (2017). The mammalian ULK1 complex and autophagy initiation. Essays Biochem, 61(6), 585-596.
Zani, I. A., Stephen, S. L., Mughal, N. A., Russell, D., Homer-Vanniasinkam, S., Wheatcroft, S. B., & Ponnambalam, S. (2015). Scavenger receptor structure and function in health and disease. Cells, 4(2), 178-201.
Zhou, Cao, X. Q., Liu, Z. H., Cao, Y. J., Liu, C. F., Zhang, Y. L., & Xie, Y. (2016). Rapamycin Inhibits Oxidized Low Density Lipoprotein Uptake in Human Umbilical Vein Endothelial Cells via mTOR/NF-kappaB/LOX-1 Pathway. PLoS One, 11(1), e0146777.
Zhou, R., Yazdi, A. S., Menu, P., & Tschopp, J. (2011). A role for mitochondria in NLRP3 inflammasome activation. Nature, 469(7329), 221-225.
Zmora, N., Suez, J., & Elinav, E. (2019). You are what you eat: diet, health and the gut microbiota. Nat Rev Gastroenterol Hepatol, 16(1), 35-56.




電子全文 電子全文(網際網路公開日期:20250715)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top