跳到主要內容

臺灣博碩士論文加值系統

(44.201.94.236) 您好!臺灣時間:2023/03/25 00:43
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林建佑
研究生(外文):LIN, CHIEN-YU
論文名稱:利用全基因組關聯性分析探討影響痛風的重要基因
論文名稱(外文):A Genome-Wide Association Study Identifies Important Genes Influencing Gout Disease
指導教授:張建國張建國引用關係
指導教授(外文):CHANG, JAN-GOWTH
口試委員:鄭如茜呂旭峯章順仁張偉嶠彭慶添張雅琁張建國
口試委員(外文):CHENG, JU-CHIENLU, HSI-FENGCHANG, SHUN-JENCHANG, WEI-CHIAOPENG, CHING-TIENCHANG, YA-SIANCHANG, JAN-GOWTH
口試日期:2022-07-14
學位類別:博士
校院名稱:中國醫藥大學
系所名稱:臨床醫學研究所博士班
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2022
畢業學年度:110
語文別:中文
論文頁數:46
中文關鍵詞:全基因組關聯性分析全基因體定序痛風高尿酸血症多基因風險分數
外文關鍵詞:GWASWGSGoutHyperuricemiaPRS
ORCID或ResearchGate:0000-0003-2705-9742
相關次數:
  • 被引用被引用:0
  • 點閱點閱:75
  • 評分評分:
  • 下載下載:3
  • 收藏至我的研究室書目清單書目收藏:0
高尿酸血症是肝臟代謝過度活躍或腎臟排泄不足的形成尿酸過高的生理現象。高尿酸血症會誘發痛風和腎結石,並加速腎臟和心血管疾病的進展。儘管全基因組關聯研究 (GWAS)已了解三個候選基因 (SLC2A9、ABCG2 和 SLC22A12) 是尿酸鹽水平的主要決定因素。但與尿酸吸收和排泄有關的基因尚未確定。本研究將利用台灣生物庫 (TWB) 提供的全基因組關聯研究和全基因組定序 (WGS) 數據進行後續研究,從而深入了解台灣人族群控制尿酸的基因數量,並確定表現出最顯著效果的基因。

主題一:
利用全基因組關聯研究 (GWAS) 探討女性痛風和無症狀性高尿酸血症 (AH) 相關的遺傳變異和多基因風險分數 (PRS)之探討。
方法:探討痛風、無症狀高尿酸血症以及尿酸正常者為研究族群。所有收案者,皆進入discovery以及replication的GWAS研究族群。根據基因變異是否表現出保護作用來估計多基因風險分數 (PRS)。
結果:共納入女性59472人,痛風和無症狀高尿酸血症,分別佔1.60%和19.59%。年齡 >=50 歲女性痛風患者的顯著預測因子,包括 SLC2A9、C5orf22、CNTNAP2 和 GLRX5 基因中的六個基因變異點位。對於年齡 <50 歲的人顯著預測因子,僅發現了 X 染色體上的基因變異 rs147750368 (SPANXN1)。另外,發現SLC2A9、ZNF518B、PKD2 和 ABCG2 中的大多數基因變異點位與兩個年齡組 (>=50 歲女性以及<50 歲) 的無症狀高尿酸血症顯著相關。利用多基因風險分數 (PRS),可以解釋大約 0.59% - 0.89% 的痛風變異點位,具有保護作用,且風險變異平均多基因風險分數 (PRS) 的6.2倍,但在無症狀高尿酸血症表現型中,僅為 1.2 倍。除此之外,多基因風險分數(PRS) 還顯示了無症狀高尿酸血症和四分位數分數之間的劑量反應呈現趨勢。
結論: SLC2A9的基因變異是50歲以上女性痛風相關的主要遺傳因素。在探討性狀影響變異的同質選擇下,多基因風險分數 (PRS) 可以提供更符合痛風/無症狀高尿酸血症風險預測。

主題二:
利用全基因體定序 (WGS) 探討台灣男性族群控制尿酸的基因以及可產生顯著影的重要基因。
方法:利用台灣生物資料庫 (TWB) 定序結果,透過生物資訊的分類和統計學的方式,探討影響尿酸的重要基因變異。
結果:利用台灣生物資料庫中,沒有被診斷出患有痛風的男性,包括 907 人的研究人群中。平均年齡為 49 歲,尿酸的平均值為 6.3 mg/dL。首先,我們探討了 11 個尿酸相關的基因多型性基因(ABCG2、SLC2A9、SLC22A12 和 PDZK1)。結果呈現,ABCG2(rs4148157 G>A、rs4693924 G>A、rs2231142 G>T)具有統計學意義,其p值分別為0.02047、0.01926和0.00074。此外,我們採用了 ABCG2 遺傳單倍型變異(ABCG2_rs4148157、ABCG2_rs4693924 和 ABCG2_rs2231142),共歸納出 44 名受測者有 ABCG2 (基因變異型;AAT);他們的尿酸值為8.5-3.6 mg/dL。將尿酸結果與致病基因變異的資料庫(ClinVar 和預測工具,包括 PolyPhen 和 SIFT)進行比較。我們排除了同時出現在尿酸 ≤7.0 mg/dL和> 7.0 mg/dL樣品中的尿酸代謝基因,只保留了那些僅出現在尿酸≤7.0 mg/dL或> 7.0 mg/dL樣品中的基因。結果顯示在尿酸 > 或 = 7.0 mg/dL 的樣品中,致病變異基因分別為 GCKR、SLC13A3 和 PRPSAP1。對於尿酸<7.0 mg/dL的樣本,變異基因為SLC17A3、SLC22A12和XDH。我們進一步探討了這些基因在ABCG2 單倍型的加乘效應下, SLC22A12_rs77782504 T>G 表現出顯著的影響(血液中尿酸為 3.7 mg/dL)。
結論:我們利用台灣生物資料庫提供的全基因體定序結果,發現SLC22A12 (rs77782504 T>G) 表現出顯著的影響。

Hyperuricemia is a physiological symptom involving excessive uric acid formation due to overactive liver metabolism or insufficient renal excretion. This symptom causes gout and the formation of kidney stones and accelerates the progression of renal and cardiovascular diseases. Although candidate-gene and genome-wide association studies (GWASs) have confirmed 3 genes, namely SLC2A9, ABCG2, and SLC22A12, as the decisive factors of urate levels, the number of genes involved in uric acid absorption and excretion has yet to be confirmed. This study employed the GWAS method and whole genome sequencing (WGS) data provided by Taiwan Biobank to explore the number of genes regulating uric acid in the Taiwanese population and identify the genes that exert the most notable effect on uric acid.

Project 1:
GWAS for exploring the genetic variants and polygenic risk score (PRS) associated with gout and asymptomatic hyperuricemia (AH) in women.
Methods: Patients with gout and AH and individuals with normal uric acid levels were recruited as the discovery and replication research population for GWAS. The PRS of each participant was evaluated on the basis of the protective effect of genetic variants.
Results: Among the 59472 female participants, 1.60% and 19.59% were diagnosed with gout and AH, respectively. For participants aged ≥50 years, the major predictors to gout were associated with 6 genetic variation sites in the genes SLC2A9, C5orf22, CNTNAP2, and GLRX5. For participants aged <50 years, the genetic variant rs147750368 (SPANXN1) in the X chromosome was identified as the sole major predictor. Moreover, most of the genetic variation sites in SLC2A9, C5orf22, CNTNAP2, and GLRX5 were significantly correlated with AH in the aforementioned two age groups. The PRS results revealed that 0.59%–0.89% of the genetic variation sites exerted a protective effect, and the risk variation was 6.2 and 1.2 times the average PRS score for gout and AH expressions, respectively. Additionally, a dose–response relationship was observed between the quartile PRS and AH.
Conclusion: The genetic variants in SLC2A9 are the main genetic factors associated with gout in female patients aged ≥50 years. The PRS, which is used for the homogenous selection for trait-affecting genetic variants, provides an accurate risk prediction of gout and AH.

Project 2:
WGS for exploring genes that regulate and exert notable effects on uric acid in men.
Method: WGS data provided by Taiwan Biobank were employed in combination with classification and statistics techniques in bioinformatics to examine genetic variants that exert notable effects on uric acid.
Results: The WGS data of 907 of male test receivers not diagnosed with gout were adopted. They were aged 49 years on average and exhibited a mean uric acid level of 6.3 mg/dL. Analysis of 11 polymorphic genes related to uric acid (e.g., ABCG2, SLC2A9, SLC22A12, and PDZK1) revealed that ABCG2 attained statistical significance (rs4148157 G>A, rs4693924 G>A, and rs2231142 G>T); the p values were 0.02047, 0.01926, and 0.00074, respectively. The genetic haplotype of ABCG2 (ABCG2_rs4148157, ABCG2_rs4693924, and ABCG2_rs2231142) was examined to reveal that 44 of the test receivers exhibited ABCG2 with the genetic variant of AAT, and they displayed uric acid levels of 8.5–3.6 mg/dL. The uric acid analysis results were compared with databases of pathogenic gene variants (ClinVar and prediction tools such as PolyPhen and Sorting Intolerant from Tolerant). We exclude uric acid metabolism genes that appeared in both samples with ≤7.0 and >7.0 mg/dL of uric acid, and retained those that appeared only in either samples with ≤7.0 mg/dL of uric acid or those with >7.0 mg/dL. The results indicated that the pathogenic gene variants in the samples with ≥7.0 mg/dL of uric acid were GCKR, SLC13A3, and PRPSAP1, whereas those in the samples with <7.0 mg/dL of uric acid were SLC17A3, SLC22A12, and XDH. Further analysis revealed that when the effects of these variants are magnified by the genetic haplotype of ABCG2, SLC22A12_rs77782504 T>G demonstrated a notable effect (uric acid: 3.7 mg/dL in blood).
Conclusion: The WGS data provided by Taiwan Biobank confirmed that SLC22A12 (rs77782504 T>G) exerts considerable effect on uric acid in men.

誌謝辭 i
中文摘要 ii
英文摘要 iv
目次 vii
圖表目次 viii
一、文獻討論 1
二、研究目的 4
三、材料和方法 5
四、研究結果 8
五、討論 12
六、總結 15
七、未來展望 16
八、參考書目 40
附錄一 博士班期間相關論文 44
附錄二 縮寫對照表 46

1. Bieber JD, Terkeltaub RA: Gout: on the brink of novel therapeutic options for an ancient disease. Arthritis Rheum 2004, 50(8):2400-2414.
2. Arromdee E, Michet CJ, Crowson CS, O'Fallon WM, Gabriel SE: Epidemiology of gout: is the incidence rising? J Rheumatol 2002, 29(11):2403-2406.
3. Wallace SL, Robinson H, Masi AT, Decker JL, McCarty DJ, Yu TF: Preliminary criteria for the classification of the acute arthritis of primary gout. Arthritis Rheum 1977, 20(3):895-900.
4. Afinogenova Y, Danve A, Neogi T: Update on gout management: what is old and what is new. Curr Opin Rheumatol 2022, 34(2):118-124.
5. Li L, Zhang Y, Zeng C: Update on the epidemiology, genetics, and therapeutic options of hyperuricemia. Am J Transl Res 2020, 12(7):3167-3181.
6. Major TJ, Dalbeth N, Stahl EA, Merriman TR: An update on the genetics of hyperuricaemia and gout. Nat Rev Rheumatol 2018, 14(6):341-353.
7. Benn CL, Dua P, Gurrell R, Loudon P, Pike A, Storer RI, Vangjeli C: Physiology of Hyperuricemia and Urate-Lowering Treatments. Front Med (Lausanne) 2018, 5:160.
8. Kottgen A, Albrecht E, Teumer A, Vitart V, Krumsiek J, Hundertmark C, Pistis G, Ruggiero D, O'Seaghdha CM, Haller T et al: Genome-wide association analyses identify 18 new loci associated with serum urate concentrations. Nat Genet 2013, 45(2):145-154.
9. Okada Y, Sim X, Go MJ, Wu JY, Gu D, Takeuchi F, Takahashi A, Maeda S, Tsunoda T, Chen P et al: Meta-analysis identifies multiple loci associated with kidney function-related traits in east Asian populations. Nat Genet 2012, 44(8):904-909.
10. Tin A, Woodward OM, Kao WH, Liu CT, Lu X, Nalls MA, Shriner D, Semmo M, Akylbekova EL, Wyatt SB et al: Genome-wide association study for serum urate concentrations and gout among African Americans identifies genomic risk loci and a novel URAT1 loss-of-function allele. Hum Mol Genet 2011, 20(20):4056-4068.
11. Dehghan A, Kottgen A, Yang Q, Hwang SJ, Kao WL, Rivadeneira F, Boerwinkle E, Levy D, Hofman A, Astor BC et al: Association of three genetic loci with uric acid concentration and risk of gout: a genome-wide association study. Lancet 2008, 372(9654):1953-1961.
12. Stiburkova B, Pavelcova K, Zavada J, Petru L, Simek P, Cepek P, Pavlikova M, Matsuo H, Merriman TR, Pavelka K: Functional non-synonymous variants of ABCG2 and gout risk. Rheumatology (Oxford) 2017, 56(11):1982-1992.
13. Chung S, Kim GH: Urate Transporters in the Kidney: What Clinicians Need to Know. Electrolyte Blood Press 2021, 19(1):1-9.
14. Pavelcova K, Bohata J, Pavlikova M, Bubenikova E, Pavelka K, Stiburkova B: Evaluation of the Influence of Genetic Variants of SLC2A9 (GLUT9) and SLC22A12 (URAT1) on the Development of Hyperuricemia and Gout. J Clin Med 2020, 9(8).
15. Cho SK, Kim B, Myung W, Chang Y, Ryu S, Kim HN, Kim HL, Kuo PH, Winkler CA, Won HH: Polygenic analysis of the effect of common and low-frequency genetic variants on serum uric acid levels in Korean individuals. Sci Rep 2020, 10(1):9179.
16. Zhu Y, Pandya BJ, Choi HK: Prevalence of gout and hyperuricemia in the US general population: the National Health and Nutrition Examination Survey 2007-2008. Arthritis Rheum 2011, 63(10):3136-3141.
17. Winnard D, Wright C, Taylor WJ, Jackson G, Te Karu L, Gow PJ, Arroll B, Thornley S, Gribben B, Dalbeth N: National prevalence of gout derived from administrative health data in Aotearoa New Zealand. Rheumatology (Oxford) 2012, 51(5):901-909.
18. Gotfredsen A, Christiansen C, Transbol I: Effect of natural oestrogen/gestagen therapy on uric acid metabolism in post-menopausal women. Maturitas 1983, 5(1):9-15.
19. Nicholls A, Snaith ML, Yablonsky H, Scott JT: Effect of stilboestrol on levels of uric acid in plasma and urine. Ann Rheum Dis 1973, 32(4):386-387.
20. Keenan RT: The biology of urate. Semin Arthritis Rheum 2020, 50(3S):S2-S10.
21. Merriman TR: An update on the genetic architecture of hyperuricemia and gout. Arthritis Res Ther 2015, 17:98.
22. Yano H, Tamura Y, Kobayashi K, Tanemoto M, Uchida S: Uric acid transporter ABCG2 is increased in the intestine of the 5/6 nephrectomy rat model of chronic kidney disease. Clin Exp Nephrol 2014, 18(1):50-55.
23. Toyoda Y, Kawamura Y, Nakayama A, Nakaoka H, Higashino T, Shimizu S, Ooyama H, Morimoto K, Uchida N, Shigesawa R et al: Substantial anti-gout effect conferred by common and rare dysfunctional variants of URAT1/SLC22A12. Rheumatology (Oxford) 2021, 60(11):5224-5232.
24. Choi SW, O'Reilly PF: PRSice-2: Polygenic Risk Score software for biobank-scale data. Gigascience 2019, 8(7).
25. McAdams MA, Maynard JW, Baer AN, Kottgen A, Clipp S, Coresh J, Gelber AC: Reliability and sensitivity of the self-report of physician-diagnosed gout in the campaign against cancer and heart disease and the atherosclerosis risk in the community cohorts. J Rheumatol 2011, 38(1):135-141.
26. Bardin T, Richette P: Definition of hyperuricemia and gouty conditions. Curr Opin Rheumatol 2014, 26(2):186-191.
27. Bagos PG: Genetic model selection in genome-wide association studies: robust methods and the use of meta-analysis. Stat Appl Genet Mol Biol 2013, 12(3):285-308.
28. Pruim RJ, Welch RP, Sanna S, Teslovich TM, Chines PS, Gliedt TP, Boehnke M, Abecasis GR, Willer CJ: LocusZoom: regional visualization of genome-wide association scan results. Bioinformatics 2010, 26(18):2336-2337.
29. Chen CJ, Tseng CC, Yen JH, Chang JG, Chou WC, Chu HW, Chang SJ, Liao WT: ABCG2 contributes to the development of gout and hyperuricemia in a genome-wide association study. Sci Rep 2018, 8(1):3137.
30. Zhang XY, Geng TT, Liu LJ, Yuan DY, Feng T, Kang LL, Jin TB, Chen C: SLC2A9 and ZNF518B polymorphisms correlate with gout-related metabolic indices in Chinese Tibetan populations. Genet Mol Res 2015, 14(3):9915-9921.
31. Lee MG, Hsu TC, Chen SC, Lee YC, Kuo PH, Yang JH, Chang HH, Lee CC: Integrative Genome-Wide Association Studies of eQTL and GWAS Data for Gout Disease Susceptibility. Sci Rep 2019, 9(1):4981.
32. Roubenoff R, Klag MJ, Mead LA, Liang KY, Seidler AJ, Hochberg MC: Incidence and risk factors for gout in white men. JAMA 1991, 266(21):3004-3007.
33. Choi HK, Atkinson K, Karlson EW, Willett W, Curhan G: Purine-rich foods, dairy and protein intake, and the risk of gout in men. N Engl J Med 2004, 350(11):1093-1103.
34. Campion EW, Glynn RJ, DeLabry LO: Asymptomatic hyperuricemia. Risks and consequences in the Normative Aging Study. Am J Med 1987, 82(3):421-426.
35. You L, Liu A, Wuyun G, Wu H, Wang P: Prevalence of hyperuricemia and the relationship between serum uric acid and metabolic syndrome in the Asian Mongolian area. J Atheroscler Thromb 2014, 21(4):355-365.
36. Liu H, Peng L, Ma J, He L, Long K, Ouyang X, Wu C, Xie M, Dai L, Cai X: Low expression of estrogen receptor beta in renal tubular epithelial cells may cause hyperuricemia in premenopausal patients with systemic lupus erythematosus. Lupus 2021, 30(4):560-567.
37. Shen S, Callaghan D, Juzwik C, Xiong H, Huang P, Zhang W: ABCG2 reduces ROS-mediated toxicity and inflammation: a potential role in Alzheimer's disease. J Neurochem 2010, 114(6):1590-1604.
38. Zamudio-Cuevas Y, Hernandez-Diaz C, Pineda C, Reginato AM, Cerna-Cortes JF, Ventura-Rios L, Lopez-Reyes A: Molecular basis of oxidative stress in gouty arthropathy. Clin Rheumatol 2015, 34(10):1667-1672.
39. Kim SK, Choe JY, Park KY: Rebamipide Suppresses Monosodium Urate Crystal-Induced Interleukin-1beta Production Through Regulation of Oxidative Stress and Caspase-1 in THP-1 Cells. Inflammation 2016, 39(1):473-482.
40. Martinon F, Petrilli V, Mayor A, Tardivel A, Tschopp J: Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature 2006, 440(7081):237-241.
41. Rule AD, de Andrade M, Matsumoto M, Mosley TH, Kardia S, Turner ST: Association between SLC2A9 transporter gene variants and uric acid phenotypes in African American and white families. Rheumatology (Oxford) 2011, 50(5):871-878.
42. Diaz-Torne C, Ortiz MA, Garcia-Guillen A, Jeria-Navarro S, Sainz L, Fernandez-Sanchez S, Corominas H, Vidal S: The inflammatory role of silent urate crystal deposition in intercritical gout. Rheumatology (Oxford) 2021, 60(11):5463-5472.
43. Riteau N, Baron L, Villeret B, Guillou N, Savigny F, Ryffel B, Rassendren F, Le Bert M, Gombault A, Couillin I: ATP release and purinergic signaling: a common pathway for particle-mediated inflammasome activation. Cell Death Dis 2012, 3:e403.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊