跳到主要內容

臺灣博碩士論文加值系統

(44.200.194.255) 您好!臺灣時間:2024/07/16 11:36
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:王必如
研究生(外文):Tiffany B Wang
論文名稱:臺中水湳經貿園區周遭居民之揮發性有機化合物暴露及健康風險評估
論文名稱(外文):Exposure and health risk assessment of volatile organic compounds among residents around the Taichung Shuinan Trade and Economic Park
指導教授:張大元
指導教授(外文):Ta-Yuan Chang
口試委員:張立德莊校奇
口試委員(外文):Li-Te ChangHsiao-Chi Chuang
口試日期:2022-06-24
學位類別:碩士
校院名稱:中國醫藥大學
系所名稱:職業安全與衛生學系碩士班
學門:醫藥衛生學門
學類:公共衛生學類
論文種類:學術論文
論文出版年:2022
畢業學年度:110
語文別:中文
論文頁數:139
中文關鍵詞:致癌風險慢性健康危害健康風險評估水湳經貿園區揮發性有機化合物
外文關鍵詞:Carcinogenic risksChronic health hazardsHealth risk assessmentShuinan Trade and Economic ParkVolatile Organic Compounds(VOCs)
相關次數:
  • 被引用被引用:0
  • 點閱點閱:164
  • 評分評分:
  • 下載下載:25
  • 收藏至我的研究室書目清單書目收藏:0
背景:臺中水湳經貿園區原為臺中水湳機場的舊址,總面積254公頃,自2007年起被規劃成五大專區,並投入相關重大公共工程建設。與此同時,在水湳經貿園區附近民眾可能因車流量及周邊區域整合,導致環境揮發性有機物(VOCs)暴露隨之增加。

目的:本研究主要針對居住在臺中水湳經貿園區周邊的居民進行一年的環境VOCs暴露評估及估計潛在的健康風險。

方法:此研究以水湳經貿園區的重大公共設施、航空工業公司及汽車維修廠作為7個固定源,以鄰近主要道路作為8個移動源之採樣點,在2021-2022年進行環境採樣。我們使用6L SUMMA不鏽鋼採樣筒,針對戶外15個環境採樣點進行24小時揮發性有機化合物的採樣,並且以氣相層析火焰離子化偵測器分析等7種VOCs(苯、甲苯、乙苯、二甲苯、苯乙烯、正己烷及二氯甲烷)濃度。本研究依據美國加州環境保護局(California Environmental Protection Agency , Cal-EPA)進行致癌與非致癌之風險評估。最後以Oracle Crystal Ball軟體中的蒙地卡羅模擬(Monte Carol Simulation)計算風險的不確定性分析。

結果:本研究發現苯、甲苯、乙苯、二甲苯、苯乙烯、二氯甲烷及正己烷等7種物質之的平均濃度分別為7.18±2.25 μg/m3、3.69±2.28 μg/m3、5.75±1.36 μg/m3、5.77±1.79 μg/m3、5.53±1.39 μg/m3、36.18±46.23 μg/m3以及2.18±3.78 μg/m3。在終身致癌風險中,男性二氯甲烷的中位數致癌風險為1.76×10-5 (95% Confidence Interval [CI]:3.50×10-6-2.07×10-4),女性二氯甲烷的中位數致癌風險為1.50×10-5(95% CI:2.98×10-6-1.76×10-4);男性苯的中位數致癌風險為1.93×10-4(95% CI:1.00×10-4-4.22×10-4),而女性的中位數致癌風險為1.65×10-4(95% CI:8.55×10-5-3.60×10-4);男性苯乙烯的中位數致癌風險為3.99×10-5(95% CI:1.22×10-5-5.61×10-5),而女性的中位數致癌風險為3.41×10-5(95% CI:1.04×10-5-4.79×10-5)。除苯的非致癌性風險之HIC平均值為2.297(全距:1.227-5.175)之外,其餘6種VOCs非致癌性風險之HIC平均值均小於1。

結論:本研究結果顯示苯的男性與女性中位數致癌風險皆大於1.0×10-4,為可能的風險,且苯具有不可接受的慢性非致癌風險。因此我們建議持續監測水湳經貿園區附近的VOCs濃度,以確認附近居民可能的暴露狀況。

Background:Taichung Shuinan Trade and Economic Park was originally the former site of Taichung Shuinan Airport with a total area of 254 hectares. At the same time, people in the vicinity of the Shuinan Trade and Economic Park may have increased exposure to volatile organic compounds (VOCs) due to traffic flow and the integration of surrounding areas.

Objectives:This study aimed to explore the exposure levels of environmental VOCs and to assess potential health risks among residents living in the vicinity of this park.

Methods:We selected the major public works, aviation industry companies and vehicle repair shops in the Shuinan Trade and Economic Park as 7 stationary sources and the adjacent main roads as 8 mobile sources for sampling sites. Environmental sampling was conducted between 2021 and 2022. We used a 6L SUMMA stainless steel canister to conduct 24-hour sampling of volatile organic compounds at 15 outdoor sampling sites, and analyzed 7 VOC components of benzene, toluene, ethylbenzene, xylene, styrene, n-hexane and dichloromethane with gas chromatography-flame ionization detection. The lifetime cancer risk and the chornic hazard index(HIC)were used to estimate the carcinogenic and non-carcinogenic risks. The uncertainty risk was evaluated by the Monte Carol Simulation.

Results:We found that the average concentrations of benzene, toluene, ethylbenzene, xylene, styrene, dichloromethane and n-hexane were 7.18±2.25 μg/m3, 3.69±2.28 μg/m3, 5.75±1.36 μg/m3, 5.77±1.79 μg/m3, 5.53±1.39 μg/m3, 36.18±46.23 μg/m3 and 2.18±3.78 μg/m3, respectively. For the lifetime cancer risk, the median cancer risk of dichloromethane was 1.76×10-5(95% Confidence Interval, CI: 3.50×10-6-2.07×10-4)in men, and 1.50×10-5(95% CI:2.98×10-6-1.76×10-4)in women. The median cancer risk of benzene was 1.93×10-4(95% CI:1.00×10-4-4.22×10-4)in men, and 1.65×10-4(95% CI:8.55×10-5-3.60×10-4)in women. The median cancer risk of styrene was 3.99×10-5(95% CI:1.22×10-5-5.61×10-5)in men, and 3.41×10-5(95% CI: 1.04×10-5-4.79×10-5)in women. Most VOCs had HIC values less than 1 except benzene had the average HIC of 2.297(Range: 1.227-5.175).

Conclusion:This study showed that the median carcinogenic risk of benzene was belonged to the possible level and benzene exposure had the unacceptable level in non-cancer risk. We recommend to routinuously monitor VOCs levels for residents living nearby the Shuinan Trade and Economic Park.


摘要 i
Abstract iii
表目錄 IV
圖目錄 V
附表目錄 VI
附圖目錄 VII
第一章 緒論 1
第一節 研究緣起 1
第二節 研究之重要性 4
第三節 研究目的 4
第四節 研究假設 4
第五節 名詞界定 5
第二章 文獻回顧 7
第一節 環境中揮發性有機化合物來源與特性 7
第二節 揮發性有機化合物之季節特性 11
第三節 水湳經貿園區主要污染源之排放 13
第四節 揮發性有機化合物之健康危害 16
第五節 健康風險評估 25
第六節 風險不確定性分析 29
第三章 研究材料與方法 32
第一節 研究設計 32
第二節 研究方法 32
3.2.1採樣點及採樣時間選擇 32
3.2.2目標揮發性有機化合物之選擇 33
第三節 研究儀器與分析方法 34
3.3.1揮發性有機化合物採樣及分析方法 34
3.3.2標準氣體配置 36
3.3.3採樣及分析工作之品保品管 37
第四節 資料收集 38
第五節 健康風險評估計算 39
第六節 資料統計與分析 43
第四章 研究結果 45
第一節 水湳經貿園區室外環境揮發性有機化合物濃度分布 45
第二節 水湳經貿園區周遭居民之健康風險評估結果 49
第五章 討論 56
第一節 水湳經貿園區周遭環境濃度 56
第二節 不同季節對於室外揮發性有機化合物之濃度影響 57
第三節 水湳經貿園區各採樣地點之濃度影響 58
第四節 致癌風險 60
第五節 非致癌風險 61
第六節 不確定性分析 62
第七節 研究優勢與限制 64
第六章 結論與建議 65
第一節 結論 65
第二節 應用與建議 66
第七章 參考文獻 67
附錄 114
1.臺中市政府都市發展局. Available from: https://www.udvision.taichung.gov.tw/Visions/visions4_more.
2.Zhang, Z., et al., Emission and health risk assessment of volatile organic compounds in various processes of a petroleum refinery in the Pearl River Delta, China. Environ Pollut, 2018. 238: p. 452-461.
3.Geng, F., et al., Analysis of VOC emissions using PCA/APCS receptor model at city of Shanghai, China. Journal of Atmospheric Chemistry, 2009. 62(3): p. 229-247.
4.Norbäck, D., et al., Volatile organic compounds (VOC), formaldehyde and nitrogen dioxide (NO(2)) in schools in Johor Bahru, Malaysia: Associations with rhinitis, ocular, throat and dermal symptoms, headache and fatigue. Sci Total Environ, 2017. 592: p. 153-160.
5.Arif, A.A. and S.M. Shah, Association between personal exposure to volatile organic compounds and asthma among US adult population. Int Arch Occup Environ Health, 2007. 80(8): p. 711-9.
6.Hsu, C.-Y., et al., Ambient VOCs in residential areas near a large-scale petrochemical complex: Spatiotemporal variation, source apportionment and health risk. Environmental Pollution, 2018. 240: p. 95-104.
7.Chang, T.Y., et al., Exposure to volatile organic compounds and kidney dysfunction in thin film transistor liquid crystal display (TFT-LCD) workers. J Hazard Mater, 2010. 178(1-3): p. 934-40.
8.Chang, T.-Y., et al., Exposure to Indoor Volatile Organic Compounds and Hypertension among Thin Film Transistor Liquid Crystal Display Workers. Atmosphere, 2020. 11(7): p. 718.
9.Yurdakul, S., M. Civan, and G. Tuncel, Volatile organic compounds in suburban Ankara atmosphere, Turkey: Sources and variability. Atmospheric Research, 2013. 120-121: p. 298-311.
10.Barletta, B., et al., Mixing ratios of volatile organic compounds (VOCs) in the atmosphere of Karachi, Pakistan. Atmospheric Environment, 2002. 36(21): p. 3429-3443.
11.Qi, Y.J., et al., [Emission Characteristics and Risk Assessment of Volatile Organic Compounds from Typical Factories in Zhengzhou]. Huan Jing Ke Xue, 2020. 41(7): p. 3056-3065.
12.Persoons, R., et al., Biomonitoring of styrene occupational exposures: Biomarkers and determinants. Toxicol Lett, 2018. 298: p. 99-105.
13.Wang, C.H., et al., [Seasonal Pollution Characteristics and Analysis of the Sources of Atmospheric VOCs in Chengdu Urban Area]. Huan Jing Ke Xue, 2020. 41(9): p. 3951-3960.
14.Yang, H.H., et al., Comparative investigation of coal- and oil-fired boilers based on emission factors, ozone and secondary organic aerosol formation potentials of VOCs. J Environ Sci (China), 2020. 92: p. 245-255.
15.Lee, S.C., et al., Volatile organic compounds (VOCs) in urban atmosphere of Hong Kong. Chemosphere, 2002. 48(3): p. 375-82.
16.Kuo, H.-W., et al., Exposure to volatile organic compounds while commuting in Taichung, Taiwan. Atmospheric Environment, 2000. 34(20): p. 3331-3336.
17.Wang, X., et al., Distribution, Sources, and Health Risk Assessment of Volatile Organic Compounds in Hefei City. Arch Environ Contam Toxicol, 2020. 78(3): p. 392-400.
18.Chang, T.-Y., et al., Indoor and Outdoor Exposure to Volatile Organic Compounds and Health Risk Assessment in Residents Living near an Optoelectronics Industrial Park. Atmosphere, 2019. 10(7): p. 380.
19.Du, Z., J. Mo, and Y. Zhang, Risk assessment of population inhalation exposure to volatile organic compounds and carbonyls in urban China. Environ Int, 2014. 73: p. 33-45.
20.Chang, T.-Y., et al., Characterization of Volatile Organic Compounds in the Vicinity of an Optoelectronics Industrial Park in Taiwan. Journal of the Air & Waste Management Association, 2010. 60(1): p. 55-62.
21.慶庭君, 中部科學園區周遭居民揮發性有機化合物之暴露及健康風險評估:追蹤調查研究. 2021.
22.World Health Organization. Available from: https://www.who.int/news-room/fact-sheets/detail/ambient-(outdoor)-air-quality-and-health.
23.United States Environmental Protection Agency. Available from: https://www.epa.gov/.
24.European Union. Available from: https://europa.eu/european-union/.
25.中華人民共和國國家標準. Available from: http://www.sac.gov.cn/.
26.行政院環境保護署. Available from: https://www.epa.gov.tw/.
27.Tong, L., et al., Pollution characteristics of ambient volatile organic compounds (VOCs) in the southeast coastal cities of China. Environmental Science and Pollution Research, 2013. 20(4): p. 2603-2615.
28.Chang, C.-C., et al., An examination of 7:00–9:00PM ambient air volatile organics in different seasons of Kaohsiung city, southern Taiwan. Atmospheric Environment, 2005. 39(5): p. 867-884.
29.van Drooge, B.L., E. Marco, and J.O. Grimalt, Atmospheric pattern of volatile organochlorine compounds and hexachlorobenzene in the surroundings of a chlor-alkali plant. Science of The Total Environment, 2018. 628-629: p. 782-790.
30.Mo, Z., S. Lu, and M. Shao, Volatile organic compound (VOC) emissions and health risk assessment in paint and coatings industry in the Yangtze River Delta, China. Environ Pollut, 2021. 269: p. 115740.
31.行政院環境保護署, 中華民國民國110年環境保護統計年報. p. 1-367.
32.Parra, M.A., et al., Ambient air levels of volatile organic compounds (VOC) and nitrogen dioxide (NO2) in a medium size city in Northern Spain. Sci Total Environ, 2009. 407(3): p. 999-1009.
33.Raysoni, A.U., et al., Evaluation of VOC concentrations in indoor and outdoor microenvironments at near-road schools. Environ Pollut, 2017. 231(Pt 1): p. 681-693.
34.Zhang, Q., et al., Emission factors of volatile organic compounds (VOCs) based on the detailed vehicle classification in a tunnel study. Science of The Total Environment, 2018. 624: p. 878-886.
35.Mentese, S., et al., Multiple comparisons of organic, microbial, and fine particulate pollutants in typical indoor environments: diurnal and seasonal variations. J Air Waste Manag Assoc, 2012. 62(12): p. 1380-93.
36.Sun, J., et al., Urban VOC profiles, possible sources, and its role in ozone formation for a summer campaign over Xi'an, China. Environ Sci Pollut Res Int, 2019. 26(27): p. 27769-27782.
37.Fu, Y.M., et al., [Analysis of Pollution Characteristics and Sources of Atmospheric VOCs in Ezhou City]. Huan Jing Ke Xue, 2020. 41(3): p. 1085-1092.
38.Wilson, M.P., et al., Worker exposure to volatile organic compounds in the vehicle repair industry. J Occup Environ Hyg, 2007. 4(5): p. 301-10.
39.Hu, R., et al., Levels, characteristics and health risk assessment of VOCs in different functional zones of Hefei. Ecotoxicology and Environmental Safety, 2018. 160: p. 301-307.
40.Liu, Y., et al., Characterization and sources of volatile organic compounds (VOCs) and their related changes during ozone pollution days in 2016 in Beijing, China. Environ Pollut, 2020. 257: p. 113599.
41.Xiong, Y., et al., Optimization of a volatile organic compound control strategy in an oil industry center in Canada by evaluating ozone and secondary organic aerosol formation potential. Environ Res, 2020. 191: p. 110217.
42.Chen, P., et al., [Emission Characteristics and Atmospheric Chemical Reactivity of Volatile Organic Compounds(VOCs) in Automobile Repair Industry]. Huan Jing Ke Xue, 2021. 42(8): p. 3604-3614.
43.Coalition, I.A.R., Identification of Carcinogenic Hazards to Humans. Vol. 126.
44.Cogliano, V.J., et al., Preventable exposures associated with human cancers. J Natl Cancer Inst, 2011. 103(24): p. 1827-39.
45.Blanc-Lapierre, A., J.F. Sauvé, and M.E. Parent, Occupational exposure to benzene, toluene, xylene and styrene and risk of prostate cancer in a population-based study. Occup Environ Med, 2018. 75(8): p. 562-572.
46.Santos, D. and L.F.C. Nascimento, Maternal exposure to benzene and toluene and preterm birth. A longitudinal study. Sao Paulo Med J, 2019. 137(6): p. 486-490.
47.Zhou, Y., et al., Occupational benzene exposure and the risk of genetic damage: a systematic review and meta-analysis. BMC Public Health, 2020. 20(1): p. 1113.
48.Cancer, I.A.f.R.o. List of classifications by cancer sites with sufficient or limited evidence in humans,
IARC Monographs Volumes 1–131. 2022; Available from: https://monographs.iarc.who.int/agents-classified-by-the-iarc/.
49.Morata, T.C., et al., Auditory and vestibular functions after single or combined exposure to toluene: a review. Arch Toxicol, 1995. 69(7): p. 431-43.
50.Qiu, H., et al., Association of cardiorespiratory hospital admissions with ambient volatile organic compounds: Evidence from a time-series study in Taipei, Taiwan. Chemosphere, 2021. 276: p. 130172.
51.Campagna, D., et al., Color vision and occupational toluene exposure. Neurotoxicol Teratol, 2001. 23(5): p. 473-80.
52.Arslan, Ş., et al., Effect of chronic toluene exposure on heart rhythm parameters. Pacing Clin Electrophysiol, 2018. 41(7): p. 783-787.
53.Maryiantari, E.S. and S. Keman, Analysis of health risk and respiratory complaints on footwear craftsman exposed to Toluene vapour. J Public Health Res, 2020. 9(2): p. 1818.
54.Geraldino, B.R., et al., Evaluation of Exposure to Toluene and Xylene in Gasoline Station Workers. Adv Prev Med, 2021. 2021: p. 5553633.
55.Cancer, I.S.f.R.o. Agents Classifed by the IARC Monographs, Volumes 1–132. 2022; Available from: https://monographs.iarc.who.int/list-of-classifications.
56.(ATSDR), A.f.T.S.a.D.R., oxicological profile for Ethylbenzene. Atlanta, GA: U.S. Department of Health and Human Services, Public Health Service. 2010.
57.Zhang, M., et al., Ethylbenzene-induced hearing loss, neurobehavioral function, and neurotransmitter alterations in petrochemical workers. J Occup Environ Med, 2013. 55(9): p. 1001-6.
58.Männistö, T., et al., Acute and recent air pollution exposure and cardiovascular events at labour and delivery. Heart, 2015. 101(18): p. 1491-8.
59.Dai, H., et al., VOC characteristics and inhalation health risks in newly renovated residences in Shanghai, China. Sci Total Environ, 2017. 577: p. 73-83.
60.Warden, H., et al., Associations between occupational exposure to benzene, toluene and xylene and risk of lung cancer in Montréal. Occup Environ Med, 2018. 75(10): p. 696-702.
61.Boffetta, P., et al., Epidemiologic studies of styrene and cancer: a review of the literature. J Occup Environ Med, 2009. 51(11): p. 1275-87.
62.Nissen, M.S., et al., Sinonasal adenocarcinoma following styrene exposure in the reinforced plastics industry. Occup Environ Med, 2018. 75(6): p. 412-414.
63.Choi, A.R., et al., Occupational styrene exposure and acquired dyschromatopsia: A systematic review and meta-analysis. Am J Ind Med, 2017. 60(11): p. 930-946.
64.Werder, E.J., et al., Environmental styrene exposure and neurologic symptoms in U.S. Gulf coast residents. Environ Int, 2018. 121(Pt 1): p. 480-490.
65.Paciência, I., et al., Exposure to indoor endocrine-disrupting chemicals and childhood asthma and obesity. Allergy, 2019. 74(7): p. 1277-1291.
66.Park, A.S., et al., Exposure to ambient dichloromethane in pregnancy and infancy from industrial sources and childhood cancers in California. Int J Hyg Environ Health, 2017. 220(7): p. 1133-1140.
67.Yang, K., et al., The identification, health risks and olfactory effects assessment of VOCs released from the wastewater storage tank in a pesticide plant. Ecotoxicol Environ Saf, 2019. 184: p. 109665.
68.Niehoff, N.M., et al., Airborne mammary carcinogens and breast cancer risk in the Sister Study. Environ Int, 2019. 130: p. 104897.
69.潘俞安醫師主筆, 勞., 職業暴露正己烷中毒診斷認定參考指引. 2020.
70.Pan, J.H., et al., n-Hexane intoxication in a Chinese medicine pharmaceutical plant: a case report. J Med Case Rep, 2017. 11(1): p. 120.
71.Zhao, W.H., et al., [Effects on learning and memory and mitochondrial energy metabolism in hippocampus of mice by subacute exposure to n-hexane]. Zhonghua Lao Dong Wei Sheng Zhi Ye Bing Za Zhi, 2020. 38(9): p. 646-650.
72.Li, X., et al., No-observed-adverse-effect level of hair pyrrole adducts in chronic n-hexane intoxication in rats. Neurotoxicology, 2020. 78: p. 11-20.
73.行政院環境保護署, 健康風險評估技術規範. p. 1-41.
74.Lippmann, M., Exposure science in the 21st century: a vision and a strategy. J Expo Sci Environ Epidemiol, 2013. 23(1): p. 1.
75.Lee, C.W., et al., Characteristics and health impacts of volatile organic compounds in photocopy centers. Environ Res, 2006. 100(2): p. 139-49.
76.Colman Lerner, J.E., et al., Characterization and cancer risk assessment of VOCs in home and school environments in gran La Plata, Argentina. Environ Sci Pollut Res Int, 2018. 25(10): p. 10039-10048.
77.Lin, C.-H., et al., Comparative health risk of inhaled exposure to organic solvents, toxic metals, and hexavalent chromium from the use of spray paints in Taiwan. Environmental Science and Pollution Research, 2019. 26(33): p. 33906-33916.
78.Harati, B., et al., Cancer Risk Assessment for Workers Exposed to Pollution Source, a Petrochemical Company, Iran. Iran J Public Health, 2020. 49(7): p. 1330-1338.
79.Assessment, O.o.E.H.H., Hot Spots Unit Risk and Cancer Potency Values.
80.Assessment, O.o.E.H.H., Acute, 8-hour, and Chronic Reference Exposure Level (RELs).
81.Massolo, L., et al., Indoor-outdoor distribution and risk assessment of volatile organic compounds in the atmosphere of industrial and urban areas. Environ Toxicol, 2010. 25(4): p. 339-49.
82.Villanueva, F., et al., Levels and sources of volatile organic compounds including carbonyls in indoor air of homes of Puertollano, the most industrialized city in central Iberian Peninsula. Estimation of health risk. Int J Hyg Environ Health, 2015. 218(6): p. 522-34.
83.Gao, Q., et al., Characteristics of Volatile Organic Compounds during Different Pollution Periods in Winter in Yuncheng, a Typical City in North China. Aerosol and Air Quality Research, 2020. 20(1): p. 97-107.
84.Cheng, Z., et al., Risk assessment of inhalation exposure to VOCs in dwellings in Chongqing, China. Toxicol Res (Camb), 2018. 7(1): p. 59-72.
85.Shuai, J., et al., Health risk assessment of volatile organic compounds exposure near Daegu dyeing industrial complex in South Korea. BMC Public Health, 2018. 18(1): p. 528.
86.Li, Y.P., et al., [Pollution Characteristics and Health Risk Assessment of Atmospheric VOCs in Chengdu]. Huan Jing Ke Xue, 2018. 39(2): p. 576-584.
87.Wilkey, J., et al., Predicting emissions from oil and gas operations in the Uinta Basin, Utah. J Air Waste Manag Assoc, 2016. 66(5): p. 528-45.
88.Development, C.f.E.R.I.O.o.R.a., Compendium Method TO-14A. 1999. p. 1-90.
89.行政院環環境保護署, 空氣中總揮發性有機化合物檢測方法-不銹鋼採樣筒/火焰離子化偵測法 (NIEA A732.10C). p. 1-12.
90.行政院環環境保護署, 空氣中揮發性有機化合物檢測方法-不銹鋼採樣筒/氣相層析質譜儀法(NIEA A715.16B). p. 1-32.
91.國民健康署, 台灣一般民眾暴露參數彙編. 2008. p. 1-439.
92.Guo, H., et al., Risk assessment of exposure to volatile organic compounds in different indoor environments. Environmental Research, 2004. 94(1): p. 57-66.
93.衛福部國民健康署, 110年第32週內政統計通報_生命表. 2020. p. 1-4.
94.衛生福利部統計處, 4.2-02_身高、體重、身體質量指數. 2020.
95.Hornung, R.W. and L.D. Reed, Estimation of Average Concentration in the Presence of Nondetectable Values. Applied Occupational and Environmental Hygiene, 1990. 5(1): p. 46-51.
96.Loh, M.M., et al., Ranking cancer risks of organic hazardous air pollutants in the United States. Environ Health Perspect, 2007. 115(8): p. 1160-8.
97.Lonati, G. and F. Zanoni, Probabilistic health risk assessment of carcinogenic emissions from a MSW gasification plant. Environ Int, 2012. 44: p. 80-91.
98.Zhang, J.Q., et al., [Characteristics and Source of VOCs During O(3) Pollution Between August to September, Langfang Development Zones]. Huan Jing Ke Xue, 2021. 42(10): p. 4632-4640.
99.Cheng, S., et al., Emission characteristics and control scenario analysis of VOCs from heavy-duty diesel trucks. J Environ Manage, 2021. 293: p. 112915.
100.Tassi, F., et al., Volatile organic compounds (VOCs) in air from Nisyros Island (Dodecanese Archipelago, Greece): Natural versus anthropogenic sources. Environ Pollut, 2013. 180: p. 111-21.
101.Ho, K.F., et al., Seasonal and diurnal variations of volatile organic compounds (VOCs) in the atmosphere of Hong Kong. Sci Total Environ, 2004. 322(1-3): p. 155-66.
102.Yenisoy-Karakaş, S., M. Dörter, and M. Odabasi, Intraday and interday variations of 69 volatile organic compounds (BVOCs and AVOCs) and their source profiles at a semi-urban site. Sci Total Environ, 2020. 723: p. 138028.
103.Dharmarajan, V., B. Cummings, and R.D. Lingg, Evaluation of organic-vapor respirator cartridge efficiency for toluene diisocyanate vapor in the presence of methylenechloride or acetone solvent. Appl Occup Environ Hyg, 2003. 18(8): p. 620-8.
104.Kawai, T., H. Sakurai, and M. Ikeda, Biological monitoring of occupational exposure to dichloromethane by means of urinalysis for un-metabolized dichloromethane. Industrial health, 2020. 58(1): p. 22-25.
105.Darynova, Z., et al., SO(2) and HCHO over the major cities of Kazakhstan from 2005 to 2016: influence of political, economic and industrial changes. Sci Rep, 2020. 10(1): p. 12635.
106.Gao, J.Y., et al., [Characterization and Source Apportionment of Atmospheric VOCs in Tianjin in 2019]. Huan Jing Ke Xue, 2021. 42(1): p. 55-64.
107.Gu, P., et al., Quantifying Urban Spatial Variations of Anthropogenic VOC Concentrations and Source Contributions with a Mobile Sampling Platform. Int J Environ Res Public Health, 2019. 16(9).
108.An, J., et al., Characteristics and source apportionment of VOCs measured in an industrial area of Nanjing, Yangtze River Delta, China. Atmospheric Environment, 2014. 97: p. 206-214.
109.Kim, S.-J., et al., Spatial and temporal variations of volatile organic compounds using passive air samplers in the multi-industrial city of Ulsan, Korea. Environmental Science and Pollution Research, 2019. 26(6): p. 5831-5841.
110.Dörter, M., M. Odabasi, and S. Yenisoy-Karakaş, Source apportionment of biogenic and anthropogenic VOCs in Bolu plateau. Sci Total Environ, 2020. 731: p. 139201.
111.Fanizza, C., et al., Volatile organic compound levels at one site in Rome urban air. Atmospheric Pollution Research, 2014. 5(2): p. 303-314.
112.Tsai, D.H., et al., Traffic-related air pollution and cardiovascular mortality in central Taiwan. Sci Total Environ, 2010. 408(8): p. 1818-23.
113.Xu, H., et al., Environmental and health risks of VOCs in the longest inner-city tunnel in Xi'an, Northwest China: Implication of impact from new energy vehicles. Environ Pollut, 2021. 282: p. 117057.
114.Zhang, D., et al., Characteristics, sources and health risks assessment of VOCs in Zhengzhou, China during haze pollution season. J Environ Sci (China), 2021. 108: p. 44-57.
115.Ramírez, N., et al., Chronic risk assessment of exposure to volatile organic compounds in the atmosphere near the largest Mediterranean industrial site. Environment International, 2012. 39(1): p. 200-209.
116.Guo, B., et al., [Pollution Condition and Health Risk Assessment of VOCs in Fermentation Exhaust from Penicillin Production]. Huan Jing Ke Xue, 2018. 39(7): p. 3102-3109.
117.Jia, S., et al., Exposure and risk assessment of volatile organic compounds and airborne phthalates in Singapore's Child Care Centers. Chemosphere, 2019. 224: p. 85-92.
118.Monteiro, M., et al., GC-MS metabolomics-based approach for the identification of a potential VOC-biomarker panel in the urine of renal cell carcinoma patients. J Cell Mol Med, 2017. 21(9): p. 2092-2105.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊