跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.87) 您好!臺灣時間:2025/03/19 21:58
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:曾敬錞
研究生(外文):TSENG, CHING-CHUN
論文名稱:合成含氮五元雜環化合物暨光物理性質與生物活性之研究 附錄: Vonoprazan Fumarate之製程開發
論文名稱(外文):Synthesis, Photophysical Property, and Biological Evaluation of Heterocycles Containing Nitrogen Five-Membered RingAppendix: Process Development of Vonoprazan Fumarate
指導教授:翁豐富莊宗原
指導教授(外文):WONG, FUNG-FUHJUANG, TZONG-YUAN
口試委員:陳清玉翁豐富林慧怡莊宗原黃倉淼
口試委員(外文):CHERN, CHING-YUHWONG, FUNG-FUHLIN, HUI-YIJUANG, TZONG-YUANHUANG, TSANG-MIAO
口試日期:2022-05-27
學位類別:博士
校院名稱:中國醫藥大學
系所名稱:生技製藥產業博士學位學程
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2022
畢業學年度:110
語文別:英文
論文頁數:387
中文關鍵詞:一鍋化合成微波合成吡唑魯米諾類似物雙基胜肽酶抑制劑1,2,4-三唑西格列汀類似物
外文關鍵詞:pyrazolesMicrowave-assisted synthesis6-Aminopyrazolo[3,4-d]pyrimidinesDPP-IV inhibitor1,2,4-triazolesSitagliptinLuminolPyrazolopyridopyridazine dionesN-aminopyrazolopyrrolopyridine dionesGlycolamidesGlycinamideβ-amino carbonylphotoluminescence
DOI:https://doi.org/10.1021/acs.joc.9b02653; https://doi.org/10.1016/j.bioorg.2021.105049; https://doi.org/10.3390/molecules25102409
相關次數:
  • 被引用被引用:0
  • 點閱點閱:223
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
List of Contents
Acknowledgments...I
Publication List...II
中文摘要...V
Abstract...VI
Abbreviations...VII
List of Contents...IX
List of Figures...XI
List of Schemes...XV
List of Tables...XVI
Chapter 1. Introduction...1
1.1 Biological activities of five-membered heterocycles...1
1.1.1 Biological activities of 6-aminopyrazolo[3,4-d]pyrimidine derivatives...2
1.1.2 Biological activities of pyrazolopyridine derivatives...8
1.2 Luminescence property of pyrazole-fused derivatives...12
1.3 Biological activities of triazole derivatives...15
1.3.1 Diabetes mellitus...15
1.3.2 Dipeptidyl peptidase-4 inhibitors...21
Chapter 2. Research Approach...25
Chapter 3. Results & Discussion...28
3.1 One-Pot Acid-promoted Synthesis of 6-Aminopyrazolopyrimidines from 1H-Pyrazol-5-yl-N,N-dimethylformamidines or 5-Amino-1H-pyrazole-4-carbaldehydes with Cyanamide...28
3.1.1 Introduction...28
3.1.2 Results and discussion...31
3.1.3 Conclusion...42
3.1.4 Experimental Section...43
3.2 Selective Synthesis and Photoluminescence Study of Pyrazolopyridopyridazine Diones and N-Aminopyrazolopyrrolopyridine Diones...57
3.2.1 Introduction...57
3.2.2 Results and discussion...59
3.2.3 Conclusion...72
3.2.4 Experimental Section...73
3.3 Design, Synthesis, and Biological Evaluation of Glycolamide, Glycinamide, and β-Amino Carbonyl Derivatives Containing 1,2,4-Triazole as DPP-4 Inhibitors...85
3.3.1 Introduction...85
3.3.2 Results and discussion...88
3.3.3 Conclusion...110
3.3.4 Experimental Section...112
Chapter 4. Conclusion...148
Chapter 5. Future Work...150
Chapter 6. References...152
Chapter 7. Spectrum...170
7.1 One-Pot Acid-promoted Synthesis of 6-Aminopyrazolo pyrimidines from 1H-Pyrazol-5-yl-N,N-dimethylformamidines or 5-Amino-1H-pyrazole-4-carbaldehydes with Cyanamide...170
7.2 Synthesis and Photoluminescence Study of Pyrazolopyrido pyridazine diones and N-Aminophthalimides as Luminol Analogues...208
7.3 Design, Synthesis, and Biological Evaluation of Novel Glycolamide and Glycinamide Containing 1,2,4-Triazole Derivatives as DPP-4 Inhibitors...246


1.Bekhit, A. A.; Hymete, A.; El-Din, A. B. A.; Damtew, A.; Aboul-Enein, H. Y., Pyrazoles as promising scaffold for the synthesis of anti-inflammatory and/or antimicrobial agent: a review. Mini. Rev. Med. Chem. 2010, 10, 1014–1033.
2.(a) Shi, Y.; Wang, Q.; Rong, J.; Ren, J.; Song, X.; Fan, X.; Shen, M.; Xia, Y.; Wang, N.; Liu, Z.; Hu, Q.; Ye, T.; Yu, L., Synthesis and biological evaluation of (1,2,4)triazole[4,3-a]pyridine derivatives as potential therapeutic agents for concanavalin A-induced hepatitis. Eur. J. Med. Chem. 2019, 179, 182–195; (b) Pandey, S. K.; Singh, A.; Singh, A.; Nizamuddin, Antimicrobial studies of some novel quinazolinones fused with [1,2,4]-triazole, [1,2,4]-triazine and [1,2,4,5]-tetrazine rings. Eur. J. Med. Chem. 2009, 44, 1188–1197; (c) Khan, I.; Ali, S.; Hameed, S.; Rama, N. H.; Hussain, M. T.; Wadood, A.; Uddin, R.; Ul-Haq, Z.; Khan, A.; Ali, S.; Choudhary, M. I., Synthesis, antioxidant activities and urease inhibition of some new 1,2,4-triazole and 1,3,4-thiadiazole derivatives. Eur. J. Med. Chem. 2010, 45, 5200–5207; (d) Streeter, D. G.; Witkowski, J. T.; Khare, G. P.; Sidwell, R. W.; Bauer, R. J.; Robins, R. K.; Simon, L. N., Mechanism of action of 1-β-D-ribofuranosyl-1,2,4-triazole-3-carboxamide (Virazole), a new broad-spectrum antiviral agent. Proc. Natl. Acad. Sci. U.S.A. 1973, 70, 1174–1178; (e) El-Sherief, H. A. M.; Youssif, B. G. M.; Abbas Bukhari, S. N.; Abdelazeem, A. H.; Abdel-Aziz, M.; Abdel-Rahman, H. M., Synthesis, anticancer activity and molecular modeling studies of 1,2,4-triazole derivatives as EGFR inhibitors. Eur. J. Med. Chem. 2018, 156, 774–789; (f) Mathew, V.; Keshavayya, J.; Vaidya, V. P., Heterocyclic system containing bridgehead nitrogen atom: synthesis and pharmacological activities of some substituted 1,2,4-triazolo[3,4-b]-1,3,4-thiadiazoles. Eur. J. Med. Chem. 2006, 41, 1048–1058.
3.Ismail, N. S. M.; Ali, E. M. H.; Ibrahim, D. A.; Serya, R. A. T.; Abou El Ella, D. A., Pyrazolo[3,4-d]pyrimidine based scaffold derivatives targeting kinases as anticancer agents. Future J. Pharm. Sci. 2016, 2, 20–30.
4.(a) Wang, X.; Liu, J.; Yang, C.; Zhang, W.; Frye, S.; Kireev, D. Pyrazolopyrimidine compounds for the treatment of cancer. WO2014062774A1, 2014/04/24/, 2014; (b) Matheson, C. J.; Casalvieri, K. A.; Backos, D. S.; Reigan, P., Development of Potent Pyrazolopyrimidinone-Based WEE1 Inhibitors with Limited Single-Agent Cytotoxicity for Cancer Therapy. ChemMedChem 2018, 13, 1681–1694.
5.Gao, D.; Zhao, Z.; Chen, S.; Wu, Z. Pyrazolo[3,4-d]pyrimidin-3-one derivative, pharmaceutical composition and use thereof. WO2019037678A1, 2019/02/28/, 2019.
6.Bruce, I.; Hayler, J. F.; Bloomfield, G. C.; Edwards, L.; Cox, B.; Howsham, C. Pyrazolo [3,4-d]pyrimidine derivatives useful to treat respiratory disorders. WO2007134828A1, 2007/11/29/, 2007.
7.Thomas, M. G.; De Rycker, M.; Ajakane, M.; Albrecht, S.; Alvarez-Pedraglio, A. I.; Boesche, M.; Brand, S.; Campbell, L.; Cantizani-Perez, J.; Cleghorn, L. A. T.; Copley, R. C. B.; Crouch, S. D.; Daugan, A.; Drewes, G.; Ferrer, S.; Ghidelli-Disse, S.; Gonzalez, S.; Gresham, S. L.; Hill, A. P.; Hindley, S. J.; Lowe, R. M.; MacKenzie, C. J.; MacLean, L.; Manthri, S.; Martin, F.; Miguel-Siles, J.; Nguyen, V. L.; Norval, S.; Osuna-Cabello, M.; Woodland, A.; Patterson, S.; Pena, I.; Quesada-Campos, M. T.; Reid, I. H.; Revill, C.; Riley, J.; Ruiz-Gomez, J. R.; Shishikura, Y.; Simeons, F. R. C.; Smith, A.; Smith, V. C.; Spinks, D.; Stojanovski, L.; Thomas, J.; Thompson, S.; Underwood, T.; Gray, D. W.; Fiandor, J. M.; Gilbert, I. H.; Wyatt, P. G.; Read, K. D.; Miles, T. J., Identification of GSK3186899/DDD853651 as a Preclinical Development Candidate for the Treatment of Visceral Leishmaniasis. J. Med. Chem. 2019, 62, 1180–1202.
8.Avendaño, C.; Menéndez, J. C., Drugs that inhibit signalling pathways for tumor cell growth and proliferation. In Medicinal Chemistry of Anticancer Drugs,2008; pp 251–305.
9.Manning, B. D., Challenges and opportunities in defining the essential cancer kinome. Sci. Signaling 2009, 2, pe15.
10.Ou, Y. H.; Torres, M.; Ram, R.; Formstecher, E.; Roland, C.; Cheng, T.; Brekken, R.; Wurz, R.; Tasker, A.; Polverino, T.; Tan, S. L.; White, M. A., TBK1 directly engages Akt/PKB survival signaling to support oncogenic transformation. Mol. Cell. 2011, 41, 458–470.
11.(a) Zhang, L.; Fan, J.; Chong, J. H.; Cesena, A.; Tam, B. Y.; Gilson, C.; Boykin, C.; Wang, D.; Aivazian, D.; Marcotte, D.; Xiao, G.; Le Brazidec, J. Y.; Piao, J.; Lundgren, K.; Hong, K.; Vu, K.; Nguyen, K.; Gan, L. S.; Silvian, L.; Ling, L.; Teng, M.; Reff, M.; Takeda, N.; Timple, N.; Wang, Q.; Morena, R.; Khan, S.; Zhao, S.; Li, T.; Lee, W. C.; Taveras, A. G.; Chao, J., Design, synthesis, and biological evaluation of pyrazolopyrimidine-sulfonamides as potent multiple-mitotic kinase (MMK) inhibitors (part I). Bioorg. Med. Chem. Lett. 2011, 21, 5633–5637; (b) Le Brazidec, J. Y.; Pasis, A.; Tam, B.; Boykin, C.; Black, C.; Wang, D.; Claassen, G.; Chong, J. H.; Chao, J.; Fan, J.; Nguyen, K.; Silvian, L.; Ling, L.; Zhang, L.; Choi, M.; Teng, M.; Pathan, N.; Zhao, S.; Li, T.; Taveras, A., Synthesis, SAR and biological evaluation of 1,6-disubstituted-1H-pyrazolo[3,4-d]pyrimidines as dual inhibitors of Aurora kinases and CDK1. Bioorg. Med. Chem. Lett. 2012, 22, 2070–2074.
12.Yang, L. L.; Li, G. B.; Yan, H. X.; Sun, Q. Z.; Ma, S.; Ji, P.; Wang, Z. R.; Feng, S.; Zou, J.; Yang, S. Y., Discovery of N6-phenyl-1H-pyrazolo[3,4-d]pyrimidine-3,6-diamine derivatives as novel CK1 inhibitors using common-feature pharmacophore model based virtual screening and hit-to-lead optimization. Eur. J. Med. Chem. 2012, 56, 30–38.
13.Myers, S. H.; Temps, C.; Houston, D. R.; Brunton, V. G.; Unciti-Broceta, A., Development of Potent Inhibitors of Receptor Tyrosine Kinases by Ligand-Based Drug Design and Target-Biased Phenotypic Screening. J. Med. Chem. 2018, 61, 2104–2110.
14.Bell, K.; Piton, N.; Dagostin, C.; Boussard, C.; Ratcliffe, A.; Ramsden, N. Heterocyclyl pyrazolopyrimidine analogues as selective Jak inhibitors. WO2012022681A3, 2013/01/31/, 2013.
15.Tang, A.; Gao, K.; Chu, L.; Zhang, R.; Yang, J.; Zheng, J., Aurora kinases: novel therapy targets in cancers. Oncotarget 2017, 8, 23937–23954.
16.Nigg, E. A., Mitotic kinases as regulators of cell division and its checkpoints. Nat. Rev. Mol. Cell. Biol. 2001, 2, 21–32.
17.Wang, Q.; Su, L.; Liu, N.; Zhang, L.; Xu, W.; Fang, H., Cyclin dependent kinase 1 inhibitors: a review of recent progress. Curr. Med. Chem. 2011, 18, 2025–2043.
18.Westin, S. N.; Sood, A. K.; Coleman, R. L., Targeted therapy and molecular genetics. In Clinical Gynecologic Oncology,2012; pp 539–560.
19.Fischer, P. M., Cell cycle inhibitors in cancer: current status and future directions. In Cancer Drug Design and Discovery,2008; pp 253–283.
20.Mrózek, K.; Heerema, N. A.; Bloomfield, C. D., Cytogenetics in acute leukemia. Blood Rev. 2004, 18, 115–136.
21.Winick, N. J.; Carroll, W. L.; Hunger, S. P., Childhood leukemia-new advances and challenges. N. Engl. J. Med. 2004, 351, 601–603.
22.(a) Linger, R. M.; DeRyckere, D.; Brandao, L.; Sawczyn, K. K.; Jacobsen, K. M.; Liang, X.; Keating, A. K.; Graham, D. K., Mer receptor tyrosine kinase is a novel therapeutic target in pediatric B-cell acute lymphoblastic leukemia. Blood 2009, 114, 2678–2687; (b) Graham, D. K.; Salzberg, D. B.; Kurtzberg, J.; Sather, S.; Matsushima, G. K.; Keating, A. K.; Liang, X.; Lovell, M. A.; Williams, S. A.; Dawson, T. L.; Schell, M. J.; Anwar, A. A.; Snodgrass, H. R.; Earp, H. S., Ectopic expression of the proto-oncogene Mer in pediatric T-cell acute lymphoblastic leukemia. Clin. Cancer Res. 2006, 12, 2662–2669.
23.Huang, X.; Finerty, P., Jr.; Walker, J. R.; Butler-Cole, C.; Vedadi, M.; Schapira, M.; Parker, S. A.; Turk, B. E.; Thompson, D. A.; Dhe-Paganon, S., Structural insights into the inhibited states of the Mer receptor tyrosine kinase. J. Struct. Biol. 2009, 165, 88–96.
24.Liu, J.; Yang, C.; Simpson, C.; Deryckere, D.; Van Deusen, A.; Miley, M. J.; Kireev, D.; Norris-Drouin, J.; Sather, S.; Hunter, D.; Korboukh, V. K.; Patel, H. S.; Janzen, W. P.; Machius, M.; Johnson, G. L.; Earp, H. S.; Graham, D. K.; Frye, S. V.; Wang, X., Discovery of novel small molecule Mer kinase inhibitors for the treatment of pediatric acute lymphoblastic leukemia. ACS Med. Chem. Lett. 2012, 3, 129–134.
25.Li, Y.; Xu, Q.; Lv, N.; Wang, L.; Zhao, H.; Wang, X.; Guo, J.; Chen, C.; Li, Y.; Yu, L., Clinical implications of genome-wide DNA methylation studies in acute myeloid leukemia. J. Hematol. Oncol. 2017, 10, 41.
26.Das, A.; Banik, B. K., 26 - Dipole moment in medicinal research: Green and sustainable approach. In Green Approaches in Medicinal Chemistry for Sustainable Drug Design, Banik, B. K., Ed. Elsevier2020; pp 921–964.
27.(a) Barone, I.; Giordano, C.; Bonofiglio, D.; Ando, S.; Catalano, S., Phosphodiesterase type 5 and cancers: progress and challenges. Oncotarget 2017, 8, 99179–99202; (b) Lugnier, C., Cyclic nucleotide phosphodiesterase (PDE) superfamily: a new target for the development of specific therapeutic agents. Pharmacol Ther. 2006, 109, 366–398.
28.(a) Das, A.; Durrant, D.; Salloum, F. N.; Xi, L.; Kukreja, R. C., PDE5 inhibitors as therapeutics for heart disease, diabetes and cancer. Pharmacol Ther. 2015, 147, 12–21; (b) Rotella, D. P., Phosphodiesterase 5 inhibitors: current status and potential applications. Nat Rev Drug Discov 2002, 1, 674–682.
29.Wang, G.; Liu, Z.; Chen, T.; Wang, Z.; Yang, H.; Zheng, M.; Ren, J.; Tian, G.; Yang, X.; Li, L.; Li, J.; Suo, J.; Zhang, R.; Jiang, X.; Terrett, N. K.; Shen, J.; Xu, Y.; Jiang, H., Design, synthesis, and pharmacological evaluation of monocyclic pyrimidinones as novel inhibitors of PDE5. J. Med. Chem. 2012, 55, 10540–10550.
30.Pissarnitski, D., Phosphodiesterase 5 (PDE 5) inhibitors for the treatment of male erectile disorder: attaining selectivity versus PDE6. Med. Res. Rev. 2006, 26, 369–395.
31.Feixas, J.; Giovannoni, M. P.; Vergelli, C.; Gavalda, A.; Cesari, N.; Graziano, A.; Dal Piaz, V., New pyrazolo[1',5':1,6]pyrimido[4,5-d]pyridazin-4(3H)-ones as potent and selective PDE5 inhibitors. Bioorg. Med. Chem. Lett. 2005, 15, 2381–2384.
32.Yu, G.; Mason, H. J.; Wu, X.; Wang, J.; Chong, S.; Dorough, G.; Henwood, A.; Pongrac, R.; Seliger, L.; He, B.; Normandin, D.; Adam, L.; Krupinski, J.; Macor, J. E., Substituted pyrazolopyridines as potent and selective PDE5 inhibitors: potential agents for treatment of erectile dysfunction. J. Med. Chem. 2001, 44, 1025–1027.
33.Yu, G.; Mason, H.; Wu, X.; Wang, J.; Chong, S.; Beyer, B.; Henwood, A.; Pongrac, R.; Seliger, L.; He, B.; Normandin, D.; Ferrer, P.; Zhang, R.; Adam, L.; Humphrey, W. G.; Krupinski, J.; Macor, J. E., Substituted pyrazolopyridopyridazines as orally bioavailable potent and selective PDE5 inhibitors: potential agents for treatment of erectile dysfunction. J. Med. Chem. 2003, 46, 457–460.
34.Chattu, V. K.; Manzar, M. D.; Kumary, S.; Burman, D.; Spence, D. W.; Pandi-Perumal, S. R., The global problem of insufficient sleep and its serious public health implications. Healthcare (Basel) 2018, 7, 1.
35.Kao, C. C.; Huang, C. J.; Wang, M. Y.; Tsai, P. S., Insomnia: prevalence and its impact on excessive daytime sleepiness and psychological well-being in the adult Taiwanese population. Qual. Life. Res. 2008, 17, 1073–1080.
36.(a) Sateia, M. J.; Buysse, D. J.; Krystal, A. D.; Neubauer, D. N.; Heald, J. L., Clinical Practice Guideline for the Pharmacologic Treatment of Chronic Insomnia in Adults: An American Academy of Sleep Medicine Clinical Practice Guideline. J. Clin. Sleep Med. 2017, 13, 307–349; (b) Rosenberg, R.; Citrome, L.; Drake, C. L., Advances in the treatment of chronic insomnia: a narrative review of new nonpharmacologic and pharmacologic therapies. Neuropsychiatr. Dis. Treat. 2021, 17, 2549–2566.
37.Monti, J. M.; Spence, D. W.; Buttoo, K.; Pandi-Perumal, S. R., Zolpidem's use for insomnia. Asian J. Psychiatr. 2017, 25, 79–90.
38.Menegatti, R.; Silva, G. M.; Zapata-Sudo, G.; Raimundo, J. M.; Sudo, R. T.; Barreiro, E. J.; Fraga, C. A., Design, synthesis, and pharmacological evaluation of new neuroactive pyrazolo[3,4-b]pyrrolo[3,4-d]pyridine derivatives with in vivo hypnotic and analgesic profile. Bioorg. Med. Chem. 2006, 14, 632–640.
39.(a) Vanda, D.; Zajdel, P.; Soural, M., Imidazopyridine-based selective and multifunctional ligands of biological targets associated with psychiatric and neurodegenerative diseases. Eur. J. Med. Chem. 2019, 181, 111569; (b) Sancar, F.; Ericksen, S. S.; Kucken, A. M.; Teissere, J. A.; Czajkowski, C., Structural determinants for high-affinity zolpidem binding to GABA-A receptors. Mol. Pharmacol. 2007, 71, 38–46.
40.Yang, X.-Z.; Sun, R.; Guo, X.; Wei, X.-R.; Gao, J.; Xu, Y.-J.; Ge, J.-F., The application of bioactive pyrazolopyrimidine unit for the construction of fluorescent biomarkers. Dyes Pigm. 2020, 173, 107878.
41.(a) Gondek, E.; Kityk, I. V.; Sanetra, J.; Szlachcic, P.; Armatys, P.; Wisla, A.; Danel, A., New-synthesized pyrazoloquinoline as promising luminescent materials. Opt. Laser Technol. 2006, 38, 487–492; (b) Gondek, E.; Kityk, I. V.; Danel, A.; Wisla, A.; Sanetra, J., Blue electroluminescence in 1H-pyrazoloquinoline derivatives. Synth. Met. 2006, 156, 1348–1354.
42.(a) Gu, Y.-Q.; Shen, W.-Y.; Mi, Y.; Jing, Y.-F.; Yuan, J.-M.; Yu, P.; Zhu, X.-M.; Hu, F.-L., Dual-response detection of Ni2+ and Cu2+ ions by a pyrazolopyrimidine-based fluorescent sensor and the application of this sensor in bioimaging. RSC Adv. 2019, 9, 35671–35676; (b) Gu, Y. Q.; Shen, W. Y.; Zhou, Y.; Chen, S. F.; Mi, Y.; Long, B. F.; Young, D. J.; Hu, F. L., A pyrazolopyrimidine based fluorescent probe for the detection of Cu2+ and Ni2+ and its application in living cells. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2019, 209, 141–149.
43.Fleming, C. L.; Sandoz, P. A.; Inghardt, T.; Onfelt, B.; Grotli, M.; Andreasson, J., A Fluorescent Kinase Inhibitor that Exhibits Diagnostic Changes in Emission upon Binding. Angew. Chem. Int. Ed. Engl. 2019, 58, 15000–15004.
44.Becerra-Ruiz, M.; Vargas, V.; Jara, P.; Tirapegui, C.; Carrasco, C.; Nuñez, M.; Lezana, N.; Galdámez, A.; Vilches-Herrera, M., Blue-fluorescent probes for lipid droplets based on dihydrochromeno-fused pyrazolo- and pyrrolopyridines. Eur. J. Org. Chem. 2018, 2018, 4795–4801.
45.Kim, H.; Jo, A.; Ha, J.; Lee, Y.; Hwang, Y. S.; Park, S. B., A pyrazolo[1,5-a]pyridine-fused pyrimidine based novel fluorophore and its bioapplication to probing lipid droplets. Chem. Commun. 2016, 52, 7822–7825.
46.Akçay, S.; Ülger, M.; Onurdağ, F. K.; Dündar, Y., Study on synthesis and biological activity of some pyridopyridazine derivatives. Acta Chim. Slov. 2018, 65, 932–938.
47.Yamamoto; Shinkai, Product class 18: Pyridopyridazines. In Category 2, Hetarenes and Related Ring Systems,2004.
48.Jung, Y. H.; Kim, Y. O.; Lin, H.; Cho, J. H.; Park, J. H.; Lee, S. D.; Bae, J.; Kang, K. M.; Kim, Y. G.; Pae, A. N.; Ko, H.; Park, C. S.; Yoon, M. H.; Kim, Y. C., Discovery of potent antiallodynic agents for neuropathic pain targeting P2X3 receptors. ACS Chem. Neurosci. 2017, 8, 1465–1478.
49.Elkholy, Y. M., Synthesis and antimicrobial activity of new polyfunctionally substituted pyridazines and their fused derivatives. Heterocycl. Commun. 2005, 11, 89–96.
50.Albrecht, H. O., Über die Chemiluminescenz des Aminophthalsäure hydrazids. Zeitschrift für Physikalische Chemie 1928, 136U, 321–330.
51.Barni, F.; Lewis, S. W.; Berti, A.; Miskelly, G. M.; Lago, G., Forensic application of the luminol reaction as a presumptive test for latent blood detection. Talanta 2007, 72, 896–913.
52.Shao, X.; Li, Y.; Li, F.; Liu, Y.; Song, Z., Subnanogram determination of aniracetam in pharmaceutical preparations and biofluids by flow injection analysis with chemiluminescence detection based on its enhancement of the myoglobin-luminol reaction. J. AOAC Int. 2011, 94, 1461–1466.
53.Sun, H.; Wang, J.; Wang, T., Development of a novel chemiluminescence method for the determination of cefazolin sodium in injectable powder and human urine based on a luminol-Cu(III) complex reaction in alkaline medium. Luminescence 2013, 28, 592–596.
54.Yaqoob, M.; Folgado Biot, B.; Nabi, A.; Worsfold, P. J., Determination of nitrate and nitrite in freshwaters using flow-injection with luminol chemiluminescence detection. Luminescence 2012, 27, 419–425.
55.Dodeigne, C., Chemiluminescence as diagnostic tool. A review. Talanta 2000, 51, 415–439.
56.Jancinova, V.; Drabikova, K.; Nosal, R.; Rackova, L.; Majekova, M.; Holomanova, D., The combined luminol/isoluminol chemiluminescence method for differentiating between extracellular and intracellular oxidant production by neutrophils. Redox Rep. 2006, 11, 110–116.
57.Nishinaka, Y.; Aramaki, Y.; Yoshida, H.; Masuya, H.; Sugawara, T.; Ichimori, Y., A new sensitive chemiluminescence probe, L-012, for measuring the production of superoxide anion by cells. Biochem. Biophys. Res. Commun. 1993, 193, 554–559.
58.Periyasami, G.; Martelo, L.; Baleizão, C.; Berberan-Santos, M. N., Strong green chemiluminescence from naphthalene analogues of luminol. New J. Chem. 2014, 38, 2258–2261.
59.(a) Deshmukh, M. S.; Sekar, N., Chemiluminescence properties of luminol related o-hydroxybenzimidazole analogues: Experimental and DFT based approach to photophysical properties. Dyes Pigm. 2015, 113, 189–199; (b) Deshmukh, M. S.; Sekar, N., Chemiluminescence properties of luminol related quinoxaline analogs: Experimental and DFT based approach to photophysical properties. Dyes Pigm. 2015, 117, 49–60.
60.(a) Bokor, E.; Docsa, T.; Gergely, P.; Somsak, L., C-Glucopyranosyl-1,2,4-triazoles as new potent inhibitors of glycogen phosphorylase. ACS Med. Chem. Lett. 2013, 4, 612–615; (b) Li, Q.; Han, L.; Zhang, B.; Zhou, J.; Zhang, H., Synthesis and biological evaluation of triazole based uracil derivatives as novel DPP-4 inhibitors. Org. Biomol. Chem. 2016, 14, 9598–9611.
61.Williams, R.; Colagiuri, S.; Chan, J.; Gregg, E. W.; Ke, C.; Lim, L.-L.; Yang, X., IDF Diabetes Atlas, 9th Edition 2019. 2019.
62.Kahn, S. E., The relative contributions of insulin resistance and beta-cell dysfunction to the pathophysiology of Type 2 diabetes. Diabetologia 2003, 46, 3–19.
63.American Diabetes, A., Diagnosis and classification of diabetes mellitus. Diabetes Care 2014, 37 Suppl 1, S81–S90.
64.(a) Dankner, R., Diabetes. In Reference Module in Biomedical Sciences,2018; (b) Meetoo, D., Diabetes: complications and the economic burden. British Journal of Br. J. Health Care Manag. 2014, 20, 60–67.
65.American Diabetes, A., 2. Classification and diagnosis of diabetes: standards of medical care in diabetes-2018. Diabetes Care 2018, 41, S13–S27.
66.Mosenzon, O.; Pollack, R.; Raz, I., Treatment of type 2 diabetes: from "guidelines" to "position statements" and back: recommendations of the israel national diabetes council. Diabetes Care 2016, 39 Suppl 2, S146–S153.
67.Breland, J. Y.; McAndrew, L. M.; Gross, R. L.; Leventhal, H.; Horowitz, C. R., Challenges to healthy eating for people with diabetes in a low-income, minority neighborhood. Diabetes Care 2013, 36, 2895–2901.
68.Hollander, P., A review of type 2 diabetes drug classes. US Endocrinology 2008, 04, 58–61.
69.Fauser, B. C. J. M., Medical approaches to ovarian stimulation for infertility. In Yen & Jaffe's Reproductive Endocrinology,2014; pp 701–733.
70.Weiss, R.; Lustig, R. H., Obesity, metabolic syndrome, and disorders of energy balance. In Pediatric endocrinology, Elsevier2014; pp 956–1014.
71.Bailey, C. J., The current drug treatment landscape for diabetes and perspectives for the future. Clin. Pharmacol. Ther. 2015, 98, 170–184.
72.Furman, B. L., Sulfonylureas. In xPharm: The Comprehensive Pharmacology Reference,2007; pp 1–2.
73.Tahrani, A. A.; Barnett, A. H.; Bailey, C. J., Pharmacology and therapeutic implications of current drugs for type 2 diabetes mellitus. Nat. Rev. Endocrinol. 2016, 12, 566–592.
74.Halegoua-De Marzio, D.; Navarro, V. J., Hepatotoxicity of cardiovascular and antidiabetic drugs. In Drug-Induced Liver Disease,2013; pp 519–540.
75.Schmeltz, L.; Metzger, B., Diabetes/Syndrome X. In Comprehensive Medicinal Chemistry II,2007; pp 417–458.
76.Srinivasan, S.; Yee, S. W.; Giacomini, K. M., Pharmacogenetics of antidiabetic drugs. Adv. Pharmacol. 2018, 83, 361–389.
77.Khoo, C. M., Diabetes mellitus treatment. In International Encyclopedia of Public Health,2017; pp 288–293.
78.Amaya-Farfan, J.; Moura, C. S.; Morato, P. N.; Lollo, P. C. B., Dietary whey protein and type 2 diabetes. In Molecular Nutrition and Diabetes,2016; pp 211–220.
79.Bennett, R. G., Sitagliptin. In Reference Module in Biomedical Sciences,2018.
80.Stonehouse, A.; Okerson, T.; Kendall, D.; Maggs, D., Emerging incretin based therapies for type 2 diabetes: incretin mimetics and DPP-4 inhibitors. Curr. Diabetes. Rev. 2008, 4, 101–109.
81.Brody, T., Drug class analysis. In FDA's Drug Review Process and the Package Label,2018; pp 441–511.
82.Uccellatore, A.; Genovese, S.; Dicembrini, I.; Mannucci, E.; Ceriello, A., Comparison review of short-acting and long-acting glucagon-like peptide-1 receptor agonists. Diabetes Ther. 2015, 6, 239–256.
83.Lau, J.; Bloch, P.; Schaffer, L.; Pettersson, I.; Spetzler, J.; Kofoed, J.; Madsen, K.; Knudsen, L. B.; McGuire, J.; Steensgaard, D. B.; Strauss, H. M.; Gram, D. X.; Knudsen, S. M.; Nielsen, F. S.; Thygesen, P.; Reedtz-Runge, S.; Kruse, T., Discovery of the Once-Weekly Glucagon-Like Peptide-1 (GLP-1) Analogue Semaglutide. J. Med. Chem. 2015, 58, 7370–7380.
84.Ghosh, S.; Collier, A., Management of diabetes. In Churchill's Pocketbook of Diabetes,2012; pp 83–125.
85.St. Peter, W. L.; Wazny, L.; Hudson, J. Q., Improving drug use and dosing in chronic kidney disease. In Chronic Kidney Disease, Dialysis, and Transplantation,2019; pp 250–272.
86.Klemann, C.; Wagner, L.; Stephan, M.; von Horsten, S., Cut to the chase: a review of CD26/dipeptidyl peptidase-4's (DPP4) entanglement in the immune system. Clin. Exp. Immunol. 2016, 185, 1–21.
87.(a) Kikkawa, F.; Ino, K.; Kajiyama, H.; Shibata, K.; Nomura, S.; Mizutani, S., 26 Role of immunohistochemical expression of aminopeptidases in ovarian carcinoma. In Molecular Genetics, Gastrointestinal Carcinoma, and Ovarian Carcinoma,2005; pp 509–517; (b) Vliegen, G.; De Meester, I., DPPIV/CD26 as a Target in Anti-inflammatory Therapy. In Immunity and Inflammation in Health and Disease,2018; pp 133–147.
88.Gallwitz, B., Clinical use of DPP-4 inhibitors. Front Endocrinol (Lausanne) 2019, 10, 389.
89.Lu, I. L.; Tsai, K. C.; Chiang, Y. K.; Jiaang, W. T.; Wu, S. H.; Mahindroo, N.; Chien, C. H.; Lee, S. J.; Chen, X.; Chao, Y. S.; Wu, S. Y., A three-dimensional pharmacophore model for dipeptidyl peptidase IV inhibitors. Eur. J. Med. Chem. 2008, 43, 1603–1611.
90.Peters, J. U., 11 Years of cyanopyrrolidines as DPP-IV inhibitors. Curr. Top. Med. Chem. 2007, 7, 579–595.
91.Nabeno, M.; Akahoshi, F.; Kishida, H.; Miyaguchi, I.; Tanaka, Y.; Ishii, S.; Kadowaki, T., A comparative study of the binding modes of recently launched dipeptidyl peptidase IV inhibitors in the active site. Biochem. Biophys. Res. Commun. 2013, 434, 191–196.
92.Arulmozhiraja, S.; Matsuo, N.; Ishitsubo, E.; Okazaki, S.; Shimano, H.; Tokiwa, H., Comparative binding analysis of dipeptidyl peptidase IV (DPP-4) with antidiabetic drugs - an ab initio fragment molecular orbital study. PLoS One 2016, 11, e0166275.
93.Gutierrez, O.; Metil, D.; Dwivedi, N.; Gudimalla, N.; Chandrashekar, E. R.; Dahanukar, V. H.; Bhattacharya, A.; Bandichhor, R.; Kozlowski, M. C., Practical, asymmetric route to sitagliptin and derivatives: development and origin of diastereoselectivity. Org. Lett. 2015, 17, 1742–1745.
94.(a) Deng, X.; Wang, N.; Meng, L.; Zhou, S.; Huang, J.; Xing, J.; He, L.; Jiang, W.; Li, Q., Optimization of the benzamide fragment targeting the S2' site leads to potent dipeptidyl peptidase-IV inhibitors. Bioorg. Chem. 2020, 94, 103366; (b) Schnapp, G.; Klein, T.; Hoevels, Y.; Bakker, R. A.; Nar, H., Comparative analysis of binding kinetics and thermodynamics of dipeptidyl peptidase-4 inhibitors and their relationship to structure. J. Med. Chem. 2016, 59, 7466–7477.
95.(a) Giessen, T. W.; von Tesmar, A. M.; Marahiel, M. A., A tRNA-Dependent Two-Enzyme Pathway for the Generation of Singly and Doubly Methylated Ditryptophan 2,5-Diketopiperazines. Biochemistry 2013, 52, 4274–4283; (b) Shearer, J., Use of a metallopeptide-based mimic provides evidence for a proton-coupled electron-transfer mechanism for superoxide reduction by nickel-containing superoxide dismutase. Angew. Chem. Int. Ed. Engl. 2013, 52, 2569–2572; (c) Sharma, R.; Soman, S. S., Design and synthesis of novel diamide derivatives of glycine as antihyperglycemic agents. Synthetic Communications 2016, 46, 1307–1317; (d) Soni, R.; Durgapal, S. D.; Soman, S. S.; Georrge, J. J., Design, synthesis and anti-diabetic activity of chromen-2-one derivatives. Arabian J. Chem. 2019, 12, 701–708.
96.Lu, S.-H.; Yen, W.-P.; Tsai, H. J.; Chen, C.-S.; Wong, F. F., Vilsmeier reagent initialed sequential one-pot multicomponent synthesis of N,O-disubstituted glycolamides as dipeptidyl peptidase 4 inhibitors. Tetrahedron 2015, 71, 6749–6758.
97.(a) Woller, K. R.; Curtin, M. L.; Frank, K. E.; Josephsohn, N. S.; Li, B. C.; Wishart, N. Novel Pyrazolo[3,4-d]pyrimidine Compounds. WO156698A2, 2011; (b) Wainwright, P.; Maddaford, A.; Simms, M.; Forrest, N.; Glen, R.; Hart, J.; Zhang, X.; Pryde, D.; Stephenson, P.; Middleton, D.; Guyot, T.; Sutton, S., Synthesis of novel 2-cyano-7-deaza-8-azapurine- and 2-cyano-8-azapurine-derived nucleosides. Synlett 2011, 2011, 1900–1904; (c) Islam, K.; Chin, H. F.; Olivares, A. O.; Saunders, L. P.; De La Cruz, E. M.; Kapoor, T. M., A myosin V inhibitor based on privileged chemical scaffolds. Angew. Chem. Int. Ed. Engl. 2010, 49, 8484–8488.
98.Tsai, S.-E.; Yen, W.-P.; Tseng, C.-C.; Xie, J.-J.; Liou, M. Y.; Li, Y.-T.; Uramaru, N.; Wong, F. F., Efficient acid catalytic synthesis of pyrazolopyrimidines from 1H-pyrazol-5-yl-N,N-dimethylformamidines with cyanamide. Tetrahedron 2018, 74, 2787–2791.
99.Bui, H. T. B.; Ha, Q. T. K.; Oh, W. K.; Vo, D. D.; Chau, Y. N. T.; Tu, C. T. K.; Pham, E. C.; Tran, P. T.; Tran, L. T.; Mai, H. V., Microwave assisted synthesis and cytotoxic activity evaluations of new benzimidazole derivatives. Tetrahedron Lett. 2016, 57, 887–891.
100.(a) Lim, F. P. L.; Luna, G.; Dolzhenko, A. V., A one-pot, three-component, microwave-assisted synthesis of novel 7-amino-substituted 4-aminopyrazolo[1,5-a][1,3,5]triazine-8-carbonitriles. Tetrahedron Lett. 2015, 56, 7016–7019; (b) Castillo, J. C.; Estupinan, D.; Nogueras, M.; Cobo, J.; Portilla, J., 6-(Aryldiazenyl)pyrazolo[1,5-a]pyrimidines as Strategic Intermediates for the Synthesis of Pyrazolo[5,1-b]purines. J. Org. Chem. 2016, 81, 12364–12373; (c) Lyu, W.; Ma, L.; Jin, J.; Xiao, D.; Zhu, S. Preparation method of pharmaceutical intermediate N-arylquinazolinyl-amine compounds. CN105669566A, 2016/06/15/, 2016.
101.(a) Cheng, K. M.; Huang, Y. Y.; Huang, J. J.; Kaneko, K.; Kimura, M.; Takayama, H.; Juang, S. H.; Wong, F. F., Synthesis and antiproliferative evaluation of N,N-disubstituted-N'-[1-aryl-1H-pyrazol-5-yl]-methnimidamides. Bioorg. Med. Chem. Lett. 2010, 20, 6781–6784; (b) Wen, K.-S.; Lin, H.-Y.; Huang, Y.-Y.; Kaneko, K.; Takayama, H.; Kimura, M.; Juang, S.-H.; Wong, F. F., Chemoselective synthesis, antiproliferative activities, and SAR study of 1H-pyrazol-5-yl-N,N-dimethylformamidines and pyrazolyl-2-azadienes. Med. Chem. Res. 2011, 21, 3920–3928.
102.Simay, A.; Takacs, K.; Horvath, K.; Dvortsak, P., Vilsmeier-Haack reaction of 5-amino- and 5-acylaminopyrazoles. Acta Chim. Acad. Sci. Hung. 1980, 105, 127–139.
103.Lu, S.-H.; Liu, P.-L.; Wong, F. F., Vilsmeier reagent-mediated synthesis of 6-[(formyloxy)methyl]-pyrazolopyrimidines via a one-pot multiple tandem reaction. RSC Adv. 2015, 5, 47098–47107.
104.Nascimento-Junior, N. M.; Mendes, T. C.; Leal, D. M.; Correa, C. M.; Sudo, R. T.; Zapata-Sudo, G.; Barreiro, E. J.; Fraga, C. A., Microwave-assisted synthesis and structure-activity relationships of neuroactive pyrazolo[3,4-b]pyrrolo[3,4-d]pyridine derivatives. Bioorg. Med. Chem. Lett. 2010, 20, 74–77.
105.Tseng, C.-C.; Yen, W.-P.; Tsai, S.-E.; Hu, Y.-T.; Takayama, H.; Kuo, Y.-H.; Fuh Wong, F., ZnCl2-catalyzed aza-Diels-Alder reaction for the synthesis of 1H-pyrazolo[3,4-b]pyridine-4,5-dicarboxylate derivatives. Eur. J. Org. Chem. 2018, 2018, 1567–1571.
106.Spurlin, S. R.; Cooper, M. M., A chemiluminesClent precolumn labelling reagent for high-performance liquid chromatography of amino acids. Anal. Lett. 1986, 19, 2277–2283.
107.Yen, W.-P.; Liu, P.-L.; Uramaru, N.; Lin, H.-Y.; Wong, F. F., Indium(III) chloride/silica gel catalyzed synthesis of pyrazolo[3,4-b]pyrrolo[3,4-d]pyridines. Tetrahedron 2015, 71, 8798–8803.
108.Neumann, H.; Klaus, S.; Klawonn, M.; Strübing, D.; Hübner, S.; Gördes, D.; Wangelin, A. J. v.; Lalk, M.; Beller, M., A new efficient synthesis of substituted luminols using multicomponent reactions. Zeitschrift für Naturforschung B 2004, 59, 431–438.
109.(a) Flitsch, W.; Krämer, U.; Zimmermann, H., Cyclische verbindungen mit heterobrückenatomen, V. Zur chemie der 1-amino-pyrrole. Chem. Ber. 1969, 102, 3268–3276; (b) Dey, S. K.; Lightner, D. A., 1,1‘-Bipyrroles: Synthesis and Stereochemistry. J. Org. Chem. 2007, 72, 9395–9397.
110.Gompper, R.; Sobotta, R., Neue elektronenreiche butadiene. Tetrahedron Lett. 1979, 20, 921–924.
111.Tyagi, P.; Venkateswararao, A.; Thomas, K. R., Solution processable indoloquinoxaline derivatives containing bulky polyaromatic hydrocarbons: synthesis, optical spectra, and electroluminescence. J. Org. Chem. 2011, 76, 4571–4581.
112.Martelo, L.; Periyasami, G.; Fedorov, A. A.; Baleizão, C.; Berberan-Santos, M. N., Chemiluminescence of naphthalene analogues of luminol in solution and micellar media. Dyes Pigm. 2019, 168, 341–346.
113.(a) Dutkiewicz, M., Classification of organic solvents based on correlation between dielectric β parameter and empirical solvent polarity parameter ENT. J. Chem. Soc. Faraday Trans. 1990, 86, 2237–2241; (b) Reichardt, C., Solvatochromic dyes as solvent polarity indicators. Chem. Rev. 1994, 94, 2319–2358.
114.(a) Satapathy, A. K.; Behera, S. K.; Yadav, A.; Mahour, L. N.; Yelamaggad, C. V.; Sandhya, K. L.; Sahoo, B., Tuning the fluorescence behavior of liquid crystal molecules containing Schiff-base: Effect of solvent polarity. J. Lumin. 2019, 210, 371–375; (b) Tang, Z.; Lu, M.; Liu, K.; Zhao, Y.; Qi, Y.; Wang, Y.; Zhang, P.; Zhou, P., Solvation effect on the ESIPT mechanism of 2-(4'-amino-2'-hydroxyphenyl)-1H-imidazo-[4,5-c]pyridine. J. Photochem. Photobiol. A 2018, 367, 261–269; (c) Wang, Q.; Niu, Y.; Wang, R.; Wu, H.; Zhang, Y., Acid-induced shift of intramolecular hydrogen bonding responsible for excited-state intramolecular proton transfer. Chem. Asian. J. 2018, 13, 1735–1743; (d) Chen, Y. T.; Wu, P. J.; Peng, C. Y.; Shen, J. Y.; Tsai, C. C.; Hu, W. P.; Chou, P. T., A study of the competitive multiple hydrogen bonding effect and its associated excited-state proton transfer tautomerism. Phys. Chem. Chem. Phys. 2017, 19, 28641–28646; (e) Behera, S. K.; Murkherjee, A.; Sadhuragiri, G.; Elumalai, P.; Sathiyendiran, M.; Kumar, M.; Mandal, B. B.; Krishnamoorthy, G., Aggregation induced enhanced and exclusively highly Stokes shifted emission from an excited state intramolecular proton transfer exhibiting molecule. Faraday Discuss 2017, 196, 71–90; (f) Behera, S. K.; Karak, A.; Krishnamoorthy, G., Photophysics of 2-(4'-amino-2'-hydroxyphenyl)-1H-imidazo-[4,5-c]pyridine and its analogues: intramolecular proton transfer versus intramolecular charge transfer. J. Phys. Chem. B. 2015, 119, 2330–2344.
115.Skripnikova, T. A.; Lysova, S. S.; Zevatskii, Y. E.; Myznikov, L. V.; Vorona, S. V.; Artamonova, T. V., Physico-chemical properties of isomeric forms of luminol in aqueous solutions. J. Mol. Struct. 2018, 1154, 59–63.
116.Deepa, S.; Rajasekhara Reddy, S.; Rajendrakumar, K., Green chemiluminescence of highly fluorescent symmetrical azo-based luminol derivative. Orient. J. Chem. 2018, 34, 894–905.
117.(a) Kiyama, M.; Iwano, S.; Otsuka, S.; Lu, S. W.; Obata, R.; Miyawaki, A.; Hirano, T.; Maki, S. A., Quantum yield improvement of red-light-emitting firefly luciferin analogues for in vivo bioluminescence imaging. Tetrahedron 2018, 74, 652–660; (b) Brouwer, A. M., Standards for photoluminescence quantum yield measurements in solution (IUPAC Technical Report). Pure Appl. Chem. 2011, 83, 2213–2228.
118.(a) Ahren, B., DPP-4 inhibitors. Best Pract. Res. Clin. Endocrinol. Metab. 2007, 21, 517–533; (b) Thornberry, N. A.; Gallwitz, B., Mechanism of action of inhibitors of dipeptidyl-peptidase-4 (DPP-4). Best Pract. Res. Clin. Endocrinol. Metab. 2009, 23, 479–486.
119.Kim, D.; Wang, L.; Beconi, M.; Eiermann, G. J.; Fisher, M. H.; He, H.; Hickey, G. J.; Kowalchick, J. E.; Leiting, B.; Lyons, K.; Marsilio, F.; McCann, M. E.; Patel, R. A.; Petrov, A.; Scapin, G.; Patel, S. B.; Roy, R. S.; Wu, J. K.; Wyvratt, M. J.; Zhang, B. B.; Zhu, L.; Thornberry, N. A.; Weber, A. E., (2R)-4-oxo-4-[3-(trifluoromethyl)-5,6-dihydro[1,2,4]triazolo[4,3-a]pyrazin-7(8H)- yl]-1-(2,4,5-trifluorophenyl)butan-2-amine: a potent, orally active dipeptidyl peptidase IV inhibitor for the treatment of type 2 diabetes. J. Med. Chem. 2005, 48, 141–151.
120.(a) Hansen, K. B.; Hsiao, Y.; Xu, F.; Rivera, N.; Clausen, A.; Kubryk, M.; Krska, S.; Rosner, T.; Simmons, B.; Balsells, J.; Ikemoto, N.; Sun, Y.; Spindler, F.; Malan, C.; Grabowski, E. J.; Armstrong, J. D., 3rd, Highly efficient asymmetric synthesis of sitagliptin. J. Am. Chem. Soc. 2009, 131, 8798–8804; (b) Liu, F.; Yu, W.; Ou, W.; Wang, X.; Ruan, L.; Li, Y.; Peng, X.; Tao, X.; Pan, X., The asymmetric synthesis of Sitagliptin, a selective dipeptidyl peptidase IV inhibitor for the treatment of type 2 diabetes. J. Chem. Res. 2010, 2010, 230–232; (c) Davies, S. G.; Fletcher, A. M.; Lv, L.; Roberts, P. M.; Thomson, J. E., Asymmetric synthesis of (−)-(R)-sitagliptin. Tetrahedron Lett. 2012, 53, 3052–3055; (d) Zeng, L. L.; Ding, Y. J.; Zhang, G. C.; Song, H. R.; Hu, W. H., A practical synthesis of trifluorophenyl R-amino acid: The key precursor for the new anti-diabetic drug sitagliptin. Chin. Chem. Lett. 2009, 20, 1397–1399; (e) Desai, A. A., Sitagliptin manufacture: a compelling tale of green chemistry, process intensification, and industrial asymmetric catalysis. Angew. Chem. Int. Ed. Engl. 2011, 50, 1974–1976; (f) Xiao, Y.; Armstrong, J. D. I.; Krska, S. W.; Njolito, E.; Rivera, N. R.; Sun, Y.; Rosner, T.; Clausen, A. M. Process to chiral beta amino acid derivatives by asymmetric hydrogenation. WO2006081151A1, 2006/08/03/, 2006.
121.(a) Savile, C. K.; Janey, J. M.; Mundorff, E. C.; Moore, J. C.; Tam, S.; Jarvis, W. R.; Colbeck, J. C.; Krebber, A.; Fleitz, F. J.; Brands, J.; Devine, P. N.; Huisman, G. W.; Hughes, G. J., Biocatalytic asymmetric synthesis of chiral amines from ketones applied to sitagliptin manufacture. Science 2010, 329, 305–309; (b) Savile, C.; Mundorff, E.; Moore, J. C.; Devine, P. N.; Janey, J. M. Transaminase biocatalysts. WO2010099501A3, 2011/02/24/, 2011; (c) Hughes, G.; Devine, P. N.; Fleitz, F. J.; Grau, B. T.; Limanto, J.; Savile, C.; Mundorff, E. Transaminase reactions. WO2011005477A1, 2011/01/13/, 2011.
122.(a) Gundeti, S.; Lee, J.; Park, H., Novel 1,2,3-triazole analogs of sitagliptin as DPP4 inhibitors. Bull. Korean Chem. Soc. 2016, 37, 1156–1158; (b) Kowalchick, J. E.; Leiting, B.; Pryor, K. D.; Marsilio, F.; Wu, J. K.; He, H.; Lyons, K. A.; Eiermann, G. J.; Petrov, A.; Scapin, G.; Patel, R. A.; Thornberry, N. A.; Weber, A. E.; Kim, D., Design, synthesis, and biological evaluation of triazolopiperazine-based beta-amino amides as potent, orally active dipeptidyl peptidase IV (DPP-4) inhibitors. Bioorg. Med. Chem. Lett. 2007, 17, 5934–5939; (c) Kim, D.; Kowalchick, J. E.; Brockunier, L. L.; Parmee, E. R.; Eiermann, G. J.; Fisher, M. H.; He, H.; Leiting, B.; Lyons, K.; Scapin, G.; Patel, S. B.; Petrov, A.; Pryor, K. D.; Roy, R. S.; Wu, J. K.; Zhang, X.; Wyvratt, M. J.; Zhang, B. B.; Zhu, L.; Thornberry, N. A.; Weber, A. E., Discovery of potent and selective dipeptidyl peptidase IV inhibitors derived from beta-aminoamides bearing subsituted triazolopiperazines. J. Med. Chem. 2008, 51, 589–602; (d) Vo, D. V.; Hong, K. H.; Lee, J.; Park, H., Synthesis, in vitro evaluation, and computational simulations studies of 1,2,3-triazole analogues as DPP-4 inhibitors. Bioorg. Med. Chem. 2021, 29, 115861.
123.(a) Hsu, K. C.; Chen, Y. F.; Lin, S. R.; Yang, J. M., iGEMDOCK: a graphical environment of enhancing GEMDOCK using pharmacological interactions and post-screening analysis. BMC Bioinform. 2011, 12 Suppl 1, S33; (b) Huang, K. W.; Hsu, K. C.; Chu, L. Y.; Yang, J. M.; Yuan, H. S.; Hsiao, Y. Y., Identification of Inhibitors for the DEDDh Family of Exonucleases and a Unique Inhibition Mechanism by Crystal Structure Analysis of CRN-4 Bound with 2-Morpholin-4-ylethanesulfonate (MES). J. Med. Chem. 2016, 59, 8019–8029; (c) de Moura Sperotto, N. D.; Deves Roth, C.; Rodrigues-Junior, V. S.; Ev Neves, C.; Reisdorfer Paula, F.; da Silva Dadda, A.; Bergo, P.; Freitas de Freitas, T.; Souza Macchi, F.; Moura, S.; Duarte de Souza, A. P.; Campos, M. M.; Valim Bizarro, C.; Santos, D. S.; Basso, L. A.; Machado, P., Design of Novel Inhibitors of Human Thymidine Phosphorylase: Synthesis, Enzyme Inhibition, in Vitro Toxicity, and Impact on Human Glioblastoma Cancer. J. Med. Chem. 2019, 62, 1231–1245; (d) Yang, J. M.; Chen, C. C., GEMDOCK: a generic evolutionary method for molecular docking. Proteins 2004, 55, 288–304.
124.Wang, L.-Y.; Tsai, H. J.; Lin, H.-Y.; Kaneko, K.; Cheng, F.-Y.; Shih, H.-S.; Wong, F. F.; Huang, J.-J., One-flask synthesis of 1,3,5-trisubstituted 1,2,4-triazoles from nitriles and hydrazonoyl chlorides via 1,3-dipolar cycloaddition. RSC Adv. 2014, 4, 14215–14220.
125.Tseng, W.-C.; Wang, L.-Y.; Wu, T.-S.; Wong, F. F., ‘One-flask’ synthesis to 3,5-disubstituted 1,2,4-triazoles from aldehydes with hydrazonoyl hydrochlorides via 1,3-dipolar cycloaddition. Tetrahedron 2011, 67, 5339–5345.
126.(a) Dyck, B.; Goodfellow, V. S.; Phillips, T.; Grey, J.; Haddach, M.; Rowbottom, M.; Naeve, G. S.; Brown, B.; Saunders, J., Potent imidazole and triazole CB1 receptor antagonists related to SR141716. Bioorg. Med. Chem. Lett. 2004, 14, 1151–1154; (b) Horn, H. W.; Jones, G. O.; Wei, D. S.; Fukushima, K.; Lecuyer, J. M.; Coady, D. J.; Hedrick, J. L.; Rice, J. E., Mechanisms of organocatalytic amidation and trans-esterification of aromatic esters as a model for the depolymerization of poly(ethylene) terephthalate. J. Phys. Chem. A. 2012, 116, 12389–12398.
127.Tsai, S.-E.; Chiang, K.-H.; Tseng, C.-C.; Chen, N.-W.; Chern, C.-Y.; Wong, F. F., Facile one-pot synthesis of methyl 1-Aryl-1H-1,2,4-triazole-3-carboxylates from nitrilimines with vilsmeier reagent. Eur. J. Org. Chem. 2019, 2019, 1754–1762.
128.Wong, F. F.; Chang, P.-W.; Lin, H.-C.; You, B.-J.; Huang, J.-J.; Lin, S.-K., An efficient and convenient transformation of α-haloketones to α-hydroxyketones using cesium formate. J. Organomet. Chem. 2009, 694, 3452–3455.
129.Lin, W.; Yang, L.; Chai, S. C.; Lu, Y.; Chen, T., Development of CINPA1 analogs as novel and potent inverse agonists of constitutive androstane receptor. Eur. J. Med. Chem. 2016, 108, 505–528.
130.Su, W.-N.; Lin, T.-P.; Cheng, K.-M.; Sung, K.-C.; Lin, S.-K.; Wong, F. F., An efficient one-pot synthesis of N-(1,3-diphenyl-1H-pyrazol- 5-yl)amides. J. Heterocycl. Chem. 2010, 47, 831–837.
131.(a) Mampuys, P.; Ruijter, E.; Orru, R. V. A.; Maes, B. U. W., Synthesis of secondary amides from thiocarbamates. Org. Lett. 2018, 20, 4235–4239; (b) Pu, Y. J.; Vaid, R. K.; Boini, S. K.; Towsley, R. W.; Doecke, C. W.; Mitchell, D., A practical method for functionalized peptide or amide bond formation in aqueous−ethanol media with EDC as activator. Org. Process Res. Dev. 2009, 13, 310–314.
132.(a) Sustmann, R., Synthesis of acid halides, anhydrides and related compounds. In Comprehensive Organic Synthesis (BM Trost, I. Fleming, Hrsg.), Bd,1992; Vol. 6, pp 301–318; (b) Teno, N.; Wanaka, K.; Okada, Y.; Tsuda, Y.; Okamoto, U.; Hijikata-Okunomiya, A.; Naito, T.; Okamoto, S., Development of active center-directed inhibitors against plasmin. Chem. Pharm. Bull. 1991, 39, 2340–2346.
133.Ohta, S.; Shimabayashi, A.; Aono, M.; Okamoto, M., A general convenient one-pot procedure for the conversion of carboxylic acids into theirt-butyl esters which is also applicable to aliphatic carboxylic acids. Synthesis 1982, 1982, 833–834.
134.Turos, E.; Bhattacharya, B. Antibiotic compositions and methods of use. US9670179B1, 2017/06/06/, 2017.
135.De Vita, E.; Schuler, P.; Lovell, S.; Lohbeck, J.; Kullmann, S.; Rabinovich, E.; Sananes, A.; Hessling, B.; Hamon, V.; Papo, N.; Hess, J.; Tate, E. W.; Gunkel, N.; Miller, A. K., Depsipeptides Featuring a Neutral P1 Are Potent Inhibitors of Kallikrein-Related Peptidase 6 with On-Target Cellular Activity. J. Med. Chem. 2018, 61, 8859–8874.
136.Frérot, E.; Coste, J.; Pantaloni, A.; Dufour, M.-N.; Jouin, P., PyBOP® and PyBroP: Two reagents for the difficult coupling of the α,α-dialkyl amino acid, Aib. Tetrahedron 1991, 47, 259–270.
137.Diago-Meseguer, J.; Palomo-Coll, A. L.; Fernández-Lizarbe, J. R.; Zugaza-Bilbao, A., A new reagent for activating carboxyl groups; preparation and reactions of N,N-Bis[2-oxo-3-ox-azolidinyl]phosphorodiamidic chloride. Synthesis 1980, 1980, 547–551.
138.Yadav, N. D.; Bhide, R. S.; Bora, R. O.; Gunaga, P.; Panda, M.; Priestley, E. S.; Richter, J. Substituted Nitrogen Containing Compounds. WO2018222795A1, 2018/12/06/, 2018.
139.Jones, R. G.; Ainsworth, C., 1,2,4-Triazole-3-alanine. J. Am. Chem. Soc. 1955, 77, 1538–1540.
140.Madin, A.; Owens, A. P. Triazolo-pyridazine derivatives as ligands for gaba receptors. WO1999037645A1, 1999/07/29/, 1999.
141.Gunic, E.; Chow, S.; Rong, F.; Ramasamy, K.; Raney, A.; Li, D. Y.; Huang, J.; Hamatake, R. K.; Hong, Z.; Girardet, J. L., 6-Hydrazinopurine 2'-methyl ribonucleosides and their 5'-monophosphate prodrugs as potent hepatitis C virus inhibitors. Bioorg. Med. Chem. Lett. 2007, 17, 2456–2458.
142.Li, N.; Wang, L. J.; Jiang, B.; Guo, S. J.; Li, X. Q.; Chen, X. C.; Luo, J.; Li, C.; Wang, Y.; Shi, D. Y., Design, synthesis and biological evaluation of novel pyrimidinedione derivatives as DPP-4 inhibitors. Bioorg. Med. Chem. Lett. 2018, 28, 2131–2135.
143.Wagner, L.; Klemann, C.; Stephan, M.; von Horsten, S., Unravelling the immunological roles of dipeptidyl peptidase 4 (DPP4) activity and/or structure homologue (DASH) proteins. Clin. Exp. Immunol. 2016, 184, 265–283.
144.Brockunier, L. L.; He, J.; Colwell, L. F., Jr.; Habulihaz, B.; He, H.; Leiting, B.; Lyons, K. A.; Marsilio, F.; Patel, R. A.; Teffera, Y.; Wu, J. K.; Thornberry, N. A.; Weber, A. E.; Parmee, E. R., Substituted piperazines as novel dipeptidyl peptidase IV inhibitors. Bioorg. Med. Chem. Lett. 2004, 14, 4763–4766.
145.Lankas, G. R.; Leiting, B.; Roy, R. S.; Eiermann, G. J.; Beconi, M. G.; Biftu, T.; Chan, C. C.; Edmondson, S.; Feeney, W. P.; He, H.; Ippolito, D. E.; Kim, D.; Lyons, K. A.; Ok, H. O.; Patel, R. A.; Petrov, A. N.; Pryor, K. A.; Qian, X.; Reigle, L.; Woods, A.; Wu, J. K.; Zaller, D.; Zhang, X.; Zhu, L.; Weber, A. E.; Thornberry, N. A., Dipeptidyl peptidase IV inhibition for the treatment of type 2 diabetes: potential importance of selectivity over dipeptidyl peptidases 8 and 9. Diabetes 2005, 54, 2988–2994.
146.Velazquez-Libera, J. L.; Duran-Verdugo, F.; Valdes-Jimenez, A.; Nunez-Vivanco, G.; Caballero, J., LigRMSD: a web server for automatic structure matching and RMSD calculations among identical and similar compounds in protein-ligand docking. Bioinformatics 2020, 36, 2912–2914.
147.Rummey, C.; Metz, G., Homology models of dipeptidyl peptidases 8 and 9 with a focus on loop predictions near the active site. Proteins 2007, 66, 160–171.
148.Pauli, G. F.; Chen, S. N.; Simmler, C.; Lankin, D. C.; Godecke, T.; Jaki, B. U.; Friesen, J. B.; McAlpine, J. B.; Napolitano, J. G., Importance of purity evaluation and the potential of quantitative (1)H NMR as a purity assay. J. Med. Chem. 2014, 57, 9220–9231.
149.Aljuhani, A.; Aouad, M. R.; Rezki, N.; Aljaldy, O. A.; Al-Sodies, S. A.; Messali, M.; Ali, I., Novel pyridinium based ionic liquids with amide tethers: Microwave assisted synthesis, molecular docking and anticancer studies. J. Mol. Liq. 2019, 285, 790–802.
150.Tsai, H. J.; Chou, S.-Y.; Chuang, S.-H.; Chen, C.-C.; Hsu, F.-L., D-420720, A novel orally active sulfonamide compound dipeptidyl peptidase IV inhibitor: structure and activity relationship of arylsulfonamide to dipeptidyl peptidase IV inhibition. Drug Dev. Res. 2008, 69, 514–519.
151.Ran, Y.; Pei, H.; Xie, C.; Ma, L.; Wu, Y.; Lei, K.; Shao, M.; Tang, M.; Xiang, M.; Peng, A.; Wei, Y.; Chen, L., Scaffold-based design of xanthine as highly potent inhibitors of DPP-IV for improving glucose homeostasis in DIO mice. Mol. Divers. 2015, 19, 333–346.
電子全文 電子全文(網際網路公開日期:20270701)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊