( 您好!臺灣時間:2024/07/21 14:31
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::


研究生:Sajid Ali
論文名稱(外文):Patient-Specific Computational Fluid Dynamics Analysis of Blood Flow in Coronary Arteries Using OpenFOAM: Based on Validation of the Food and Drug Administration Nozzle Benchmark
外文關鍵詞:OpenFOAMCoronary artery DiseaseFDA nozzle benchmark
IG URL:naqvi1599
  • 被引用被引用:0
  • 點閱點閱:60
  • 評分評分:
  • 下載下載:2
  • 收藏至我的研究室書目清單書目收藏:0
Cardiovascular diseases (CVDs) include stroke, heart failure, ischemic heart disease, and other cardiac and vascular conditions. It is an account of the vital cause of mortality and morbidity and is a subsidizer of reduced quality of life all over the world-wide. According to the ranking among all cardiac diseases, coronary artery disease (CAD) is second place. The most common diagnostic methods for CAD are invasive and non-invasive coronary angiography. Recently, computational fluid dynamics (CFD) method was rapidly growing in the prognosis of coronary artery disease. This study aims to simulate the coronary blood using computed tomography coronary angiography (CTCA) images with different theoretical flow models using open-source CFD OpenFOAM, allowing freedom of meshing, manipulation, simulation, and post-processing of any difficulty involving fluid mechanics. The study examined the ideal the Food and Drug Administration (FDA) nozzle benchmark for the validation and seventeen coronary arteries of nine patients (n=17). Three-dimensional (3D) reconstructions of coronary artery images of nine patients were achieved by CTCA 64-detector scanners. The inlet velocity of the coronary artery in the simulation was applied to 0.00223 m/s. The density and dynamic viscosity of the blood used in this study were 1,060 kg/m3 and 3.5 cP, respectively. The boundary condition of the artery wall was no-slip. In this study, the value of fractional flow reserve from computed tomography coronary angiography (FFRCTCA) in five cases (n = 5) was larger or equal to 0.8, in eleven cases, the FFRCTCA value was smaller or equal to 0.8 (n = 11) and in one case, the FFRCTCA value was equal to 0.8 (n=1). In Case 5, the FFRCTCA (0.0136) value is lower than the cutoff ≤ 0.8, which shows the severity of the stenosis. The velocity of blood flow observed in the center of the stenosis region was 0.0168 m/s, which was 7.5 times faster than the inlet velocity of 0.00223 m/s. CFD was used to calculate the FFRCTCA and center velocity for nine patient-specific models of the coronary artery to present a non-invasive and highly precise method for the estimated physiological significance of stenosed coronary arteries. The present study shows an admirable correlation between FFRCTCA and velocity to stenosis, when clinical testing is difficult or impossible, which may provide information to bridge knowledge gaps. Further research is needed to determine the diagnostic efficiency and clinical implications of our findings.
Abstract i
List of Abbreviations iv
List of Figures v
List of Tables ix
Chapter 1 1
Introduction 1
1.1 Anatomy of a coronary artery: 3
1.2 The circulation system: 5
1.3 Fluid mechanics: 6
1.4 Computational fluid dynamics (CFD): 7
1.5 OpenFOAM description: 8
1.6 Condition used for coronary artery simulation: 9
Chapter 2 10
Materials and Methods 10
2.1 Experimental process was divided into two parts 10
2.2 The FDA nozzle benchmark: 12
2.3 Metric comparison: 13
2.4 Grid independence test: 14
2.5 Cross-sectional velocity of different Reynolds numbers 16
2.6 Reynolds numbers at throat and sudden expansion: 18
2.7 Centerline pressure: 20
2.8 Transient flow 22
2.9 The FDA nozzle benchmark geometry simulation 24
2.10 Computational tomography coronary angiography 25
2.11 Mimics (Materialise Mimics Research 20.2) 27
2.12 ANSYS SpaceClaim (ANSYS CFD 2020 R) 29
2.13 ANSYS ICEM : (ANSYS CFD 2020 R) 32
2.14 Patches and meshing: 34
2.15 OpenFOAM 35
2.16 Courant number 36
2.17 ParaView (ParaView 5.9.0) 38
2.18 MATLAB (MATLAB R2021b) 39
Chapter 3 40
3.1 The coronary artery geometry simulation 42
3.2 Fractional flow reserve computed tomography coronary angiography (FFRCTCA) in coronary artery stenosis: 48
3.3 Blood flow velocity in coronary arteries: 51
Chapter 4 53
Discussion 53
Chapter 5 63
Conclusions 63
Appendix 64
A.1 SurfaceFeatureExtractedDict 64
A.2 CheckMesh 66
A.3 Boundary 70
A.4 transportPropertise 72
A.5 P 73
A.6 U 75
A.7 controlDict 77
A.8 foamDataToFluentDict 80
A.9 fvSchemes 81
A.10 fvSolution 83
A.10 Clinical diagnostic report 87
References 88

Agujetas Ortiz, R., González Fernández, M. R., Nogales Asensio, J. M., & Montanero Fernández, J. M. (2018). Numerical analysis of the pressure drop across highly-eccentric coronary stenoses: application to the calculation of the fractional flow reserve.

Alford, J., & Hoyte, L. (2016). Building Pelvic Floor Biomechanical Simulations. In Biomechanics of the Female Pelvic Floor (pp. 383-398). Elsevier.

Baumann, S., Wang, R., Schoepf, U. J., Steinberg, D. H., Spearman, J. V., Bayer, R. R., Hamm, C. W., & Renker, M. (2015). Coronary CT angiography-derived fractional flow reserve correlated with invasive fractional flow reserve measurements–initial experience with a novel physician-driven algorithm. European radiology, 25(4), 1201-1207.

Boden, W. E., O'Rourke, R. A., Teo, K. K., Hartigan, P. M., Maron, D. J., Kostuk, W. J., Knudtson, M., Dada, M., Casperson, P., & Harris, C. L. (2007). Optimal medical therapy with or without PCI for stable coronary disease. New England journal of medicine, 356(15), 1503-1516.

Chaffey, N. (2003). Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K. and Walter, P. Molecular biology of the cell. 4th edn. In: Oxford University Press.

Daemen, J., Wenaweser, P., Tsuchida, K., Abrecht, L., Vaina, S., Morger, C., Kukreja, N., Jüni, P., Sianos, G., & Hellige, G. (2007). Early and late coronary stent thrombosis of sirolimus-eluting and paclitaxel-eluting stents in routine clinical practice: data from a large two-institutional cohort study. The Lancet, 369(9562), 667-678.

De Bruyne, B., Pijls, N. H., Kalesan, B., Barbato, E., Tonino, P. A., Piroth, Z., Jagic, N., Möbius-Winkler, S., Rioufol, G., & Witt, N. (2012). Fractional flow reserve–guided PCI versus medical therapy in stable coronary disease. New England journal of medicine, 367(11), 991-1001.

Elert, G. (2012). Volume of Blood in a Human. URL: http://hypertextbook. com/facts/1998/LanNaLee. shtml.
Ferencik, M. (2017). Complex relationship between plaque characteristics and hemodynamic significance of stenosis: Insights from coronary computed tomography angiography imaging. Atherosclerosis, 260, 150-152.
Goodwill, A. G., Dick, G. M., Kiel, A. M., & Tune, J. D. (2017). Regulation of coronary blood flow. Comprehensive Physiology, 7(2), 321.

Hariharan, P., Giarra, M., Reddy, V., Day, S. W., Manning, K. B., Deutsch, S., Stewart, S. F., Myers, M. R., Berman, M. R., & Burgreen, G. W. (2011). Multilaboratory particle image velocimetry analysis of the FDA benchmark nozzle model to support validation of computational fluid dynamics simulations. Journal of biomechanical engineering, 133(4).

Hyun, K. K., Huxley, R. R., Arima, H., Woo, J., Lam, T. H., Ueshima, H., Fang, X., Peters, S. A., Jee, S. H., & Giles, G. G. (2013). A comparative analysis of risk factors and stroke risk for Asian and non-Asian men: the Asia Pacific cohort studies collaboration. International Journal of Stroke, 8(8), 606-611.

Kakouros, N., Rybicki, F. J., Mitsouras, D., & Miller, J. M. (2013). Coronary pressure-derived fractional flow reserve in the assessment of coronary artery stenoses. European radiology, 23(4), 958-967.

Katritsis, D., Kaiktsis, L., Chaniotis, A., Pantos, J., Efstathopoulos, E. P., & Marmarelis, V. (2007). Wall shear stress: theoretical considerations and methods of measurement. Progress in cardiovascular diseases, 49(5), 307-329.

Kwon, S.-S., Chung, E.-C., Park, J.-S., Kim, G.-T., Kim, J.-W., Kim, K.-H., Shin, E.-S., & Shim, E. B. (2014). A novel patient-specific model to compute coronary fractional flow reserve. Progress in biophysics and molecular biology, 116(1), 48-55.

Lee, J. M., Jung, J.-H., Hwang, D., Park, J., Fan, Y., Na, S.-H., Doh, J.-H., Nam, C.-W., Shin, E.-S., & Koo, B.-K. (2016). Coronary flow reserve and microcirculatory resistance in patients with intermediate coronary stenosis. Journal of the American College of Cardiology, 67(10), 1158-1169.

Lee, S.-Y., Jang, J., & Wereley, S. T. (2008). Effects of planar inlet plenums on the hydrodynamically developing flows in rectangular microchannels of complementary aspect ratios. Microfluidics and Nanofluidics, 5(1), 1-12.

Lin, K.-Y., Shih, T.-C., Chou, S.-H., Chen, Z.-Y., Hsu, C.-H., & Ho, C.-Y. (2016). Computational fluid dynamics with application of different theoretical flow models for the evaluation of coronary artery stenosis on CT angiography: Comparison with invasive fractional flow reserve. Biomedical Physics & Engineering Express, 2(6), 065011.

Marcos, E. (2019). De With RR, Mulder BA, Van Gelder IC, Rienstra M. Young-onset atrial fibrillation: Sex differences in clinical profile, progression rate and cardiovascular outcome. Int J Cardiol Heart Vasc, 25, 100429.

MEDICINE, J. H. (2022). Anatomy and function of the coronary arteries. https://www.hopkinsmedicine.org/health/conditions-and-diseases/anatomy-and-function-of-the-coronary-arteries
Min, J. K., Koduru, S., Dunning, A. M., Cole, J. H., Hines, J. L., Greenwell, D., Biga, C., Fanning, G., LaBounty, T. M., & Gomez, M. (2012). Coronary CT angiography versus myocardial perfusion imaging for near-term quality of life, cost and radiation exposure: a prospective multicenter randomized pilot trial. Journal of cardiovascular computed tomography, 6(4), 274-283.

Nørgaard, B. L., Leipsic, J., Gaur, S., Seneviratne, S., Ko, B. S., Ito, H., Jensen, J. M., Mauri, L., De Bruyne, B., & Bezerra, H. (2014). Diagnostic performance of noninvasive fractional flow reserve derived from coronary computed tomography angiography in suspected coronary artery disease: the NXT trial (Analysis of Coronary Blood Flow Using CT Angiography: Next Steps). Journal of the American College of Cardiology, 63(12), 1145-1155.

OpenFOAM. ( 2021, Dec 22,). Introduction (OpenFOAM description). https://www.openfoam.com/documentation/user-guide/1-introduction
Pijls, N. H., Fearon, W. F., Tonino, P. A., Siebert, U., Ikeno, F., Bornschein, B., van't Veer, M., Klauss, V., Manoharan, G., & Engstrøm, T. (2010). Fractional flow reserve versus angiography for guiding percutaneous coronary intervention in patients with multivessel coronary artery disease: 2-year follow-up of the FAME (Fractional Flow Reserve Versus Angiography for Multivessel Evaluation) study. Journal of the American College of Cardiology, 56(3), 177-184.

Pijls, N. H., & Sels, J.-W. E. (2012). Functional measurement of coronary stenosis. Journal of the American College of Cardiology, 59(12), 1045-1057.

Pijls, N. H., van Schaardenburgh, P., Manoharan, G., Boersma, E., Bech, J.-W., van’t Veer, M., Bär, F., Hoorntje, J., Koolen, J., & Wijns, W. (2007). Percutaneous coronary intervention of functionally nonsignificant stenosis: 5-year follow-up of the DEFER Study. Journal of the American College of Cardiology, 49(21), 2105-2111.

Rief, M., Zimmermann, E., Stenzel, F., Martus, P., Stangl, K., Greupner, J., Knebel, F., Kranz, A., Schlattmann, P., & Laule, M. (2013). Computed tomography angiography and myocardial computed tomography perfusion in patients with coronary stents: prospective intraindividual comparison with conventional coronary angiography. Journal of the American College of Cardiology, 62(16), 1476-1485.

Sánchez Abad, N., Vinuesa, R., Schlatter, P., Andersson, M., & Karlsson, M. (2020). Simulation strategies for the Food and Drug Administration nozzle using Nek5000. AIP Advances, 10(2), 025033.
Shmukler, M. (2004). Density of Blood-The Physics Factbook. Retrieved October, 4, 2006.

Smits, P. C., Abdel-Wahab, M., Neumann, F.-J., Boxma-de Klerk, B. M., Lunde, K., Schotborgh, C. E., Piroth, Z., Horak, D., Wlodarczak, A., & Ong, P. J. (2017). Fractional flow reserve–guided multivessel angioplasty in myocardial infarction. New England journal of medicine, 376(13), 1234-1244.

Sones, F. M. (1962). Cine coronary arteriography. Mod Concepts Cardiovasc Dis, 31, 735-738.

Stewart, S. F., Paterson, E. G., Burgreen, G. W., Hariharan, P., Giarra, M., Reddy, V., Day, S. W., Manning, K. B., Deutsch, S., & Berman, M. R. (2012). Assessment of CFD performance in simulations of an idealized medical device: results of FDA’s first computational interlaboratory study. Cardiovascular Engineering and Technology, 3(2), 139-160.

Taylor, C. A., & Draney, M. T. (2004). Experimental and computational methods in cardiovascular fluid mechanics. Annual review of fluid mechanics, 36(1), 197-231.

Taylor, C. A., Fonte, T. A., & Min, J. K. (2013). Computational fluid dynamics applied to cardiac computed tomography for noninvasive quantification of fractional flow reserve: scientific basis. Journal of the American College of Cardiology, 61(22), 2233-2241.

Tonino, P. A., De Bruyne, B., Pijls, N. H., Siebert, U., Ikeno, F., vant Veer, M., Klauss, V., Manoharan, G., Engstrøm, T., & Oldroyd, K. G. (2009). Fractional flow reserve versus angiography for guiding percutaneous coronary intervention. New England Journal of Medicine, 360(3), 213-224.

Venkatachari, B. S., Cheng, G. C., Soni, B. K., & Chang, S. (2008). Validation and verification of Courant number insensitive CE/SE method for transient viscous flow simulations. Mathematics and Computers in Simulation, 78(5-6), 653-670.

Wittek, A., Grosland, N. M., Joldes, G. R., Magnotta, V., & Miller, K. (2016). From finite element meshes to clouds of points: a review of methods for generation of computational biomechanics models for patient-specific applications. Annals of biomedical engineering, 44(1), 3-15.

Zafar, H., Sharif, F., & Leahy, M. J. (2014). Measurement of the blood flow rate and velocity in coronary artery stenosis using intracoronary frequency domain optical coherence tomography: Validation against fractional flow reserve. IJC Heart & Vasculature, 5, 68-71.

第一頁 上一頁 下一頁 最後一頁 top