跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.172) 您好!臺灣時間:2025/03/17 01:26
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:吳汶桀
研究生(外文):WU, WEN-CHIEH
論文名稱:台灣婦女FADS基因多型性與二十二碳六烯酸(DHA)攝取對母乳中DHA比例的影響,及其於孕婦基因檢測與精準營養應用之開發
論文名稱(外文):FADS genetic variants in Taiwanese modify association of DHA intake and the proportions in human milk, and its application on the development of genetic testing and precision nutrition planning for pregnant women
指導教授:黃俊瑩趙蓓敏詹前毅
指導教授(外文):HUANG, CHUN-YINCHAO, PEI-MINCHAN, CHIEN-YI
口試委員:黃俊瑩林振文李宗貴陳丘泓詹前毅
口試委員(外文):HUANG, CHUN-YINLIN, CHENG-WENLII, CHONG-KUEICHEN, CHIU-HENGCHAN, CHIEN-YI
口試日期:2022-07-08
學位類別:博士
校院名稱:中國醫藥大學
系所名稱:健康科技產業博士學位學程
學門:醫藥衛生學門
學類:其他醫藥衛生學類
論文種類:學術論文
論文出版年:2022
畢業學年度:110
語文別:中文
論文頁數:151
中文關鍵詞:二十二碳六稀酸魚類單核苷酸多型性FADS母乳
外文關鍵詞:DHAfishsingle nucleotide polymorphismFADS genehuman milk
相關次數:
  • 被引用被引用:0
  • 點閱點閱:321
  • 評分評分:
  • 下載下載:21
  • 收藏至我的研究室書目清單書目收藏:1
主題一、台灣婦女FADS基因多型性與二十二碳六烯酸(DHA)攝取對母乳中DHA比例的影響(學校端 國際期刊)
本研究的目標是確立台灣婦女體內FADS(Fatty acid desaturase)基因變異和飲食攝取如何影響母乳中二十二碳六烯酸(Docosahexaenoic acid;DHA)的比例。受試者選入標準包括:健康、20至40歲、足月產、有計畫要哺餵母乳一個月以及有計畫參與本研究的婦女。透過食物頻率問卷評估DHA的攝入量,並在產後3至4週期間收集母乳樣品並分析脂肪酸。
依據完成本研究的164位母親的數據進行多元線性迴歸分析(Multiple linear regression),高遺傳風險相較於低遺傳風險婦女(按rs1535和rs174448中的次要等位基因總數目是否  3來分層)其母乳DHA降低了0.28%(FA%);高DHA攝取量相較低DHA攝取量(DHA攝入量是否達到200 mg / d進行分層)其母乳升高0.45%。
基因與飲食之間存在顯著的交互作用關係,低遺傳風險的母親,若有較高的DHA攝入量,便會有較高的母乳DHA比例,但對於具有高遺傳風險的母親,飲食的效果十分有限。因此,對於台灣婦女的FADS單核苷酸多型性,增加高DHA攝取量將無法改變高遺傳風險基因型女性中低的DHA比例,飲食的效果只對低遺傳風險基因型的人有益處。本試驗已於2019年2月12日於ClinicalTrials.gov完成回顧性註冊(No.NCT03842891,https://clinicaltrials.gov/ct2/show/NCT03842891)。

主題二 開發孕產婦基因檢測與個人化飲食規劃之精準營養學應用平台(企業端 營運企劃書)
高齡孕婦在現代社會中越來越常見,在台灣每三位懷孕婦女就有兩位年齡達30歲以上,其中高齡孕婦更容易有妊娠糖尿病、高血壓和早產等健康風險,然而,這些疾病往往與基因息息相關,例如:影響長鏈脂肪酸代謝的FADS(Fatty acid desaturase)基因。根據每個人的基因差異,營養素的需要量也有所不同,目前市面上的基因檢測產品或公司,僅提供消費者檢測的結果,缺乏更進一步的個人化營養建議,使消費者檢測完後無所適從。
本計畫專為高齡孕婦設計營養基因檢測晶片,並結合團隊營養師的專業知識,給予孕婦適合的營養衛教,幫助胎兒生長發育,此外,也能依據消費者的需求提供適合的個人化營養懷孕餐點。
Topic 1
The objective of the current study was to determine how docosahexaenoic acid(DHA)proportions in human milk are modulated by maternal FADS gene variants and dietary intake in Taiwanese women. The inclusion criteria for the study subjects included being healthy, 20–40 y old, having had a full-term baby that they intended to breast feed for at least one month, and willingness to participate in this study. The intake of DHA was assessed by a food frequency questionnaire and fatty acids content was analyzed in human milk samples collected 3–4 weeks postpartum.
Based on multiple linear regression of data from 164 mothers that completed this study, there was a 0.28%(FA%)reduction in milk DHA in high versus low genetic risk(stratified by whether minor allele numbers were  3 in rs1535 and rs174448)and 0.45% reduction in low versus high intake(stratified by whether DHA intake reached 200 mg/d).
There was a significant gene-diet interaction; the mothers with low genetic risk and high DHA intake had high milk DHA proportions, whereas dietary effects became quite limited for mothers with high genetic risk. These results indicate that for FADS single nucleotide polymorphism in Taiwanese women, increasing DHA intake did not correct low milk DHA proportions in those with a high-risk genotype. Diet only conferred benefits to those with a low-risk genotype. Trial registration: This trial was retrospectively registered(Feb 12, 2019)in ClinicalTrials.gov(No. NCT03842891, https://clinicaltrials.gov/ ct2/show/NCT03842891)

Topic 2
In modern society, elderly pregnant women have become more common. Two-thirds of pregnant women in Taiwan are over the age of 30. Among them, AMA(advanced maternal age)are more likely to have health risks such as gestational diabetes, high blood pressure, and premature birth. In addition, these diseases are often associated with genes related to fatty acid metabolism, for example, the FADS gene. The genetic difference will affect the nutrient required. Currently, the genetic screening products on the market only provide the test results of consumers and lack further personalized nutritional advice.
Therefore, the current program was designed to provide pregnant women of advanced age the nutritional, genetic testing chips, followed by nutritional consulting with a dietitian team, to ensure the average growth and development of the fetus. Ultimately, the program can also provide personalized nutrition meals to meet different pregnancy needs.
論文口試委員審定書 I
無違反學術倫理聲明書 II
誌謝 III
中文摘要 V
Abstract VII
目錄 IX
表目錄 XIV
圖目錄 XV
縮寫對照表 XVII
主題一、台灣婦女FADS基因多型性與二十二碳六烯酸(DHA)攝取對母乳中DHA比例的影響(學校端 國際期刊) 1
第一章 文獻回顧 1
第一節 母乳 1
一、 何謂母乳 1
二、 母乳的脂肪酸組成 2
三、 母乳哺育之功效研究 3
1. 胃腸功能 3
2. 預防疾病感染 4
3. 死亡率與住院率 4
4. 神經系統發育相關功效 5
四、 母乳哺育的政策 5
第二節 二十二碳六烯酸 7
一、 關於二十二碳六烯酸(Docosahexaenoic acid;DHA) 7
二、 DHA之功效研究 8
1. DHA對神經發育的影響 9
2. DHA有助於降低早產發生率 10
3. DHA有助於減少過敏和相關疾病 11
4. DHA有助於降低高血壓風險 12
5. DHA有助於降低血漿TG與BMI 12
三、 母乳中DHA含量 13
四、 飲食來源的DHA 14
1. 何謂坐月子 14
2. 各種不同食物的DHA含量 16
五、 內源性生合成的DHA 20
第三節 FADS基因多型性 22
一、 何謂FADS 22
二、 FADS 單核苷酸多型性對LCPUFA的影響 23
第二章 研究目的 25
第三章 材料與方法 26
第一節 研究設計 26
一、 研究流程 26
二、 受試者招募 27
第二節 研究工具與收集過程 29
一、 飲食頻率問卷 29
二、 母乳收集 31
三、 母乳脂肪酸甲基酯化 31
四、 脂肪酸組成分析 32
五、 口腔黏膜採集與DNA萃取 34
六、 FADS單核苷酸多型性之挑選 36
七、 SNP基因分型 36
第三節 資料統計與分析方法 41
第四章 研究結果 42
第一節 受試者特徵 42
第二節 SNP基因分型實驗分析 44
第三節 SNP基因型與母乳脂肪酸組成相關性 45
第四節 基因-飲食交互作用與母乳DHA比例相關性 48
第五章 討論 50
第六章 結論與建議 56
第一節 結論 56
第二節 研究限制 57
第三節 應用與建議 58
第七章 附錄 59
第八章 參考文獻 98
主題二 開發孕產婦基因檢測與個人化飲食規劃之精準營養學應用平台(企業端 營運企劃書) 120
第九章 緒論 120
第一節 營運背景 120
第二節 營運動機與目的 121
第十章 營運方法 122
第一節 產品與服務內容 122
第十一章 營運結果與產品 124
第一節 基因檢測對應懷孕高風險疾病與餐點 124
第二節 營運模式 127
一、 產品服務流程說明 127
1. 基因檢測 127
2. 基因諮詢 127
3. 個人化餐點和建議 128
第三節 營收模式 129
一、 自售(B2C) 129
二、 代售(B2B2C) 130
第十二章 討論 131
第一節 市場分析 131
一、 市場特性與規模 131
1. 目標市場特性及觀察 131
2. 市場規模 133
二、 目標市場 134
1. 市場區隔 134
2. 市場定位 135
第二節 競爭對手與競爭策略分析 136
一、 競爭對手比較 136
二、 與競品之差異性 137
第三節 行銷策略 138
一、 目標消費族群 138
二、 行銷策略 139
1. 公司營運目標 139
2. 行銷4P 139
第四節 財務規劃 141
一、 銷售預估 141
二、 預估損益表 141
第十三章 結論與限制 143
第一節 結論 143
第二節 潛在風險與限制 143
第十四章 附錄 144
1.Boquien, C.Y., Human Milk: An Ideal Food for Nutrition of Preterm Newborn. Front Pediatr, 2018. 6: p. 295.
2.Hurley, W.L. and P.K. Theil, Perspectives on immunoglobulins in colostrum and milk. Nutrients, 2011. 3(4): p. 442-74.
3.Apter, F.M., W.I. Lencer, R.A. Finkelstein, J.J. Mekalanos, and M.R. Neutra, Monoclonal immunoglobulin A antibodies directed against cholera toxin prevent the toxin-induced chloride secretory response and block toxin binding to intestinal epithelial cells in vitro. Infect Immun, 1993. 61(12): p. 5271-8.
4.Mantis, N.J., S.A. Farrant, and S. Mehta, Oligosaccharide side chains on human secretory IgA serve as receptors for ricin. J Immunol, 2004. 172(11): p. 6838-45.
5.Silvey, K.J., A.B. Hutchings, M. Vajdy, M.M. Petzke, and M.R. Neutra, Role of immunoglobulin A in protection against reovirus entry into Murine Peyer's patches. J Virol, 2001. 75(22): p. 10870-9.
6.Perkkiö, M. and E. Savilahti, Time of appearance of immunoglobulin-containing cells in the mucosa of the neonatal intestine. Pediatr Res, 1980. 14(8): p. 953-5.
7.Köhler, H., S. Donarski, B. Stocks, A. Parret, C. Edwards, and H. Schroten, Antibacterial characteristics in the feces of breast-fed and formula-fed infants during the first year of life. J Pediatr Gastroenterol Nutr, 2002. 34(2): p. 188-93.
8.Mohrbacher, N.S.J.L.L.L.I., The breastfeeding answer book. 2003.
9.Gidrewicz, D.A. and T.R. Fenton, A systematic review and meta-analysis of the nutrient content of preterm and term breast milk. BMC Pediatr, 2014. 14: p. 216.
10.Floris, L.M., B. Stahl, M. Abrahamse-Berkeveld, and I.C. Teller, Human milk fatty acid profile across lactational stages after term and preterm delivery: A pooled data analysis. Prostaglandins Leukot Essent Fatty Acids, 2020. 156: p. 102023.
11.Boyce, C., M. Watson, G. Lazidis, S. Reeve, K. Dods, K. Simmer, and G. McLeod, Preterm human milk composition: a systematic literature review. Br J Nutr, 2016. 116(6): p. 1033-45.
12.López-López, A., M.C. López-Sabater, C. Campoy-Folgoso, M. Rivero-Urgell, and A.I. Castellote-Bargalló, Fatty acid and sn-2 fatty acid composition in human milk from Granada (Spain) and in infant formulas. Eur J Clin Nutr, 2002. 56(12): p. 1242-54.
13.Koletzko, B., Human Milk Lipids. Ann Nutr Metab, 2016. 69 Suppl 2: p. 28-40.
14.Martin, C.R., P.R. Ling, and G.L. Blackburn, Review of Infant Feeding: Key Features of Breast Milk and Infant Formula. Nutrients, 2016. 8(5).
15.Jensen, R.G., Lipids in human milk. Lipids, 1999. 34(12): p. 1243-71.
16.Andreas, N.J., B. Kampmann, and K. Mehring Le-Doare, Human breast milk: A review on its composition and bioactivity. Early Hum Dev, 2015. 91(11): p. 629-35.
17.Ballard, O. and A.L. Morrow, Human milk composition: nutrients and bioactive factors. Pediatr Clin North Am, 2013. 60(1): p. 49-74.
18.Stiemsma, L.T. and K.B. Michels, The Role of the Microbiome in the Developmental Origins of Health and Disease. Pediatrics, 2018. 141(4).
19.Beattie, L.M. and L.T. Weaver, Mothers, babies and friendly bacteria. Arch Dis Child Fetal Neonatal Ed, 2011. 96(3): p. F160-3.
20.Pannaraj, P.S., F. Li, C. Cerini, J.M. Bender, S. Yang, A. Rollie, H. Adisetiyo, S. Zabih, P.J. Lincez, K. Bittinger, et al., Association Between Breast Milk Bacterial Communities and Establishment and Development of the Infant Gut Microbiome. JAMA Pediatr, 2017. 171(7): p. 647-654.
21.Horta BL, V.C.W.H.O., Short-term effects of breastfeeding: a systematic review on the benefits of breastfeeding on diarrhoea and pneumonia mortality. . 2013.
22.Quigley, M.A., C. Carson, A. Sacker, and Y. Kelly, Exclusive breastfeeding duration and infant infection. Eur J Clin Nutr, 2016. 70(12): p. 1420-1427.
23.Frank, N.M., K.F. Lynch, U. Uusitalo, J. Yang, M. Lonnrot, S.M. Virtanen, H. Hyoty, J.M. Norris, and T.S. Group, The relationship between breastfeeding and reported respiratory and gastrointestinal infection rates in young children. BMC Pediatr, 2019. 19(1): p. 339.
24.Billeaud, C., J. Guillet, and B. Sandler, Gastric emptying in infants with or without gastro-oesophageal reflux according to the type of milk. Eur J Clin Nutr, 1990. 44(8): p. 577-83.
25.Meyer, R., R.X. Foong, N. Thapar, S. Kritas, and N. Shah, Systematic review of the impact of feed protein type and degree of hydrolysis on gastric emptying in children. BMC Gastroenterol, 2015. 15: p. 137.
26.Shulman, R.J., R.J. Schanler, C. Lau, M. Heitkemper, C.N. Ou, and E.O. Smith, Early feeding, feeding tolerance, and lactase activity in preterm infants. J Pediatr, 1998. 133(5): p. 645-9.
27.Shulman, R.J., R.J. Schanler, C. Lau, M. Heitkemper, C.N. Ou, and E.O. Smith, Early feeding, antenatal glucocorticoids, and human milk decrease intestinal permeability in preterm infants. Pediatr Res, 1998. 44(4): p. 519-23.
28.Taylor, S.N., L.A. Basile, M. Ebeling, and C.L. Wagner, Intestinal permeability in preterm infants by feeding type: mother's milk versus formula. Breastfeed Med, 2009. 4(1): p. 11-5.
29.Holman, R.C., B.J. Stoll, A.T. Curns, K.L. Yorita, C.A. Steiner, and L.B. Schonberger, Necrotising enterocolitis hospitalisations among neonates in the United States. Paediatr Perinat Epidemiol, 2006. 20(6): p. 498-506.
30.Quigley, M., N.D. Embleton, and W. McGuire, Formula versus donor breast milk for feeding preterm or low birth weight infants. Cochrane Database Syst Rev, 2019. 7: p. CD002971.
31.Committee On, N., B. Section On, F. Committee On, and Newborn, Donor Human Milk for the High-Risk Infant: Preparation, Safety, and Usage Options in the United States. Pediatrics, 2017. 139(1).
32.Christensen, N., S. Bruun, J. Sondergaard, H.T. Christesen, N. Fisker, G. Zachariassen, P.T. Sangild, and S. Husby, Breastfeeding and Infections in Early Childhood: A Cohort Study. Pediatrics, 2020. 146(5).
33.Bartick, M.C., E.B. Schwarz, B.D. Green, B.J. Jegier, A.G. Reinhold, T.T. Colaizy, D.L. Bogen, A.J. Schaefer, and A.M. Stuebe, Suboptimal breastfeeding in the United States: Maternal and pediatric health outcomes and costs. Matern Child Nutr, 2017. 13(1).
34.Valcarce, V., L.S. Stafford, J. Neu, N. Cacho, L. Parker, M. Mueller, D.J. Burchfield, N. Li, and J. Larkin, 3rd, Detection of SARS-CoV-2-Specific IgA in the Human Milk of COVID-19 Vaccinated Lactating Health Care Workers. Breastfeed Med, 2021. 16(12): p. 1004-1009.
35.Victora, C.G., R. Bahl, A.J. Barros, G.V. Franca, S. Horton, J. Krasevec, S. Murch, M.J. Sankar, N. Walker, N.C. Rollins, et al., Breastfeeding in the 21st century: epidemiology, mechanisms, and lifelong effect. Lancet, 2016. 387(10017): p. 475-90.
36.Bowatte, G., R. Tham, K.J. Allen, D.J. Tan, M. Lau, X. Dai, and C.J. Lodge, Breastfeeding and childhood acute otitis media: a systematic review and meta-analysis. Acta Paediatr, 2015. 104(467): p. 85-95.
37.Dewey, K.G., M.J. Heinig, and L.A. Nommsen-Rivers, Differences in morbidity between breast-fed and formula-fed infants. J Pediatr, 1995. 126(5 Pt 1): p. 696-702.
38.Boone, K.M., S.R. Geraghty, and S.A. Keim, Feeding at the Breast and Expressed Milk Feeding: Associations with Otitis Media and Diarrhea in Infants. J Pediatr, 2016. 174: p. 118-25.
39.Marild, S., S. Hansson, U. Jodal, A. Oden, and K. Svedberg, Protective effect of breastfeeding against urinary tract infection. Acta Paediatr, 2004. 93(2): p. 164-8.
40.Levy, I., J. Comarsca, M. Davidovits, G. Klinger, L. Sirota, and N. Linder, Urinary tract infection in preterm infants: the protective role of breastfeeding. Pediatr Nephrol, 2009. 24(3): p. 527-31.
41.Goldblum, R.M., R.J. Schanler, C. Garza, and A.S. Goldman, Human milk feeding enhances the urinary excretion of immunologic factors in low birth weight infants. Pediatr Res, 1989. 25(2): p. 184-8.
42.Bhutta, Z.A. and K. Yusuf, Early-onset neonatal sepsis in Pakistan: a case control study of risk factors in a birth cohort. Am J Perinatol, 1997. 14(9): p. 577-81.
43.Khan, J., L. Vesel, R. Bahl, and J.C. Martines, Timing of breastfeeding initiation and exclusivity of breastfeeding during the first month of life: effects on neonatal mortality and morbidity--a systematic review and meta-analysis. Matern Child Health J, 2015. 19(3): p. 468-79.
44.Corpeleijn, W.E., S.M. Kouwenhoven, M.C. Paap, I. van Vliet, I. Scheerder, Y. Muizer, O.K. Helder, J.B. van Goudoever, and M.J. Vermeulen, Intake of own mother's milk during the first days of life is associated with decreased morbidity and mortality in very low birth weight infants during the first 60 days of life. Neonatology, 2012. 102(4): p. 276-81.
45.Ashraf, R.N., F. Jalil, S. Zaman, J. Karlberg, S.R. Khan, B.S. Lindblad, and L.A. Hanson, Breast feeding and protection against neonatal sepsis in a high risk population. Arch Dis Child, 1991. 66(4): p. 488-90.
46.Ip, S., M. Chung, G. Raman, P. Chew, N. Magula, D. DeVine, T. Trikalinos, and J. Lau, Breastfeeding and maternal and infant health outcomes in developed countries. Evid Rep Technol Assess (Full Rep), 2007(153): p. 1-186.
47.Vennemann, M.M., T. Bajanowski, B. Brinkmann, G. Jorch, K. Yucesan, C. Sauerland, E.A. Mitchell, and S.I.D.S.G. Ge, Does breastfeeding reduce the risk of sudden infant death syndrome? Pediatrics, 2009. 123(3): p. e406-10.
48.Li, R., J. Ware, A. Chen, J. Nelson, J. Kmet, S. Parks, A. Morrow, J. Chen, and C. Perrine, Breastfeeding and Post-perinatal Infant Deaths in the United States, A National Prospective Cohort Analysis. The Lancet Regional Health - Americas, 2021. 5: p. 100094.
49.Hauck, F.R., J.M. Thompson, K.O. Tanabe, R.Y. Moon, and M.M. Vennemann, Breastfeeding and reduced risk of sudden infant death syndrome: a meta-analysis. Pediatrics, 2011. 128(1): p. 103-10.
50.Thompson, J.M.D., K. Tanabe, R.Y. Moon, E.A. Mitchell, C. McGarvey, D. Tappin, P.S. Blair, and F.R. Hauck, Duration of Breastfeeding and Risk of SIDS: An Individual Participant Data Meta-analysis. Pediatrics, 2017. 140(5).
51.Sankar, M.J., B. Sinha, R. Chowdhury, N. Bhandari, S. Taneja, J. Martines, and R. Bahl, Optimal breastfeeding practices and infant and child mortality: a systematic review and meta-analysis. Acta Paediatr, 2015. 104(467): p. 3-13.
52.Smith, E.R., L. Hurt, R. Chowdhury, B. Sinha, W. Fawzi, K.M. Edmond, and G. Neovita Study, Delayed breastfeeding initiation and infant survival: A systematic review and meta-analysis. PLoS One, 2017. 12(7): p. e0180722.
53.Horta, B.L., C. Loret de Mola, and C.G. Victora, Breastfeeding and intelligence: a systematic review and meta-analysis. Acta Paediatr, 2015. 104(467): p. 14-9.
54.Plunkett, B.A., L. Mele, B.M. Casey, M.W. Varner, Y. Sorokin, U.M. Reddy, R.J. Wapner, J.M. Thorp, Jr., G.R. Saade, A.T.N. Tita, et al., Association of Breastfeeding and Child IQ Score at Age 5 Years. Obstet Gynecol, 2021. 137(4): p. 561-570.
55.O'Connor, D.L., J. Jacobs, R. Hall, D. Adamkin, N. Auestad, M. Castillo, W.E. Connor, S.L. Connor, K. Fitzgerald, S. Groh-Wargo, et al., Growth and development of premature infants fed predominantly human milk, predominantly premature infant formula, or a combination of human milk and premature formula. J Pediatr Gastroenterol Nutr, 2003. 37(4): p. 437-46.
56.Hylander, M.A., D.M. Strobino, J.C. Pezzullo, and R. Dhanireddy, Association of human milk feedings with a reduction in retinopathy of prematurity among very low birthweight infants. J Perinatol, 2001. 21(6): p. 356-62.
57.Zhou, J., V.V. Shukla, D. John, and C. Chen, Human Milk Feeding as a Protective Factor for Retinopathy of Prematurity: A Meta-analysis. Pediatrics, 2015. 136(6): p. e1576-86.
58.Schanler, R.J., C. Lau, N.M. Hurst, and E.O. Smith, Randomized trial of donor human milk versus preterm formula as substitutes for mothers' own milk in the feeding of extremely premature infants. Pediatrics, 2005. 116(2): p. 400-6.
59.Okamoto, T., M. Shirai, M. Kokubo, S. Takahashi, M. Kajino, M. Takase, H. Sakata, and J. Oki, Human milk reduces the risk of retinal detachment in extremely low-birthweight infants. Pediatr Int, 2007. 49(6): p. 894-7.
60.WHO. Breastfeeding. 2022; Available from: https://www.who.int/health-topics/breastfeeding#tab=tab_1.
61.Pawlosky, R.J., J.R. Hibbeln, J.A. Novotny, and N. Salem, Jr., Physiological compartmental analysis of alpha-linolenic acid metabolism in adult humans. J Lipid Res, 2001. 42(8): p. 1257-65.
62.Rapoport, S.I., In vivo approaches and rationale for quantifying kinetics and imaging brain lipid metabolic pathways. Prostaglandins Other Lipid Mediat, 2005. 77(1-4): p. 185-96.
63.Farooqui, A.A., Beneficial Effects of Fish Oil on Human Brain. 2009: Springer New York.
64.Oster, T. and T. Pillot, Docosahexaenoic acid and synaptic protection in Alzheimer's disease mice. Biochim Biophys Acta, 2010. 1801(8): p. 791-8.
65.Bradbury, J., Docosahexaenoic acid (DHA): an ancient nutrient for the modern human brain. Nutrients, 2011. 3(5): p. 529-54.
66.Richards, M.P., P.B. Pettitt, M.C. Stiner, and E. Trinkaus, Stable isotope evidence for increasing dietary breadth in the European mid-Upper Paleolithic. Proc Natl Acad Sci U S A, 2001. 98(11): p. 6528-32.
67.Broadhurst, C.L., Y. Wang, M.A. Crawford, S.C. Cunnane, J.E. Parkington, and W.F. Schmidt, Brain-specific lipids from marine, lacustrine, or terrestrial food resources: potential impact on early African Homo sapiens. Comp Biochem Physiol B Biochem Mol Biol, 2002. 131(4): p. 653-73.
68.Crawford, M.A., M. Bloom, C.L. Broadhurst, W.F. Schmidt, S.C. Cunnane, C. Galli, K. Gehbremeskel, F. Linseisen, J. Lloyd-Smith, and J. Parkington, Evidence for the unique function of docosahexaenoic acid during the evolution of the modern hominid brain. Lipids, 1999. 34 Suppl: p. S39-47.
69.Cunnane, S.C. and M.A. Crawford, Survival of the fattest: fat babies were the key to evolution of the large human brain. Comp Biochem Physiol A Mol Integr Physiol, 2003. 136(1): p. 17-26.
70.Wikipedia. Docosahexaenoic acid. 2022; Available from: https://en.wikipedia.org/wiki/Docosahexaenoic_acid.
71.Kuipers, R.S., M.F. Luxwolda, P.J. Offringa, E.R. Boersma, D.A. Dijck-Brouwer, and F.A. Muskiet, Fetal intrauterine whole body linoleic, arachidonic and docosahexaenoic acid contents and accretion rates. Prostaglandins Leukot Essent Fatty Acids, 2012. 86(1-2): p. 13-20.
72.Innis, S.M., Perinatal biochemistry and physiology of long-chain polyunsaturated fatty acids. J Pediatr, 2003. 143(4 Suppl): p. S1-8.
73.Martinez, M., Tissue levels of polyunsaturated fatty acids during early human development. J Pediatr, 1992. 120(4 Pt 2): p. S129-38.
74.Lewin, G.A., H.M. Schachter, D. Yuen, P. Merchant, V. Mamaladze, and A. Tsertsvadze, Effects of omega-3 fatty acids on child and maternal health. Evid Rep Technol Assess (Summ), 2005(118): p. 1-11.
75.Clandinin, M.T., J.E. Chappell, T. Heim, P.R. Swyer, and G.W. Chance, Fatty acid utilization in perinatal de novo synthesis of tissues. Early Hum Dev, 1981. 5(4): p. 355-66.
76.Cunnane, S.C., V. Francescutti, J.T. Brenna, and M.A. Crawford, Breast-fed infants achieve a higher rate of brain and whole body docosahexaenoate accumulation than formula-fed infants not consuming dietary docosahexaenoate. Lipids, 2000. 35(1): p. 105-11.
77.(FDA), T.U.F.a.D.A. FDA Announces New Qualified Health Claims for EPA and DHA Omega-3 Consumption and the Risk of Hypertension and Coronary Heart Disease. 2019; Available from: https://www.fda.gov/food/cfsan-constituent-updates/fda-announces-new-qualified-health-claims-epa-and-dha-omega-3-consumption-and-risk-hypertension-and.
78.Oken, E., R.O. Wright, K.P. Kleinman, D. Bellinger, C.J. Amarasiriwardena, H. Hu, J.W. Rich-Edwards, and M.W. Gillman, Maternal fish consumption, hair mercury, and infant cognition in a U.S. Cohort. Environ Health Perspect, 2005. 113(10): p. 1376-80.
79.Oken, E., J.S. Radesky, R.O. Wright, D.C. Bellinger, C.J. Amarasiriwardena, K.P. Kleinman, H. Hu, and M.W. Gillman, Maternal fish intake during pregnancy, blood mercury levels, and child cognition at age 3 years in a US cohort. Am J Epidemiol, 2008. 167(10): p. 1171-81.
80.Oken, E., M.L. Østerdal, M.W. Gillman, V.K. Knudsen, T.I. Halldorsson, M. Strøm, D.C. Bellinger, M. Hadders-Algra, K.F. Michaelsen, and S.F. Olsen, Associations of maternal fish intake during pregnancy and breastfeeding duration with attainment of developmental milestones in early childhood: a study from the Danish National Birth Cohort. Am J Clin Nutr, 2008. 88(3): p. 789-96.
81.Middleton, P., J.C. Gomersall, J.F. Gould, E. Shepherd, S.F. Olsen, and M. Makrides, Omega-3 fatty acid addition during pregnancy. Cochrane Database Syst Rev, 2018. 11(11): p. Cd003402.
82.Malmir, H., B. Larijani, and A. Esmaillzadeh, Fish consumption during pregnancy and risk of allergic diseases in the offspring: A systematic review and meta-analysis. Crit Rev Food Sci Nutr, 2021: p. 1-11.
83.Bisgaard, H., J. Stokholm, B.L. Chawes, N.H. Vissing, E. Bjarnadóttir, A.-M.M. Schoos, H.M. Wolsk, T.M. Pedersen, R.K. Vinding, S. Thorsteinsdóttir, et al., Fish Oil–Derived Fatty Acids in Pregnancy and Wheeze and Asthma in Offspring. New England Journal of Medicine, 2016. 375(26): p. 2530-2539.
84.Vahdaninia, M., H. Mackenzie, T. Dean, and S. Helps, ω-3 LCPUFA supplementation during pregnancy and risk of allergic outcomes or sensitization in offspring: A systematic review and meta-analysis. Ann Allergy Asthma Immunol, 2019. 122(3): p. 302-313.e2.
85.Miller, P.E., M. Van Elswyk, and D.D. Alexander, Long-chain omega-3 fatty acids eicosapentaenoic acid and docosahexaenoic acid and blood pressure: a meta-analysis of randomized controlled trials. Am J Hypertens, 2014. 27(7): p. 885-96.
86.Wu, S., C. Zhu, Z. Wang, S. Wang, P. Yuan, T. Song, X. Hou, and Z. Lei, Effects of Fish Oil Supplementation on Cardiometabolic Risk Factors in Overweight or Obese Children and Adolescents: A Meta-Analysis of Randomized Controlled Trials. Front Pediatr, 2021. 9: p. 604469.
87.Mozaffarian, D. and J.H. Wu, Omega-3 fatty acids and cardiovascular disease: effects on risk factors, molecular pathways, and clinical events. J Am Coll Cardiol, 2011. 58(20): p. 2047-67.
88.Zhang, Y.Y., W. Liu, T.Y. Zhao, and H.M. Tian, Efficacy of Omega-3 Polyunsaturated Fatty Acids Supplementation in Managing Overweight and Obesity: A Meta-Analysis of Randomized Clinical Trials. J Nutr Health Aging, 2017. 21(2): p. 187-192.
89.Brenna, J.T., B. Varamini, R.G. Jensen, D.A. Diersen-Schade, J.A. Boettcher, and L.M. Arterburn, Docosahexaenoic and arachidonic acid concentrations in human breast milk worldwide. Am J Clin Nutr, 2007. 85(6): p. 1457-64.
90.WHO. Fats and fatty acids in human nutrition: Report of an expert consultation. . 2017; Available from: foris.fao.org/preview/25553-0ece4cb94ac52f9a25af77ca5cfba7a8c.pdf.
91.Innis, S.M., Human milk: maternal dietary lipids and infant development. Proc Nutr Soc, 2007. 66(3): p. 397-404.
92.Innis, S.M., J. Gilley, and J. Werker, Are human milk long-chain polyunsaturated fatty acids related to visual and neural development in breast-fed term infants? J Pediatr, 2001. 139(4): p. 532-8.
93.Jensen, C.L., R.G. Voigt, T.C. Prager, Y.L. Zou, J.K. Fraley, J.C. Rozelle, M.R. Turcich, A.M. Llorente, R.E. Anderson, and W.C. Heird, Effects of maternal docosahexaenoic acid intake on visual function and neurodevelopment in breastfed term infants. Am J Clin Nutr, 2005. 82(1): p. 125-32.
94.Koletzko, B., I. Cetin, J.T. Brenna, G. Perinatal Lipid Intake Working, F. Child Health, G. Diabetic Pregnancy Study, M. European Association of Perinatal, M. European Association of Perinatal, N. European Society for Clinical, Metabolism, et al., Dietary fat intakes for pregnant and lactating women. Br J Nutr, 2007. 98(5): p. 873-7.
95.Simopoulos, A.P., A. Leaf, and N. Salem, Jr., Workshop statement on the essentiality of and recommended dietary intakes for Omega-6 and Omega-3 fatty acids. Prostaglandins Leukot Essent Fatty Acids, 2000. 63(3): p. 119-21.
96.Koletzko, B., E. Lien, C. Agostoni, H. Bohles, C. Campoy, I. Cetin, T. Decsi, J.W. Dudenhausen, C. Dupont, S. Forsyth, et al., The roles of long-chain polyunsaturated fatty acids in pregnancy, lactation and infancy: review of current knowledge and consensus recommendations. J Perinat Med, 2008. 36(1): p. 5-14.
97.Koletzko, B., C.P. Bauer, P. Bung, M. Cremer, M. Flothkotter, C. Hellmers, M. Kersting, M. Krawinkel, H. Przyrembel, R. Rasenack, et al., German national consensus recommendations on nutrition and lifestyle in pregnancy by the 'Healthy Start - Young Family Network'. Ann Nutr Metab, 2013. 63(4): p. 311-22.
98.Hospital, C.M.U. 產婦藥膳餐. 2022; Available from: https://www.cmuh.cmu.edu.tw/HealthEdus/Detail?no=4797.
99.CMUH. 產婦藥膳餐. 2022; Available from: https://www.cmuh.cmu.edu.tw/HealthEdus/Detail?no=4797.
100.Pei-Min Chao, S.-M.T., Total Lipids, Fatty Acid Composition and Cholestol Content of Fifteen Fish Species Commom in Taiwan. Nutritional Sciences Journal, 1996. 21(2): p. 147-159.
101.UpToDate. Weekly servings of fish to achieve 250 mg/day of EPA + DHA. 2020; Available from: https://www.uptodate.com/contents/fish-consumption-and-marine-omega-3-fatty-acid-supplementation-in-pregnancy?search=pregnant%20DHA&source=search_result&selectedTitle=1~54&usage_type=default&display_rank=1.
102.U.S. DEPARTMENT OF AGRICULTURE. FoodData Central. 2020; Available from: https://fdc.nal.usda.gov/.
103.Koletzko, B., E. Lattka, S. Zeilinger, T. Illig, and C. Steer, Genetic variants of the fatty acid desaturase gene cluster predict amounts of red blood cell docosahexaenoic and other polyunsaturated fatty acids in pregnant women: findings from the Avon Longitudinal Study of Parents and Children. Am J Clin Nutr, 2011. 93(1): p. 211-9.
104.Molto-Puigmarti, C., J. Plat, R.P. Mensink, A. Muller, E. Jansen, M.P. Zeegers, and C. Thijs, FADS1 FADS2 gene variants modify the association between fish intake and the docosahexaenoic acid proportions in human milk. Am J Clin Nutr, 2010. 91(5): p. 1368-76.
105.Park, W.J., K.S. Kothapalli, H.T. Reardon, P. Lawrence, S.B. Qian, and J.T. Brenna, A novel FADS1 isoform potentiates FADS2-mediated production of eicosanoid precursor fatty acids. J Lipid Res, 2012. 53(8): p. 1502-12.
106.Lattka, E., T. Illig, B. Koletzko, and J. Heinrich, Genetic variants of the FADS1 FADS2 gene cluster as related to essential fatty acid metabolism. Curr Opin Lipidol, 2010. 21(1): p. 64-9.
107.Martinelli, N., D. Girelli, G. Malerba, P. Guarini, T. Illig, E. Trabetti, M. Sandri, S. Friso, F. Pizzolo, L. Schaeffer, et al., FADS genotypes and desaturase activity estimated by the ratio of arachidonic acid to linoleic acid are associated with inflammation and coronary artery disease. Am J Clin Nutr, 2008. 88(4): p. 941-9.
108.Nakamura, M.T. and T.Y. Nara, Structure, function, and dietary regulation of delta6, delta5, and delta9 desaturases. Annu Rev Nutr, 2004. 24: p. 345-76.
109.Marquardt, A., H. Stohr, K. White, and B.H. Weber, cDNA cloning, genomic structure, and chromosomal localization of three members of the human fatty acid desaturase family. Genomics, 2000. 66(2): p. 175-83.
110.Al-Hilal, M., A. Alsaleh, Z. Maniou, F.J. Lewis, W.L. Hall, T.A. Sanders, S.D. O'Dell, and M.s. team, Genetic variation at the FADS1-FADS2 gene locus influences delta-5 desaturase activity and LC-PUFA proportions after fish oil supplement. J Lipid Res, 2013. 54(2): p. 542-51.
111.Mathias, R.A., S. Sergeant, I. Ruczinski, D.G. Torgerson, C.E. Hugenschmidt, M. Kubala, D. Vaidya, B. Suktitipat, J.T. Ziegler, P. Ivester, et al., The impact of FADS genetic variants on omega6 polyunsaturated fatty acid metabolism in African Americans. BMC Genet, 2011. 12: p. 50.
112.Schaeffer, L., H. Gohlke, M. Muller, I.M. Heid, L.J. Palmer, I. Kompauer, H. Demmelmair, T. Illig, B. Koletzko, and J. Heinrich, Common genetic variants of the FADS1 FADS2 gene cluster and their reconstructed haplotypes are associated with the fatty acid composition in phospholipids. Hum Mol Genet, 2006. 15(11): p. 1745-56.
113.Sergeant, S., C.E. Hugenschmidt, M.E. Rudock, J.T. Ziegler, P. Ivester, H.C. Ainsworth, D. Vaidya, L.D. Case, C.D. Langefeld, B.I. Freedman, et al., Differences in arachidonic acid levels and fatty acid desaturase (FADS) gene variants in African Americans and European Americans with diabetes or the metabolic syndrome. Br J Nutr, 2012. 107(4): p. 547-55.
114.Mathias, R.A., C. Vergara, L. Gao, N. Rafaels, T. Hand, M. Campbell, C. Bickel, P. Ivester, S. Sergeant, K.C. Barnes, et al., FADS genetic variants and omega-6 polyunsaturated fatty acid metabolism in a homogeneous island population. J Lipid Res, 2010. 51(9): p. 2766-74.
115.Malerba, G., L. Schaeffer, L. Xumerle, N. Klopp, E. Trabetti, M. Biscuola, U. Cavallari, R. Galavotti, N. Martinelli, P. Guarini, et al., SNPs of the FADS gene cluster are associated with polyunsaturated fatty acids in a cohort of patients with cardiovascular disease. Lipids, 2008. 43(4): p. 289-99.
116.Rzehak, P., J. Heinrich, N. Klopp, L. Schaeffer, S. Hoff, G. Wolfram, T. Illig, and J. Linseisen, Evidence for an association between genetic variants of the fatty acid desaturase 1 fatty acid desaturase 2 ( FADS1 FADS2) gene cluster and the fatty acid composition of erythrocyte membranes. Br J Nutr, 2009. 101(1): p. 20-6.
117.Xie, L. and S.M. Innis, Association of fatty acid desaturase gene polymorphisms with blood lipid essential fatty acids and perinatal depression among Canadian women: a pilot study. J Nutrigenet Nutrigenomics, 2009. 2(4-5): p. 243-50.
118.Xie, L. and S.M. Innis, Genetic variants of the FADS1 FADS2 gene cluster are associated with altered (n-6) and (n-3) essential fatty acids in plasma and erythrocyte phospholipids in women during pregnancy and in breast milk during lactation. J Nutr, 2008. 138(11): p. 2222-8.
119.Porenta, S.R., Y.A. Ko, S.B. Gruber, B. Mukherjee, A. Baylin, J. Ren, and Z. Djuric, Interaction of fatty acid genotype and diet on changes in colonic fatty acids in a Mediterranean diet intervention study. Cancer Prev Res (Phila), 2013. 6(11): p. 1212-21.
120.Hong, S.H., J.H. Kwak, J.K. Paik, J.S. Chae, and J.H. Lee, Association of polymorphisms in FADS gene with age-related changes in serum phospholipid polyunsaturated fatty acids and oxidative stress markers in middle-aged nonobese men. Clin Interv Aging, 2013. 8: p. 585-96.
121.Harslof, L.B., L.H. Larsen, C. Ritz, L.I. Hellgren, K.F. Michaelsen, U. Vogel, and L. Lauritzen, FADS genotype and diet are important determinants of DHA status: a cross-sectional study in Danish infants. Am J Clin Nutr, 2013. 97(6): p. 1403-10.
122.Li, S.W., K. Lin, P. Ma, Z.L. Zhang, Y.D. Zhou, S.Y. Lu, X. Zhou, and S.M. Liu, FADS gene polymorphisms confer the risk of coronary artery disease in a Chinese Han population through the altered desaturase activities: based on high-resolution melting analysis. PLoS One, 2013. 8(1): p. e55869.
123.Gillingham, L.G., S.V. Harding, T.C. Rideout, N. Yurkova, S.C. Cunnane, P.K. Eck, and P.J. Jones, Dietary oils and FADS1-FADS2 genetic variants modulate [13C]alpha-linolenic acid metabolism and plasma fatty acid composition. Am J Clin Nutr, 2013. 97(1): p. 195-207.
124.Freemantle, E., A. Lalovic, N. Mechawar, and G. Turecki, Age and haplotype variations within FADS1 interact and associate with alterations in fatty acid composition in human male cortical brain tissue. PLoS One, 2012. 7(8): p. e42696.
125.Lattka, E., B. Koletzko, S. Zeilinger, J.R. Hibbeln, N. Klopp, S.M. Ring, and C.D. Steer, Umbilical cord PUFA are determined by maternal and child fatty acid desaturase (FADS) genetic variants in the Avon Longitudinal Study of Parents and Children (ALSPAC). Br J Nutr, 2013. 109(7): p. 1196-210.
126.Steer, C.D., J.R. Hibbeln, J. Golding, and G. Davey Smith, Polyunsaturated fatty acid levels in blood during pregnancy, at birth and at 7 years: their associations with two common FADS2 polymorphisms. Hum Mol Genet, 2012. 21(7): p. 1504-12.
127.Morales, E., M. Bustamante, J.R. Gonzalez, M. Guxens, M. Torrent, M. Mendez, R. Garcia-Esteban, J. Julvez, J. Forns, M. Vrijheid, et al., Genetic variants of the FADS gene cluster and ELOVL gene family, colostrums LC-PUFA levels, breastfeeding, and child cognition. PLoS One, 2011. 6(2): p. e17181.
128.Lattka, E., P. Rzehak, E. Szabo, V. Jakobik, M. Weck, M. Weyermann, H. Grallert, D. Rothenbacher, J. Heinrich, H. Brenner, et al., Genetic variants in the FADS gene cluster are associated with arachidonic acid concentrations of human breast milk at 1.5 and 6 mo postpartum and influence the course of milk dodecanoic, tetracosenoic, and trans-9-octadecenoic acid concentrations over the duration of lactation. Am J Clin Nutr, 2011. 93(2): p. 382-91.
129.Kwak, J.H., J.K. Paik, O.Y. Kim, Y. Jang, S.H. Lee, J.M. Ordovas, and J.H. Lee, FADS gene polymorphisms in Koreans: association with omega6 polyunsaturated fatty acids in serum phospholipids, lipid peroxides, and coronary artery disease. Atherosclerosis, 2011. 214(1): p. 94-100.
130.Rzehak, P., C. Thijs, M. Standl, M. Mommers, C. Glaser, E. Jansen, N. Klopp, G.H. Koppelman, P. Singmann, D.S. Postma, et al., Variants of the FADS1 FADS2 gene cluster, blood levels of polyunsaturated fatty acids and eczema in children within the first 2 years of life. PLoS One, 2010. 5(10): p. e13261.
131.Bokor, S., J. Dumont, A. Spinneker, M. Gonzalez-Gross, E. Nova, K. Widhalm, G. Moschonis, P. Stehle, P. Amouyel, S. De Henauw, et al., Single nucleotide polymorphisms in the FADS gene cluster are associated with delta-5 and delta-6 desaturase activities estimated by serum fatty acid ratios. J Lipid Res, 2010. 51(8): p. 2325-33.
132.Caspi, A., B. Williams, J. Kim-Cohen, I.W. Craig, B.J. Milne, R. Poulton, L.C. Schalkwyk, A. Taylor, H. Werts, and T.E. Moffitt, Moderation of breastfeeding effects on the IQ by genetic variation in fatty acid metabolism. Proc Natl Acad Sci U S A, 2007. 104(47): p. 18860-5.
133.Ding, Z., G.L. Liu, X. Li, X.Y. Chen, Y.X. Wu, C.C. Cui, X. Zhang, G. Yang, and L. Xie, Association of polyunsaturated fatty acids in breast milk with fatty acid desaturase gene polymorphisms among Chinese lactating mothers. Prostaglandins Leukot Essent Fatty Acids, 2016. 109: p. 66-71.
134.Rist, L., A. Mueller, C. Barthel, B. Snijders, M. Jansen, A.P. Simoes-Wust, M. Huber, I. Kummeling, U. von Mandach, H. Steinhart, et al., Influence of organic diet on the amount of conjugated linoleic acids in breast milk of lactating women in the Netherlands. Br J Nutr, 2007. 97(4): p. 735-43.
135.Molto-Puigmarti, C., A.I. Castellote, and M.C. Lopez-Sabater, Conjugated linoleic acid determination in human milk by fast-gas chromatography. Anal Chim Acta, 2007. 602(1): p. 122-30.
136.Wu, T.C., B.H. Lau, P.H. Chen, L.T. Wu, and R.B. Tang, Fatty acid composition of Taiwanese human milk. J Chin Med Assoc, 2010. 73(11): p. 581-8.
137.Huang, H.L., L.T. Chuang, H.H. Li, C.P. Lin, and R.H. Glew, Docosahexaenoic acid in maternal and neonatal plasma phospholipids and milk lipids of Taiwanese women in Kinmen: fatty acid composition of maternal blood, neonatal blood and breast milk. Lipids Health Dis, 2013. 12: p. 27.
138.Yuhas, R., K. Pramuk, and E.L. Lien, Human milk fatty acid composition from nine countries varies most in DHA. Lipids, 2006. 41(9): p. 851-8.
139.田慧敏, FADS基因簇与乳母膳食对乳汁中脂肪酸成分的影响及机制研究. 2020: 吉林大学.
140.Calder, P.C., S. Krauss-Etschmann, E.C. de Jong, C. Dupont, J.S. Frick, H. Frokiaer, J. Heinrich, H. Garn, S. Koletzko, G. Lack, et al., Early nutrition and immunity - progress and perspectives. Br J Nutr, 2006. 96(4): p. 774-90.
141.Dhir, A. and E. Buratti, Alternative splicing: role of pseudoexons in human disease and potential therapeutic strategies. FEBS J, 2010. 277(4): p. 841-55.
142.Romano, M., E. Buratti, and D. Baralle, Role of pseudoexons and pseudointrons in human cancer. Int J Cell Biol, 2013. 2013: p. 810572.
143.Antonellis, A., M.Y. Dennis, G. Burzynski, J. Huynh, V. Maduro, C.J. Hodonsky, M. Khajavi, K. Szigeti, S. Mukkamala, S.L. Bessling, et al., A rare myelin protein zero (MPZ) variant alters enhancer activity in vitro and in vivo. PLoS One, 2010. 5(12): p. e14346.
144.Szafranski, P., Y. Yang, M.U. Nelson, M.J. Bizzarro, R.A. Morotti, C. Langston, and P. Stankiewicz, Novel FOXF1 deep intronic deletion causes lethal lung developmental disorder, alveolar capillary dysplasia with misalignment of pulmonary veins. Hum Mutat, 2013. 34(11): p. 1467-71.
145.Edery, P., C. Marcaillou, M. Sahbatou, A. Labalme, J. Chastang, R. Touraine, E. Tubacher, F. Senni, M.B. Bober, S. Nampoothiri, et al., Association of TALS developmental disorder with defect in minor splicing component U4atac snRNA. Science, 2011. 332(6026): p. 240-3.
146.He, H., S. Liyanarachchi, K. Akagi, R. Nagy, J. Li, R.C. Dietrich, W. Li, N. Sebastian, B. Wen, B. Xin, et al., Mutations in U4atac snRNA, a component of the minor spliceosome, in the developmental disorder MOPD I. Science, 2011. 332(6026): p. 238-40.
147.Tian, H., H. Yu, Y. Lin, Y. Li, W. Xu, Y. Chen, G. Liu, and L. Xie, Association between FADS Gene Expression and Polyunsaturated Fatty Acids in Breast Milk. Nutrients, 2022. 14(3).
148.Chen, C.H., J.H. Yang, C.W.K. Chiang, C.N. Hsiung, P.E. Wu, L.C. Chang, H.W. Chu, J. Chang, I.W. Song, S.L. Yang, et al., Population structure of Han Chinese in the modern Taiwanese population based on 10,000 participants in the Taiwan Biobank project. Hum Mol Genet, 2016. 25(24): p. 5321-5331.
149.Zhao, Y.B., Y. Zhang, Q.C. Zhang, H.J. Li, Y.Q. Cui, Z. Xu, L. Jin, H. Zhou, and H. Zhu, Ancient DNA reveals that the genetic structure of the northern Han Chinese was shaped prior to 3,000 years ago. PLoS One, 2015. 10(5): p. e0125676.
150.Merino, D.M., H. Johnston, S. Clarke, K. Roke, D. Nielsen, A. Badawi, A. El-Sohemy, D.W. Ma, and D.M. Mutch, Polymorphisms in FADS1 and FADS2 alter desaturase activity in young Caucasian and Asian adults. Mol Genet Metab, 2011. 103(2): p. 171-8.
151.Fumagalli, M., I. Moltke, N. Grarup, F. Racimo, P. Bjerregaard, M.E. Jorgensen, T.S. Korneliussen, P. Gerbault, L. Skotte, A. Linneberg, et al., Greenlandic Inuit show genetic signatures of diet and climate adaptation. Science, 2015. 349(6254): p. 1343-7.
152.Gow, R.V. and J.R. Hibbeln, Omega-3 fatty acid and nutrient deficits in adverse neurodevelopment and childhood behaviors. Child Adolesc Psychiatr Clin N Am, 2014. 23(3): p. 555-90.
153.Innis, S.M., Dietary (n-3) fatty acids and brain development. J Nutr, 2007. 137(4): p. 855-9.
154.Hashimoto, M., S. Hossain, A. Al Mamun, K. Matsuzaki, and H. Arai, Docosahexaenoic acid: one molecule diverse functions. Crit Rev Biotechnol, 2017. 37(5): p. 579-597.
155.Carlson, S.E., J. Colombo, B.J. Gajewski, K.M. Gustafson, D. Mundy, J. Yeast, M.K. Georgieff, L.A. Markley, E.H. Kerling, and D.J. Shaddy, DHA supplementation and pregnancy outcomes. Am J Clin Nutr, 2013. 97(4): p. 808-15.
156.Hartwig, F.P., N.M. Davies, B.L. Horta, T.S. Ahluwalia, H. Bisgaard, K. Bonnelykke, A. Caspi, T.E. Moffitt, R. Poulton, A. Sajjad, et al., Effect modification of FADS2 polymorphisms on the association between breastfeeding and intelligence: results from a collaborative meta-analysis. Int J Epidemiol, 2019. 48(1): p. 45-57.
157.Molto-Puigmarti, C., M.C. van Dongen, P.C. Dagnelie, J. Plat, R.P. Mensink, F.E. Tan, J. Heinrich, and C. Thijs, Maternal but not fetal FADS gene variants modify the association between maternal long-chain PUFA intake in pregnancy and birth weight. J Nutr, 2014. 144(9): p. 1430-7.
158.Yeates, A.J., A. Zavez, S.W. Thurston, E.M. McSorley, M.S. Mulhern, A. Alhamdow, K. Engstrom, K. Wahlberg, J.J. Strain, G.E. Watson, et al., Maternal Long-Chain Polyunsaturated Fatty Acid Status, Methylmercury Exposure, and Birth Outcomes in a High-Fish-Eating Mother-Child Cohort. J Nutr, 2020. 150(7): p. 1749-1756.
159.Bernard, J.Y., H. Pan, I.M. Aris, M. Moreno-Betancur, S.E. Soh, F. Yap, K.H. Tan, L.P. Shek, Y.S. Chong, P.D. Gluckman, et al., Long-chain polyunsaturated fatty acids, gestation duration, and birth size: a Mendelian randomization study using fatty acid desaturase variants. Am J Clin Nutr, 2018. 108(1): p. 92-100.
160.Gonzalez Casanova, I., M. Schoen, S. Tandon, A.D. Stein, A. Barraza Villarreal, A.M. DiGirolamo, H. Demmelmair, I. Ramirez Silva, R.G. Feregrino, P. Rzehak, et al., Maternal FADS2 single nucleotide polymorphism modified the impact of prenatal docosahexaenoic acid (DHA) supplementation on child neurodevelopment at 5 years: Follow-up of a randomized clinical trial. Clin Nutr, 2021. 40(10): p. 5339-5345.
161.Chamorro, R., K.A. Bascunan, C. Barrera, J. Sandoval, C. Puigrredon, and R. Valenzuela, Reduced n-3 and n-6 PUFA (DHA and AA) Concentrations in Breast Milk and Erythrocytes Phospholipids during Pregnancy and Lactation in Women with Obesity. Int J Environ Res Public Health, 2022. 19(4).

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top