|
1.Boquien, C.Y., Human Milk: An Ideal Food for Nutrition of Preterm Newborn. Front Pediatr, 2018. 6: p. 295. 2.Hurley, W.L. and P.K. Theil, Perspectives on immunoglobulins in colostrum and milk. Nutrients, 2011. 3(4): p. 442-74. 3.Apter, F.M., W.I. Lencer, R.A. Finkelstein, J.J. Mekalanos, and M.R. Neutra, Monoclonal immunoglobulin A antibodies directed against cholera toxin prevent the toxin-induced chloride secretory response and block toxin binding to intestinal epithelial cells in vitro. Infect Immun, 1993. 61(12): p. 5271-8. 4.Mantis, N.J., S.A. Farrant, and S. Mehta, Oligosaccharide side chains on human secretory IgA serve as receptors for ricin. J Immunol, 2004. 172(11): p. 6838-45. 5.Silvey, K.J., A.B. Hutchings, M. Vajdy, M.M. Petzke, and M.R. Neutra, Role of immunoglobulin A in protection against reovirus entry into Murine Peyer's patches. J Virol, 2001. 75(22): p. 10870-9. 6.Perkkiö, M. and E. Savilahti, Time of appearance of immunoglobulin-containing cells in the mucosa of the neonatal intestine. Pediatr Res, 1980. 14(8): p. 953-5. 7.Köhler, H., S. Donarski, B. Stocks, A. Parret, C. Edwards, and H. Schroten, Antibacterial characteristics in the feces of breast-fed and formula-fed infants during the first year of life. J Pediatr Gastroenterol Nutr, 2002. 34(2): p. 188-93. 8.Mohrbacher, N.S.J.L.L.L.I., The breastfeeding answer book. 2003. 9.Gidrewicz, D.A. and T.R. Fenton, A systematic review and meta-analysis of the nutrient content of preterm and term breast milk. BMC Pediatr, 2014. 14: p. 216. 10.Floris, L.M., B. Stahl, M. Abrahamse-Berkeveld, and I.C. Teller, Human milk fatty acid profile across lactational stages after term and preterm delivery: A pooled data analysis. Prostaglandins Leukot Essent Fatty Acids, 2020. 156: p. 102023. 11.Boyce, C., M. Watson, G. Lazidis, S. Reeve, K. Dods, K. Simmer, and G. McLeod, Preterm human milk composition: a systematic literature review. Br J Nutr, 2016. 116(6): p. 1033-45. 12.López-López, A., M.C. López-Sabater, C. Campoy-Folgoso, M. Rivero-Urgell, and A.I. Castellote-Bargalló, Fatty acid and sn-2 fatty acid composition in human milk from Granada (Spain) and in infant formulas. Eur J Clin Nutr, 2002. 56(12): p. 1242-54. 13.Koletzko, B., Human Milk Lipids. Ann Nutr Metab, 2016. 69 Suppl 2: p. 28-40. 14.Martin, C.R., P.R. Ling, and G.L. Blackburn, Review of Infant Feeding: Key Features of Breast Milk and Infant Formula. Nutrients, 2016. 8(5). 15.Jensen, R.G., Lipids in human milk. Lipids, 1999. 34(12): p. 1243-71. 16.Andreas, N.J., B. Kampmann, and K. Mehring Le-Doare, Human breast milk: A review on its composition and bioactivity. Early Hum Dev, 2015. 91(11): p. 629-35. 17.Ballard, O. and A.L. Morrow, Human milk composition: nutrients and bioactive factors. Pediatr Clin North Am, 2013. 60(1): p. 49-74. 18.Stiemsma, L.T. and K.B. Michels, The Role of the Microbiome in the Developmental Origins of Health and Disease. Pediatrics, 2018. 141(4). 19.Beattie, L.M. and L.T. Weaver, Mothers, babies and friendly bacteria. Arch Dis Child Fetal Neonatal Ed, 2011. 96(3): p. F160-3. 20.Pannaraj, P.S., F. Li, C. Cerini, J.M. Bender, S. Yang, A. Rollie, H. Adisetiyo, S. Zabih, P.J. Lincez, K. Bittinger, et al., Association Between Breast Milk Bacterial Communities and Establishment and Development of the Infant Gut Microbiome. JAMA Pediatr, 2017. 171(7): p. 647-654. 21.Horta BL, V.C.W.H.O., Short-term effects of breastfeeding: a systematic review on the benefits of breastfeeding on diarrhoea and pneumonia mortality. . 2013. 22.Quigley, M.A., C. Carson, A. Sacker, and Y. Kelly, Exclusive breastfeeding duration and infant infection. Eur J Clin Nutr, 2016. 70(12): p. 1420-1427. 23.Frank, N.M., K.F. Lynch, U. Uusitalo, J. Yang, M. Lonnrot, S.M. Virtanen, H. Hyoty, J.M. Norris, and T.S. Group, The relationship between breastfeeding and reported respiratory and gastrointestinal infection rates in young children. BMC Pediatr, 2019. 19(1): p. 339. 24.Billeaud, C., J. Guillet, and B. Sandler, Gastric emptying in infants with or without gastro-oesophageal reflux according to the type of milk. Eur J Clin Nutr, 1990. 44(8): p. 577-83. 25.Meyer, R., R.X. Foong, N. Thapar, S. Kritas, and N. Shah, Systematic review of the impact of feed protein type and degree of hydrolysis on gastric emptying in children. BMC Gastroenterol, 2015. 15: p. 137. 26.Shulman, R.J., R.J. Schanler, C. Lau, M. Heitkemper, C.N. Ou, and E.O. Smith, Early feeding, feeding tolerance, and lactase activity in preterm infants. J Pediatr, 1998. 133(5): p. 645-9. 27.Shulman, R.J., R.J. Schanler, C. Lau, M. Heitkemper, C.N. Ou, and E.O. Smith, Early feeding, antenatal glucocorticoids, and human milk decrease intestinal permeability in preterm infants. Pediatr Res, 1998. 44(4): p. 519-23. 28.Taylor, S.N., L.A. Basile, M. Ebeling, and C.L. Wagner, Intestinal permeability in preterm infants by feeding type: mother's milk versus formula. Breastfeed Med, 2009. 4(1): p. 11-5. 29.Holman, R.C., B.J. Stoll, A.T. Curns, K.L. Yorita, C.A. Steiner, and L.B. Schonberger, Necrotising enterocolitis hospitalisations among neonates in the United States. Paediatr Perinat Epidemiol, 2006. 20(6): p. 498-506. 30.Quigley, M., N.D. Embleton, and W. McGuire, Formula versus donor breast milk for feeding preterm or low birth weight infants. Cochrane Database Syst Rev, 2019. 7: p. CD002971. 31.Committee On, N., B. Section On, F. Committee On, and Newborn, Donor Human Milk for the High-Risk Infant: Preparation, Safety, and Usage Options in the United States. Pediatrics, 2017. 139(1). 32.Christensen, N., S. Bruun, J. Sondergaard, H.T. Christesen, N. Fisker, G. Zachariassen, P.T. Sangild, and S. Husby, Breastfeeding and Infections in Early Childhood: A Cohort Study. Pediatrics, 2020. 146(5). 33.Bartick, M.C., E.B. Schwarz, B.D. Green, B.J. Jegier, A.G. Reinhold, T.T. Colaizy, D.L. Bogen, A.J. Schaefer, and A.M. Stuebe, Suboptimal breastfeeding in the United States: Maternal and pediatric health outcomes and costs. Matern Child Nutr, 2017. 13(1). 34.Valcarce, V., L.S. Stafford, J. Neu, N. Cacho, L. Parker, M. Mueller, D.J. Burchfield, N. Li, and J. Larkin, 3rd, Detection of SARS-CoV-2-Specific IgA in the Human Milk of COVID-19 Vaccinated Lactating Health Care Workers. Breastfeed Med, 2021. 16(12): p. 1004-1009. 35.Victora, C.G., R. Bahl, A.J. Barros, G.V. Franca, S. Horton, J. Krasevec, S. Murch, M.J. Sankar, N. Walker, N.C. Rollins, et al., Breastfeeding in the 21st century: epidemiology, mechanisms, and lifelong effect. Lancet, 2016. 387(10017): p. 475-90. 36.Bowatte, G., R. Tham, K.J. Allen, D.J. Tan, M. Lau, X. Dai, and C.J. Lodge, Breastfeeding and childhood acute otitis media: a systematic review and meta-analysis. Acta Paediatr, 2015. 104(467): p. 85-95. 37.Dewey, K.G., M.J. Heinig, and L.A. Nommsen-Rivers, Differences in morbidity between breast-fed and formula-fed infants. J Pediatr, 1995. 126(5 Pt 1): p. 696-702. 38.Boone, K.M., S.R. Geraghty, and S.A. Keim, Feeding at the Breast and Expressed Milk Feeding: Associations with Otitis Media and Diarrhea in Infants. J Pediatr, 2016. 174: p. 118-25. 39.Marild, S., S. Hansson, U. Jodal, A. Oden, and K. Svedberg, Protective effect of breastfeeding against urinary tract infection. Acta Paediatr, 2004. 93(2): p. 164-8. 40.Levy, I., J. Comarsca, M. Davidovits, G. Klinger, L. Sirota, and N. Linder, Urinary tract infection in preterm infants: the protective role of breastfeeding. Pediatr Nephrol, 2009. 24(3): p. 527-31. 41.Goldblum, R.M., R.J. Schanler, C. Garza, and A.S. Goldman, Human milk feeding enhances the urinary excretion of immunologic factors in low birth weight infants. Pediatr Res, 1989. 25(2): p. 184-8. 42.Bhutta, Z.A. and K. Yusuf, Early-onset neonatal sepsis in Pakistan: a case control study of risk factors in a birth cohort. Am J Perinatol, 1997. 14(9): p. 577-81. 43.Khan, J., L. Vesel, R. Bahl, and J.C. Martines, Timing of breastfeeding initiation and exclusivity of breastfeeding during the first month of life: effects on neonatal mortality and morbidity--a systematic review and meta-analysis. Matern Child Health J, 2015. 19(3): p. 468-79. 44.Corpeleijn, W.E., S.M. Kouwenhoven, M.C. Paap, I. van Vliet, I. Scheerder, Y. Muizer, O.K. Helder, J.B. van Goudoever, and M.J. Vermeulen, Intake of own mother's milk during the first days of life is associated with decreased morbidity and mortality in very low birth weight infants during the first 60 days of life. Neonatology, 2012. 102(4): p. 276-81. 45.Ashraf, R.N., F. Jalil, S. Zaman, J. Karlberg, S.R. Khan, B.S. Lindblad, and L.A. Hanson, Breast feeding and protection against neonatal sepsis in a high risk population. Arch Dis Child, 1991. 66(4): p. 488-90. 46.Ip, S., M. Chung, G. Raman, P. Chew, N. Magula, D. DeVine, T. Trikalinos, and J. Lau, Breastfeeding and maternal and infant health outcomes in developed countries. Evid Rep Technol Assess (Full Rep), 2007(153): p. 1-186. 47.Vennemann, M.M., T. Bajanowski, B. Brinkmann, G. Jorch, K. Yucesan, C. Sauerland, E.A. Mitchell, and S.I.D.S.G. Ge, Does breastfeeding reduce the risk of sudden infant death syndrome? Pediatrics, 2009. 123(3): p. e406-10. 48.Li, R., J. Ware, A. Chen, J. Nelson, J. Kmet, S. Parks, A. Morrow, J. Chen, and C. Perrine, Breastfeeding and Post-perinatal Infant Deaths in the United States, A National Prospective Cohort Analysis. The Lancet Regional Health - Americas, 2021. 5: p. 100094. 49.Hauck, F.R., J.M. Thompson, K.O. Tanabe, R.Y. Moon, and M.M. Vennemann, Breastfeeding and reduced risk of sudden infant death syndrome: a meta-analysis. Pediatrics, 2011. 128(1): p. 103-10. 50.Thompson, J.M.D., K. Tanabe, R.Y. Moon, E.A. Mitchell, C. McGarvey, D. Tappin, P.S. Blair, and F.R. Hauck, Duration of Breastfeeding and Risk of SIDS: An Individual Participant Data Meta-analysis. Pediatrics, 2017. 140(5). 51.Sankar, M.J., B. Sinha, R. Chowdhury, N. Bhandari, S. Taneja, J. Martines, and R. Bahl, Optimal breastfeeding practices and infant and child mortality: a systematic review and meta-analysis. Acta Paediatr, 2015. 104(467): p. 3-13. 52.Smith, E.R., L. Hurt, R. Chowdhury, B. Sinha, W. Fawzi, K.M. Edmond, and G. Neovita Study, Delayed breastfeeding initiation and infant survival: A systematic review and meta-analysis. PLoS One, 2017. 12(7): p. e0180722. 53.Horta, B.L., C. Loret de Mola, and C.G. Victora, Breastfeeding and intelligence: a systematic review and meta-analysis. Acta Paediatr, 2015. 104(467): p. 14-9. 54.Plunkett, B.A., L. Mele, B.M. Casey, M.W. Varner, Y. Sorokin, U.M. Reddy, R.J. Wapner, J.M. Thorp, Jr., G.R. Saade, A.T.N. Tita, et al., Association of Breastfeeding and Child IQ Score at Age 5 Years. Obstet Gynecol, 2021. 137(4): p. 561-570. 55.O'Connor, D.L., J. Jacobs, R. Hall, D. Adamkin, N. Auestad, M. Castillo, W.E. Connor, S.L. Connor, K. Fitzgerald, S. Groh-Wargo, et al., Growth and development of premature infants fed predominantly human milk, predominantly premature infant formula, or a combination of human milk and premature formula. J Pediatr Gastroenterol Nutr, 2003. 37(4): p. 437-46. 56.Hylander, M.A., D.M. Strobino, J.C. Pezzullo, and R. Dhanireddy, Association of human milk feedings with a reduction in retinopathy of prematurity among very low birthweight infants. J Perinatol, 2001. 21(6): p. 356-62. 57.Zhou, J., V.V. Shukla, D. John, and C. Chen, Human Milk Feeding as a Protective Factor for Retinopathy of Prematurity: A Meta-analysis. Pediatrics, 2015. 136(6): p. e1576-86. 58.Schanler, R.J., C. Lau, N.M. Hurst, and E.O. Smith, Randomized trial of donor human milk versus preterm formula as substitutes for mothers' own milk in the feeding of extremely premature infants. Pediatrics, 2005. 116(2): p. 400-6. 59.Okamoto, T., M. Shirai, M. Kokubo, S. Takahashi, M. Kajino, M. Takase, H. Sakata, and J. Oki, Human milk reduces the risk of retinal detachment in extremely low-birthweight infants. Pediatr Int, 2007. 49(6): p. 894-7. 60.WHO. Breastfeeding. 2022; Available from: https://www.who.int/health-topics/breastfeeding#tab=tab_1. 61.Pawlosky, R.J., J.R. Hibbeln, J.A. Novotny, and N. Salem, Jr., Physiological compartmental analysis of alpha-linolenic acid metabolism in adult humans. J Lipid Res, 2001. 42(8): p. 1257-65. 62.Rapoport, S.I., In vivo approaches and rationale for quantifying kinetics and imaging brain lipid metabolic pathways. Prostaglandins Other Lipid Mediat, 2005. 77(1-4): p. 185-96. 63.Farooqui, A.A., Beneficial Effects of Fish Oil on Human Brain. 2009: Springer New York. 64.Oster, T. and T. Pillot, Docosahexaenoic acid and synaptic protection in Alzheimer's disease mice. Biochim Biophys Acta, 2010. 1801(8): p. 791-8. 65.Bradbury, J., Docosahexaenoic acid (DHA): an ancient nutrient for the modern human brain. Nutrients, 2011. 3(5): p. 529-54. 66.Richards, M.P., P.B. Pettitt, M.C. Stiner, and E. Trinkaus, Stable isotope evidence for increasing dietary breadth in the European mid-Upper Paleolithic. Proc Natl Acad Sci U S A, 2001. 98(11): p. 6528-32. 67.Broadhurst, C.L., Y. Wang, M.A. Crawford, S.C. Cunnane, J.E. Parkington, and W.F. Schmidt, Brain-specific lipids from marine, lacustrine, or terrestrial food resources: potential impact on early African Homo sapiens. Comp Biochem Physiol B Biochem Mol Biol, 2002. 131(4): p. 653-73. 68.Crawford, M.A., M. Bloom, C.L. Broadhurst, W.F. Schmidt, S.C. Cunnane, C. Galli, K. Gehbremeskel, F. Linseisen, J. Lloyd-Smith, and J. Parkington, Evidence for the unique function of docosahexaenoic acid during the evolution of the modern hominid brain. Lipids, 1999. 34 Suppl: p. S39-47. 69.Cunnane, S.C. and M.A. Crawford, Survival of the fattest: fat babies were the key to evolution of the large human brain. Comp Biochem Physiol A Mol Integr Physiol, 2003. 136(1): p. 17-26. 70.Wikipedia. Docosahexaenoic acid. 2022; Available from: https://en.wikipedia.org/wiki/Docosahexaenoic_acid. 71.Kuipers, R.S., M.F. Luxwolda, P.J. Offringa, E.R. Boersma, D.A. Dijck-Brouwer, and F.A. Muskiet, Fetal intrauterine whole body linoleic, arachidonic and docosahexaenoic acid contents and accretion rates. Prostaglandins Leukot Essent Fatty Acids, 2012. 86(1-2): p. 13-20. 72.Innis, S.M., Perinatal biochemistry and physiology of long-chain polyunsaturated fatty acids. J Pediatr, 2003. 143(4 Suppl): p. S1-8. 73.Martinez, M., Tissue levels of polyunsaturated fatty acids during early human development. J Pediatr, 1992. 120(4 Pt 2): p. S129-38. 74.Lewin, G.A., H.M. Schachter, D. Yuen, P. Merchant, V. Mamaladze, and A. Tsertsvadze, Effects of omega-3 fatty acids on child and maternal health. Evid Rep Technol Assess (Summ), 2005(118): p. 1-11. 75.Clandinin, M.T., J.E. Chappell, T. Heim, P.R. Swyer, and G.W. Chance, Fatty acid utilization in perinatal de novo synthesis of tissues. Early Hum Dev, 1981. 5(4): p. 355-66. 76.Cunnane, S.C., V. Francescutti, J.T. Brenna, and M.A. Crawford, Breast-fed infants achieve a higher rate of brain and whole body docosahexaenoate accumulation than formula-fed infants not consuming dietary docosahexaenoate. Lipids, 2000. 35(1): p. 105-11. 77.(FDA), T.U.F.a.D.A. FDA Announces New Qualified Health Claims for EPA and DHA Omega-3 Consumption and the Risk of Hypertension and Coronary Heart Disease. 2019; Available from: https://www.fda.gov/food/cfsan-constituent-updates/fda-announces-new-qualified-health-claims-epa-and-dha-omega-3-consumption-and-risk-hypertension-and. 78.Oken, E., R.O. Wright, K.P. Kleinman, D. Bellinger, C.J. Amarasiriwardena, H. Hu, J.W. Rich-Edwards, and M.W. Gillman, Maternal fish consumption, hair mercury, and infant cognition in a U.S. Cohort. Environ Health Perspect, 2005. 113(10): p. 1376-80. 79.Oken, E., J.S. Radesky, R.O. Wright, D.C. Bellinger, C.J. Amarasiriwardena, K.P. Kleinman, H. Hu, and M.W. Gillman, Maternal fish intake during pregnancy, blood mercury levels, and child cognition at age 3 years in a US cohort. Am J Epidemiol, 2008. 167(10): p. 1171-81. 80.Oken, E., M.L. Østerdal, M.W. Gillman, V.K. Knudsen, T.I. Halldorsson, M. Strøm, D.C. Bellinger, M. Hadders-Algra, K.F. Michaelsen, and S.F. Olsen, Associations of maternal fish intake during pregnancy and breastfeeding duration with attainment of developmental milestones in early childhood: a study from the Danish National Birth Cohort. Am J Clin Nutr, 2008. 88(3): p. 789-96. 81.Middleton, P., J.C. Gomersall, J.F. Gould, E. Shepherd, S.F. Olsen, and M. Makrides, Omega-3 fatty acid addition during pregnancy. Cochrane Database Syst Rev, 2018. 11(11): p. Cd003402. 82.Malmir, H., B. Larijani, and A. Esmaillzadeh, Fish consumption during pregnancy and risk of allergic diseases in the offspring: A systematic review and meta-analysis. Crit Rev Food Sci Nutr, 2021: p. 1-11. 83.Bisgaard, H., J. Stokholm, B.L. Chawes, N.H. Vissing, E. Bjarnadóttir, A.-M.M. Schoos, H.M. Wolsk, T.M. Pedersen, R.K. Vinding, S. Thorsteinsdóttir, et al., Fish Oil–Derived Fatty Acids in Pregnancy and Wheeze and Asthma in Offspring. New England Journal of Medicine, 2016. 375(26): p. 2530-2539. 84.Vahdaninia, M., H. Mackenzie, T. Dean, and S. Helps, ω-3 LCPUFA supplementation during pregnancy and risk of allergic outcomes or sensitization in offspring: A systematic review and meta-analysis. Ann Allergy Asthma Immunol, 2019. 122(3): p. 302-313.e2. 85.Miller, P.E., M. Van Elswyk, and D.D. Alexander, Long-chain omega-3 fatty acids eicosapentaenoic acid and docosahexaenoic acid and blood pressure: a meta-analysis of randomized controlled trials. Am J Hypertens, 2014. 27(7): p. 885-96. 86.Wu, S., C. Zhu, Z. Wang, S. Wang, P. Yuan, T. Song, X. Hou, and Z. Lei, Effects of Fish Oil Supplementation on Cardiometabolic Risk Factors in Overweight or Obese Children and Adolescents: A Meta-Analysis of Randomized Controlled Trials. Front Pediatr, 2021. 9: p. 604469. 87.Mozaffarian, D. and J.H. Wu, Omega-3 fatty acids and cardiovascular disease: effects on risk factors, molecular pathways, and clinical events. J Am Coll Cardiol, 2011. 58(20): p. 2047-67. 88.Zhang, Y.Y., W. Liu, T.Y. Zhao, and H.M. Tian, Efficacy of Omega-3 Polyunsaturated Fatty Acids Supplementation in Managing Overweight and Obesity: A Meta-Analysis of Randomized Clinical Trials. J Nutr Health Aging, 2017. 21(2): p. 187-192. 89.Brenna, J.T., B. Varamini, R.G. Jensen, D.A. Diersen-Schade, J.A. Boettcher, and L.M. Arterburn, Docosahexaenoic and arachidonic acid concentrations in human breast milk worldwide. Am J Clin Nutr, 2007. 85(6): p. 1457-64. 90.WHO. Fats and fatty acids in human nutrition: Report of an expert consultation. . 2017; Available from: foris.fao.org/preview/25553-0ece4cb94ac52f9a25af77ca5cfba7a8c.pdf. 91.Innis, S.M., Human milk: maternal dietary lipids and infant development. Proc Nutr Soc, 2007. 66(3): p. 397-404. 92.Innis, S.M., J. Gilley, and J. Werker, Are human milk long-chain polyunsaturated fatty acids related to visual and neural development in breast-fed term infants? J Pediatr, 2001. 139(4): p. 532-8. 93.Jensen, C.L., R.G. Voigt, T.C. Prager, Y.L. Zou, J.K. Fraley, J.C. Rozelle, M.R. Turcich, A.M. Llorente, R.E. Anderson, and W.C. Heird, Effects of maternal docosahexaenoic acid intake on visual function and neurodevelopment in breastfed term infants. Am J Clin Nutr, 2005. 82(1): p. 125-32. 94.Koletzko, B., I. Cetin, J.T. Brenna, G. Perinatal Lipid Intake Working, F. Child Health, G. Diabetic Pregnancy Study, M. European Association of Perinatal, M. European Association of Perinatal, N. European Society for Clinical, Metabolism, et al., Dietary fat intakes for pregnant and lactating women. Br J Nutr, 2007. 98(5): p. 873-7. 95.Simopoulos, A.P., A. Leaf, and N. Salem, Jr., Workshop statement on the essentiality of and recommended dietary intakes for Omega-6 and Omega-3 fatty acids. Prostaglandins Leukot Essent Fatty Acids, 2000. 63(3): p. 119-21. 96.Koletzko, B., E. Lien, C. Agostoni, H. Bohles, C. Campoy, I. Cetin, T. Decsi, J.W. Dudenhausen, C. Dupont, S. Forsyth, et al., The roles of long-chain polyunsaturated fatty acids in pregnancy, lactation and infancy: review of current knowledge and consensus recommendations. J Perinat Med, 2008. 36(1): p. 5-14. 97.Koletzko, B., C.P. Bauer, P. Bung, M. Cremer, M. Flothkotter, C. Hellmers, M. Kersting, M. Krawinkel, H. Przyrembel, R. Rasenack, et al., German national consensus recommendations on nutrition and lifestyle in pregnancy by the 'Healthy Start - Young Family Network'. Ann Nutr Metab, 2013. 63(4): p. 311-22. 98.Hospital, C.M.U. 產婦藥膳餐. 2022; Available from: https://www.cmuh.cmu.edu.tw/HealthEdus/Detail?no=4797. 99.CMUH. 產婦藥膳餐. 2022; Available from: https://www.cmuh.cmu.edu.tw/HealthEdus/Detail?no=4797. 100.Pei-Min Chao, S.-M.T., Total Lipids, Fatty Acid Composition and Cholestol Content of Fifteen Fish Species Commom in Taiwan. Nutritional Sciences Journal, 1996. 21(2): p. 147-159. 101.UpToDate. Weekly servings of fish to achieve 250 mg/day of EPA + DHA. 2020; Available from: https://www.uptodate.com/contents/fish-consumption-and-marine-omega-3-fatty-acid-supplementation-in-pregnancy?search=pregnant%20DHA&source=search_result&selectedTitle=1~54&usage_type=default&display_rank=1. 102.U.S. DEPARTMENT OF AGRICULTURE. FoodData Central. 2020; Available from: https://fdc.nal.usda.gov/. 103.Koletzko, B., E. Lattka, S. Zeilinger, T. Illig, and C. Steer, Genetic variants of the fatty acid desaturase gene cluster predict amounts of red blood cell docosahexaenoic and other polyunsaturated fatty acids in pregnant women: findings from the Avon Longitudinal Study of Parents and Children. Am J Clin Nutr, 2011. 93(1): p. 211-9. 104.Molto-Puigmarti, C., J. Plat, R.P. Mensink, A. Muller, E. Jansen, M.P. Zeegers, and C. Thijs, FADS1 FADS2 gene variants modify the association between fish intake and the docosahexaenoic acid proportions in human milk. Am J Clin Nutr, 2010. 91(5): p. 1368-76. 105.Park, W.J., K.S. Kothapalli, H.T. Reardon, P. Lawrence, S.B. Qian, and J.T. Brenna, A novel FADS1 isoform potentiates FADS2-mediated production of eicosanoid precursor fatty acids. J Lipid Res, 2012. 53(8): p. 1502-12. 106.Lattka, E., T. Illig, B. Koletzko, and J. Heinrich, Genetic variants of the FADS1 FADS2 gene cluster as related to essential fatty acid metabolism. Curr Opin Lipidol, 2010. 21(1): p. 64-9. 107.Martinelli, N., D. Girelli, G. Malerba, P. Guarini, T. Illig, E. Trabetti, M. Sandri, S. Friso, F. Pizzolo, L. Schaeffer, et al., FADS genotypes and desaturase activity estimated by the ratio of arachidonic acid to linoleic acid are associated with inflammation and coronary artery disease. Am J Clin Nutr, 2008. 88(4): p. 941-9. 108.Nakamura, M.T. and T.Y. Nara, Structure, function, and dietary regulation of delta6, delta5, and delta9 desaturases. Annu Rev Nutr, 2004. 24: p. 345-76. 109.Marquardt, A., H. Stohr, K. White, and B.H. Weber, cDNA cloning, genomic structure, and chromosomal localization of three members of the human fatty acid desaturase family. Genomics, 2000. 66(2): p. 175-83. 110.Al-Hilal, M., A. Alsaleh, Z. Maniou, F.J. Lewis, W.L. Hall, T.A. Sanders, S.D. O'Dell, and M.s. team, Genetic variation at the FADS1-FADS2 gene locus influences delta-5 desaturase activity and LC-PUFA proportions after fish oil supplement. J Lipid Res, 2013. 54(2): p. 542-51. 111.Mathias, R.A., S. Sergeant, I. Ruczinski, D.G. Torgerson, C.E. Hugenschmidt, M. Kubala, D. Vaidya, B. Suktitipat, J.T. Ziegler, P. Ivester, et al., The impact of FADS genetic variants on omega6 polyunsaturated fatty acid metabolism in African Americans. BMC Genet, 2011. 12: p. 50. 112.Schaeffer, L., H. Gohlke, M. Muller, I.M. Heid, L.J. Palmer, I. Kompauer, H. Demmelmair, T. Illig, B. Koletzko, and J. Heinrich, Common genetic variants of the FADS1 FADS2 gene cluster and their reconstructed haplotypes are associated with the fatty acid composition in phospholipids. Hum Mol Genet, 2006. 15(11): p. 1745-56. 113.Sergeant, S., C.E. Hugenschmidt, M.E. Rudock, J.T. Ziegler, P. Ivester, H.C. Ainsworth, D. Vaidya, L.D. Case, C.D. Langefeld, B.I. Freedman, et al., Differences in arachidonic acid levels and fatty acid desaturase (FADS) gene variants in African Americans and European Americans with diabetes or the metabolic syndrome. Br J Nutr, 2012. 107(4): p. 547-55. 114.Mathias, R.A., C. Vergara, L. Gao, N. Rafaels, T. Hand, M. Campbell, C. Bickel, P. Ivester, S. Sergeant, K.C. Barnes, et al., FADS genetic variants and omega-6 polyunsaturated fatty acid metabolism in a homogeneous island population. J Lipid Res, 2010. 51(9): p. 2766-74. 115.Malerba, G., L. Schaeffer, L. Xumerle, N. Klopp, E. Trabetti, M. Biscuola, U. Cavallari, R. Galavotti, N. Martinelli, P. Guarini, et al., SNPs of the FADS gene cluster are associated with polyunsaturated fatty acids in a cohort of patients with cardiovascular disease. Lipids, 2008. 43(4): p. 289-99. 116.Rzehak, P., J. Heinrich, N. Klopp, L. Schaeffer, S. Hoff, G. Wolfram, T. Illig, and J. Linseisen, Evidence for an association between genetic variants of the fatty acid desaturase 1 fatty acid desaturase 2 ( FADS1 FADS2) gene cluster and the fatty acid composition of erythrocyte membranes. Br J Nutr, 2009. 101(1): p. 20-6. 117.Xie, L. and S.M. Innis, Association of fatty acid desaturase gene polymorphisms with blood lipid essential fatty acids and perinatal depression among Canadian women: a pilot study. J Nutrigenet Nutrigenomics, 2009. 2(4-5): p. 243-50. 118.Xie, L. and S.M. Innis, Genetic variants of the FADS1 FADS2 gene cluster are associated with altered (n-6) and (n-3) essential fatty acids in plasma and erythrocyte phospholipids in women during pregnancy and in breast milk during lactation. J Nutr, 2008. 138(11): p. 2222-8. 119.Porenta, S.R., Y.A. Ko, S.B. Gruber, B. Mukherjee, A. Baylin, J. Ren, and Z. Djuric, Interaction of fatty acid genotype and diet on changes in colonic fatty acids in a Mediterranean diet intervention study. Cancer Prev Res (Phila), 2013. 6(11): p. 1212-21. 120.Hong, S.H., J.H. Kwak, J.K. Paik, J.S. Chae, and J.H. Lee, Association of polymorphisms in FADS gene with age-related changes in serum phospholipid polyunsaturated fatty acids and oxidative stress markers in middle-aged nonobese men. Clin Interv Aging, 2013. 8: p. 585-96. 121.Harslof, L.B., L.H. Larsen, C. Ritz, L.I. Hellgren, K.F. Michaelsen, U. Vogel, and L. Lauritzen, FADS genotype and diet are important determinants of DHA status: a cross-sectional study in Danish infants. Am J Clin Nutr, 2013. 97(6): p. 1403-10. 122.Li, S.W., K. Lin, P. Ma, Z.L. Zhang, Y.D. Zhou, S.Y. Lu, X. Zhou, and S.M. Liu, FADS gene polymorphisms confer the risk of coronary artery disease in a Chinese Han population through the altered desaturase activities: based on high-resolution melting analysis. PLoS One, 2013. 8(1): p. e55869. 123.Gillingham, L.G., S.V. Harding, T.C. Rideout, N. Yurkova, S.C. Cunnane, P.K. Eck, and P.J. Jones, Dietary oils and FADS1-FADS2 genetic variants modulate [13C]alpha-linolenic acid metabolism and plasma fatty acid composition. Am J Clin Nutr, 2013. 97(1): p. 195-207. 124.Freemantle, E., A. Lalovic, N. Mechawar, and G. Turecki, Age and haplotype variations within FADS1 interact and associate with alterations in fatty acid composition in human male cortical brain tissue. PLoS One, 2012. 7(8): p. e42696. 125.Lattka, E., B. Koletzko, S. Zeilinger, J.R. Hibbeln, N. Klopp, S.M. Ring, and C.D. Steer, Umbilical cord PUFA are determined by maternal and child fatty acid desaturase (FADS) genetic variants in the Avon Longitudinal Study of Parents and Children (ALSPAC). Br J Nutr, 2013. 109(7): p. 1196-210. 126.Steer, C.D., J.R. Hibbeln, J. Golding, and G. Davey Smith, Polyunsaturated fatty acid levels in blood during pregnancy, at birth and at 7 years: their associations with two common FADS2 polymorphisms. Hum Mol Genet, 2012. 21(7): p. 1504-12. 127.Morales, E., M. Bustamante, J.R. Gonzalez, M. Guxens, M. Torrent, M. Mendez, R. Garcia-Esteban, J. Julvez, J. Forns, M. Vrijheid, et al., Genetic variants of the FADS gene cluster and ELOVL gene family, colostrums LC-PUFA levels, breastfeeding, and child cognition. PLoS One, 2011. 6(2): p. e17181. 128.Lattka, E., P. Rzehak, E. Szabo, V. Jakobik, M. Weck, M. Weyermann, H. Grallert, D. Rothenbacher, J. Heinrich, H. Brenner, et al., Genetic variants in the FADS gene cluster are associated with arachidonic acid concentrations of human breast milk at 1.5 and 6 mo postpartum and influence the course of milk dodecanoic, tetracosenoic, and trans-9-octadecenoic acid concentrations over the duration of lactation. Am J Clin Nutr, 2011. 93(2): p. 382-91. 129.Kwak, J.H., J.K. Paik, O.Y. Kim, Y. Jang, S.H. Lee, J.M. Ordovas, and J.H. Lee, FADS gene polymorphisms in Koreans: association with omega6 polyunsaturated fatty acids in serum phospholipids, lipid peroxides, and coronary artery disease. Atherosclerosis, 2011. 214(1): p. 94-100. 130.Rzehak, P., C. Thijs, M. Standl, M. Mommers, C. Glaser, E. Jansen, N. Klopp, G.H. Koppelman, P. Singmann, D.S. Postma, et al., Variants of the FADS1 FADS2 gene cluster, blood levels of polyunsaturated fatty acids and eczema in children within the first 2 years of life. PLoS One, 2010. 5(10): p. e13261. 131.Bokor, S., J. Dumont, A. Spinneker, M. Gonzalez-Gross, E. Nova, K. Widhalm, G. Moschonis, P. Stehle, P. Amouyel, S. De Henauw, et al., Single nucleotide polymorphisms in the FADS gene cluster are associated with delta-5 and delta-6 desaturase activities estimated by serum fatty acid ratios. J Lipid Res, 2010. 51(8): p. 2325-33. 132.Caspi, A., B. Williams, J. Kim-Cohen, I.W. Craig, B.J. Milne, R. Poulton, L.C. Schalkwyk, A. Taylor, H. Werts, and T.E. Moffitt, Moderation of breastfeeding effects on the IQ by genetic variation in fatty acid metabolism. Proc Natl Acad Sci U S A, 2007. 104(47): p. 18860-5. 133.Ding, Z., G.L. Liu, X. Li, X.Y. Chen, Y.X. Wu, C.C. Cui, X. Zhang, G. Yang, and L. Xie, Association of polyunsaturated fatty acids in breast milk with fatty acid desaturase gene polymorphisms among Chinese lactating mothers. Prostaglandins Leukot Essent Fatty Acids, 2016. 109: p. 66-71. 134.Rist, L., A. Mueller, C. Barthel, B. Snijders, M. Jansen, A.P. Simoes-Wust, M. Huber, I. Kummeling, U. von Mandach, H. Steinhart, et al., Influence of organic diet on the amount of conjugated linoleic acids in breast milk of lactating women in the Netherlands. Br J Nutr, 2007. 97(4): p. 735-43. 135.Molto-Puigmarti, C., A.I. Castellote, and M.C. Lopez-Sabater, Conjugated linoleic acid determination in human milk by fast-gas chromatography. Anal Chim Acta, 2007. 602(1): p. 122-30. 136.Wu, T.C., B.H. Lau, P.H. Chen, L.T. Wu, and R.B. Tang, Fatty acid composition of Taiwanese human milk. J Chin Med Assoc, 2010. 73(11): p. 581-8. 137.Huang, H.L., L.T. Chuang, H.H. Li, C.P. Lin, and R.H. Glew, Docosahexaenoic acid in maternal and neonatal plasma phospholipids and milk lipids of Taiwanese women in Kinmen: fatty acid composition of maternal blood, neonatal blood and breast milk. Lipids Health Dis, 2013. 12: p. 27. 138.Yuhas, R., K. Pramuk, and E.L. Lien, Human milk fatty acid composition from nine countries varies most in DHA. Lipids, 2006. 41(9): p. 851-8. 139.田慧敏, FADS基因簇与乳母膳食对乳汁中脂肪酸成分的影响及机制研究. 2020: 吉林大学. 140.Calder, P.C., S. Krauss-Etschmann, E.C. de Jong, C. Dupont, J.S. Frick, H. Frokiaer, J. Heinrich, H. Garn, S. Koletzko, G. Lack, et al., Early nutrition and immunity - progress and perspectives. Br J Nutr, 2006. 96(4): p. 774-90. 141.Dhir, A. and E. Buratti, Alternative splicing: role of pseudoexons in human disease and potential therapeutic strategies. FEBS J, 2010. 277(4): p. 841-55. 142.Romano, M., E. Buratti, and D. Baralle, Role of pseudoexons and pseudointrons in human cancer. Int J Cell Biol, 2013. 2013: p. 810572. 143.Antonellis, A., M.Y. Dennis, G. Burzynski, J. Huynh, V. Maduro, C.J. Hodonsky, M. Khajavi, K. Szigeti, S. Mukkamala, S.L. Bessling, et al., A rare myelin protein zero (MPZ) variant alters enhancer activity in vitro and in vivo. PLoS One, 2010. 5(12): p. e14346. 144.Szafranski, P., Y. Yang, M.U. Nelson, M.J. Bizzarro, R.A. Morotti, C. Langston, and P. Stankiewicz, Novel FOXF1 deep intronic deletion causes lethal lung developmental disorder, alveolar capillary dysplasia with misalignment of pulmonary veins. Hum Mutat, 2013. 34(11): p. 1467-71. 145.Edery, P., C. Marcaillou, M. Sahbatou, A. Labalme, J. Chastang, R. Touraine, E. Tubacher, F. Senni, M.B. Bober, S. Nampoothiri, et al., Association of TALS developmental disorder with defect in minor splicing component U4atac snRNA. Science, 2011. 332(6026): p. 240-3. 146.He, H., S. Liyanarachchi, K. Akagi, R. Nagy, J. Li, R.C. Dietrich, W. Li, N. Sebastian, B. Wen, B. Xin, et al., Mutations in U4atac snRNA, a component of the minor spliceosome, in the developmental disorder MOPD I. Science, 2011. 332(6026): p. 238-40. 147.Tian, H., H. Yu, Y. Lin, Y. Li, W. Xu, Y. Chen, G. Liu, and L. Xie, Association between FADS Gene Expression and Polyunsaturated Fatty Acids in Breast Milk. Nutrients, 2022. 14(3). 148.Chen, C.H., J.H. Yang, C.W.K. Chiang, C.N. Hsiung, P.E. Wu, L.C. Chang, H.W. Chu, J. Chang, I.W. Song, S.L. Yang, et al., Population structure of Han Chinese in the modern Taiwanese population based on 10,000 participants in the Taiwan Biobank project. Hum Mol Genet, 2016. 25(24): p. 5321-5331. 149.Zhao, Y.B., Y. Zhang, Q.C. Zhang, H.J. Li, Y.Q. Cui, Z. Xu, L. Jin, H. Zhou, and H. Zhu, Ancient DNA reveals that the genetic structure of the northern Han Chinese was shaped prior to 3,000 years ago. PLoS One, 2015. 10(5): p. e0125676. 150.Merino, D.M., H. Johnston, S. Clarke, K. Roke, D. Nielsen, A. Badawi, A. El-Sohemy, D.W. Ma, and D.M. Mutch, Polymorphisms in FADS1 and FADS2 alter desaturase activity in young Caucasian and Asian adults. Mol Genet Metab, 2011. 103(2): p. 171-8. 151.Fumagalli, M., I. Moltke, N. Grarup, F. Racimo, P. Bjerregaard, M.E. Jorgensen, T.S. Korneliussen, P. Gerbault, L. Skotte, A. Linneberg, et al., Greenlandic Inuit show genetic signatures of diet and climate adaptation. Science, 2015. 349(6254): p. 1343-7. 152.Gow, R.V. and J.R. Hibbeln, Omega-3 fatty acid and nutrient deficits in adverse neurodevelopment and childhood behaviors. Child Adolesc Psychiatr Clin N Am, 2014. 23(3): p. 555-90. 153.Innis, S.M., Dietary (n-3) fatty acids and brain development. J Nutr, 2007. 137(4): p. 855-9. 154.Hashimoto, M., S. Hossain, A. Al Mamun, K. Matsuzaki, and H. Arai, Docosahexaenoic acid: one molecule diverse functions. Crit Rev Biotechnol, 2017. 37(5): p. 579-597. 155.Carlson, S.E., J. Colombo, B.J. Gajewski, K.M. Gustafson, D. Mundy, J. Yeast, M.K. Georgieff, L.A. Markley, E.H. Kerling, and D.J. Shaddy, DHA supplementation and pregnancy outcomes. Am J Clin Nutr, 2013. 97(4): p. 808-15. 156.Hartwig, F.P., N.M. Davies, B.L. Horta, T.S. Ahluwalia, H. Bisgaard, K. Bonnelykke, A. Caspi, T.E. Moffitt, R. Poulton, A. Sajjad, et al., Effect modification of FADS2 polymorphisms on the association between breastfeeding and intelligence: results from a collaborative meta-analysis. Int J Epidemiol, 2019. 48(1): p. 45-57. 157.Molto-Puigmarti, C., M.C. van Dongen, P.C. Dagnelie, J. Plat, R.P. Mensink, F.E. Tan, J. Heinrich, and C. Thijs, Maternal but not fetal FADS gene variants modify the association between maternal long-chain PUFA intake in pregnancy and birth weight. J Nutr, 2014. 144(9): p. 1430-7. 158.Yeates, A.J., A. Zavez, S.W. Thurston, E.M. McSorley, M.S. Mulhern, A. Alhamdow, K. Engstrom, K. Wahlberg, J.J. Strain, G.E. Watson, et al., Maternal Long-Chain Polyunsaturated Fatty Acid Status, Methylmercury Exposure, and Birth Outcomes in a High-Fish-Eating Mother-Child Cohort. J Nutr, 2020. 150(7): p. 1749-1756. 159.Bernard, J.Y., H. Pan, I.M. Aris, M. Moreno-Betancur, S.E. Soh, F. Yap, K.H. Tan, L.P. Shek, Y.S. Chong, P.D. Gluckman, et al., Long-chain polyunsaturated fatty acids, gestation duration, and birth size: a Mendelian randomization study using fatty acid desaturase variants. Am J Clin Nutr, 2018. 108(1): p. 92-100. 160.Gonzalez Casanova, I., M. Schoen, S. Tandon, A.D. Stein, A. Barraza Villarreal, A.M. DiGirolamo, H. Demmelmair, I. Ramirez Silva, R.G. Feregrino, P. Rzehak, et al., Maternal FADS2 single nucleotide polymorphism modified the impact of prenatal docosahexaenoic acid (DHA) supplementation on child neurodevelopment at 5 years: Follow-up of a randomized clinical trial. Clin Nutr, 2021. 40(10): p. 5339-5345. 161.Chamorro, R., K.A. Bascunan, C. Barrera, J. Sandoval, C. Puigrredon, and R. Valenzuela, Reduced n-3 and n-6 PUFA (DHA and AA) Concentrations in Breast Milk and Erythrocytes Phospholipids during Pregnancy and Lactation in Women with Obesity. Int J Environ Res Public Health, 2022. 19(4).
|