跳到主要內容

臺灣博碩士論文加值系統

(44.210.83.132) 您好!臺灣時間:2024/05/25 18:58
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林冠廷
研究生(外文):LIN,GUAN-TING
論文名稱:垂直流人工濕地不同飽和度對水中汙染物的降解及塑膠微粒分佈之影響
論文名稱(外文):Effects of saturation on the pollution removal efficiency and micro-plastics distribution of vertical subsurface flow constructed wetlands
指導教授:錢紀銘錢紀銘引用關係
指導教授(外文):CHYAN,JIH-MING
口試委員:陳賢焜陳意銘
口試日期:2022-07-30
學位類別:碩士
校院名稱:嘉南藥理大學
系所名稱:環境資源管理系
學門:環境保護學門
學類:環境資源學類
論文種類:學術論文
論文出版年:2022
畢業學年度:110
語文別:中文
論文頁數:104
中文關鍵詞:垂直流人工溼地飽和度塑膠微粒分佈含氮汙染物總磷
外文關鍵詞:Vertical subsurface flow constructed wetlandsmicro-plasticsdistributionnitrogen contained pollutantstotal phosphorussaturation
相關次數:
  • 被引用被引用:0
  • 點閱點閱:119
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本實驗探討垂直潛流式(Vertical subsurface flow;VSSF)人工濕地(Constructed wetland;CW)在相同反應槽體積、介質及水生植物的情況下,配合不同的飽和度對去除水中低汙染物質及對塑膠微粒(Micro-plastic;MPs )的分佈的影響,其研究主要設置三種VSSF系統(SFF-A、SFF-B、SFF-C),水深分別為0 cm、40 cm、100 cm,對應飽和度依次為0 %、40 %、100 % ,本研究主要藉由下列水質參數來探討飽和度對低汙染降解效能的影響,其項目包括;生化需氧量(Biochemical oxygen demand;BOD)、氨氮(Ammonia-nitrogen;NH3-N)、硝酸鹽氮(Nitrate-nitrogen,NO3–-N)、亞硝酸鹽氮(Nitrite-nitrogen;NO2–-N)、總凱氏氮(total Kjeldahl nitrogen,TKN)、總氮(Total nitrogen;TN)和總磷(Total phosphorous;TP)。至於VSSF CW塑膠微粒(Micro-plastics;MPs)的空間分佈影響,則是藉由聚對苯二甲酸酯(Polyethylene Terephthalate﹐PET)與高密度聚乙烯(High Density Polyethylene﹐HDPE)隨進流水進入CW,其尺寸包括1 mm的HDPE與PET及300 µm 的HDPE,實驗結束時,將分別將各系統剖開逐段採樣分析,藉此討論飽和度對MPs空間分布特性的影響。
實驗期間BOD在SSF-A~SSF-C的去除率依序為14.37 %、16.78 %與20.35 %,可以低進流濃度時的BOD的去除效果皆不好,但SFF-B與SFF-A的去除效率較SFF-A高,可以看出BOD去除效果會因為DO與飽和度的不同而有所影響。而對應的NH3-N去除率分別為94.59 %、95.23 %與80.84 %,可以明顯發現三者去除效能皆相對比較高,而SSF-C比較近於厭氧狀態系統,所以相較其他系統去除效果較差。而低濃度的NO2–-N及NO3–-N監測結果顯示較無累積情形發生,各系統的氮去除機制並無顯著的抑制現象。另外,各系統的TKN去除率為67.47 %、70.56 %與56.91 %,證實了TKN會隨著NH3-N的去除效果而受到影響;TP的去除率為16.88 %、23.44 %與17.40 %,可以看出不同的飽和度對TP的去除並無直接的影響。
由本次實驗中的MPs在各VSSF系統的流佈情形,可以看出約九成之MPs分佈在從上往下的20 cm範圍內,只有SSF-C有向下分佈至40 cm處,這是因為此系統為100 %飽和度,因有接觸到蓄水層,使分佈較深,而因植物根系纏繞之因素使MPs幾乎分佈於系統上層,而各系統總投放量約為1972 顆,而SFF-A所回收之MPs為1902顆,回收率為96 %,SFF-B所回收之MPs為1802 顆,回收率為 91 %、而SFF-C所回收之MPs為1783 顆,回收率為 90 %。由於本次實驗中所種植的植物為輪傘莎草,根系過於錯綜複雜,導致塑膠微粒約九成分佈在20 cm處,而SSF-C因飽和度因素使分佈位置有向深處40 cm處分佈,且因流速流兩較低,使MPs的分佈較接近投放位置處。

In this study, three vertical subsurface flow (VSSF) constructed wetlands (CWs) with the same dimension, substrate, and aquatic plants, were employed to the effects of saturation on the degradation efficiencies of low concentration pollution and the distribution of micro-plastics (MPs). The saturation denoted as 100 % for SSF-C whose water depth was 100 cm whereas the water depths of SSF-B and SSF-A were 40 cm and 0 cm for the saturation of 40 % and 0 %. The degradation efficiencies were evaluated by the water quality parameters such as biochemical oxygen demand (BOD), ammonia-nitrogen (NH3-N), nitrate-nitrogen (NO3–-N), nitrite-nitrogen (NO2–-N), total Kjeldahl nitrogen (TKN), total nitrogen (TN), and total phosphorous (TP), respectively. Adding in SSF CWs, polyethylene terephthalate (PET) in particle size of 1 mm and high density polyethylene (HDPE) in particle size of 1 mm and 300 µm were used MPs in the systems. After dissection, the distribution of MPs in VSSF CWs could be determined by counting MPs in different area.
The removal efficiencies of BOD for SSF-A, SSF-B, and SSF-C were 14.37 %, 16.78 %, and 20.35 %, respectively and mainly induced by the inflow concentration. The differences in removal efficiencies also implied the effects of saturation on the BOD removal. The corresponding removal efficiencies of NH3-N were 94.59 %, 95.23 %, and 80.84 %, respectively. The former 2 data was significantly different from that of SSF-C because of the anaerobic condition in SSF-C. As for the concentration levels of NO2–-N and NO3–-N, no accumulation reflected that the degradation mechanisms responsible for the removal of N contained pollutants performed well. In addition, the removal efficiencies of TKN were 67.47 %, 70.56 %, 56.91 % for SSF-A, SSF-B, and SSF-C which confirmed that TKN would be affected by the removal effect of NH4-N. The results obtained for TP removal efficiencies of 16.88 %, 23.44 %, and 17.40 % also implied that the saturation did not influenced the removal of TP removal.
The distribution of MPs in the VSSF shows that about 90% of the MPs are accumulated in the upper layer with the thickness of 20 cm. It was because of the root system of aquatic plants catching most MPs. However, MPs could flow further to 40 cm downward. It was because that 100 % of saturation resulted in more water for the movement of MPs. The recovery ratios of SSF-A, SSF-B, and SSF-C were 96 %, 91 %, and 90 %, respectively.

摘要 I
Abstract III
致謝 V
目錄 VI
圖目錄 VIII
表目錄 X
1-1 研究動機 1
1-2 研究目的 1
第二章 文獻回顧 3
2-1 人工濕地 3
2-1-1 濕地概述 3
2-1-2 人工溼地之發展與應用 4
2-1-3 人工溼地之種類 6
2-2 人工濕地去除機制 9
2-3 懸浮固體去除機制 13
2-4 含氮汙染物去除機制 15
2-5 磷去除機制 19
2-6 人工溼地處理效能之影響因素 20
2-7 人工濕地之水生植物 22
2-8 不同飽和度對汙染物去除機制 26
2-9 塑膠微粒 27
2-10 塑膠微粒之傳輸方式 29
2-11 塑膠微粒之危害 32
第三章 實驗佈置與研究分析 35
3-1 系統建立 35
3-1-1 人工溼地尺寸與操作參數 35
3-1-2 水生植物選用 40
3-1-3 人工污水調配與配置 41
3-2 塑膠微粒之類型 43
3-3 塑膠微粒投放及採樣分析 45
3-4 水質實驗分析方法 46
3-5 實驗設備及儀器 50
第四章 結果與討論 56
4-1 人工濕地環境因子 56
4-1-1 水溫 56
4-1-2 水中酸鹼值 58
4-1-3 溶氧 60
4-2 人工濕地汙染物變化特性 64
4-2-1 有機物濃度變化 64
4-2-2 含氮汙染物濃度變化 66
4-2-3 含磷汙染物濃度變化 73
4-3 塑膠微粒之分佈 75
第五章 結論與建議 80
5-1 結論 80
5-2 建議 82


1.Alomar, Carmer. & Deudero, Salud. (2017). Evidence of microplastic ingestion in the shark Galeus melastomus Rafinesque, 1810 in the continental shelf off the western Mediterranean Sea. Environmental Pollution, 223, 223-229.
2.Andrady, Anthyony. L. (2011). Microplastics in the marine environment. Marine Pollution Bulletin, 62(8), 1596-1605.
3.Arias, C. A., Del Bubba, M., & Brix, H. (2001). Phosphorus removal by sands for use as media in subsurface flow constructed reed beds. Water Research, 35(5), 1159-1168.
4.Barnes, D. K. A., Walters, A., & Gonçalves, L. (2010). Macroplastics at sea around Antarctica. Marine Environmental Research, 70(2), 250-252.
5.Best, J. (2019). Anthropogenic stresses on the world’s big rivers. Nature Geoscience, 12(1), 7-21.
6.Caselles-Osorio, A., & García, J. (2007). Impact of different feeding strategies and plant presence on the performance of shallow horizontal subsurface-flow constructed wetlands. Science of The Total Environment, 378(3), 253-262.
7.Cole, M., Lindeque, P., Fileman, E., Halsband, C., Goodhead, R., Moger, J., & Galloway, T. S. (2013). Microplastic ingestion by zooplankton. Environmental science &Technology, 47(12), 6646-6655.
8.Cole, M., Lindeque, P., Halsband, C., & Galloway, T. S. (2011). Microplastics as contaminants in the marine environment: A review. Marine Pollution Bulletin, 62(12), 2588-2597.
9.Conley, L. M., Dick, R. I., & Lion, L. W. (1991). An assessment of the root zone method of wastewater treatment. Research Journal of the Water Pollution Control Federation, 63(3), 239-247.
10.Coombes, C. (1990). Reed bed treatment systems in anglian water. In P. F. Cooper & B. C. Findlater (Eds.), Constructed Wetlands in Water Pollution Control (pp. 223-234). Pergamon.
11.Derraik, J. G. B. (2002). The pollution of the marine environment by plastic debris: a review. Marine Pollution Bulletin, 44(9), 842-852.
12.Drtil, M., Németh, P., Kucman, K., Bodík, I., & Kav perek, V. (1995). Acidobasic balances in the course of heterotrophic denitrification. Water Research, 29, 1353-1360.
13.Duan, J., Han, J., Cheung, S. G., Chong, R. K. Y., Lo, C.M., Lee, F. W.F., Xu, S. J.L., Yang, Y., Tam, N. F. Y., & Zhou, H.C. (2021). How mangrove plants affect microplastic distribution in sediments of coastal wetlands: Case study in Shenzhen Bay, South China. Science of The Total Environment, 767, 144695.
14.Eerkes-Medrano, D., Thompson, R. C., & Aldridge, D. C. (2015). Microplastics in freshwater systems: A review of the emerging threats, identification of knowledge gaps and prioritization of research needs. Water Research, 75, 63-82.
15.Escolà Casas, M., & Matamoros, V. (2022). Linking plant-root exudate changes to micropollutant exposure in aquatic plants (Lemna minor and Salvinia natans). A prospective metabolomic study. Chemosphere, 287, 132056.
16.Estahbanati, S., & Fahrenfeld, N. L. (2016). Influence of wastewater treatment plant discharges on microplastic concentrations in surface water. Chemosphere, 162, 277-284.
17.Fendall, L. S., & Sewell, M. A. (2009). Contributing to marine pollution by washing your face: Microplastics in facial cleansers. Marine Pollution Bulletin, 58(8), 1225-1228.
18.Fernanda, E. P. (2011). Plastic debris ingestion by marine catfish: An unexpected fisheries impact. Marine Pollution Bulletin, v. 62(no. 5), pp. 1098-1102-2011 v.1062 no.1095.
19.Frias, J. P. G. L., & Nash, R. (2019). Microplastics: Finding a consensus on the definition. Marine Pollution Bulletin, 138, 145-147.
20.Gago, J., Henry, M., & Galgani, F. (2015). First observation on neustonic plastics in waters off NW Spain (spring 2013 and 2014). Marine Environmental Research, 111, 27-33.
21.Godoy, V., Martín-Lara, M. A., Calero, M., & Blázquez, G. (2019). Physical-chemical characterization of microplastics present in some exfoliating products from Spain. Marine Pollution Bulletin, 139, 91-99.
22.Goss, H., Jaskiel, J., & Rotjan, R. (2018). Thalassia testudinum as a potential vector for incorporating microplastics into benthic marine food webs. Marine Pollution Bulletin, 135, 1085-1089.
23.Gregory, M. R. (1977). Plastic pellets on New Zealand beaches. Marine Pollution Bulletin, 8(4), 82-84.
24.Gregory, M. R. (1978). Accumulation and distribution of virgin plastic granules on New Zealand beaches. New Zealand Journal of Marine and Freshwater Research, 12(4), 399-414.
25.Gregory, M. R. (1999). Plastics and South Pacific Island shores: environmental implications. Ocean & Coastal Management, 42(6), 603-615.
26.Hale, R. C., Seeley, M. E., La Guardia, M. J., Mai, L., & Zeng, E. Y. (2020). A global perspective on microplastics. Journal of Geophysical Research: Oceans, 125(1), e2018JC014719.
27.Hammer, D. A. (1992). Designing constructed wetlands systems to treat agricultural nonpoint source pollution. Ecological Engineering, 1, 49-82.
28.Hu, S., Niu, Z., Chen, Y., Li, L., & Zhang, H. (2017). Global wetlands: Potential distribution, wetland loss, and status. Science of The Total Environment, 586, 319-327.
29.Ivar do Sul, J. A., Costa, M. F. d., & Fillmann, G. (2014). Microplastics in the pelagic environment around oceanic islands of the Western Tropical Atlantic Ocean. Water, Air, & Soil Pollution, 225, 1-13.
30.Jabeen, K., Li, B., Chen, Q., Su, L., Wu, C., Hollert, H., & Shi, H. (2018). Effects of virgin microplastics on goldfish (Carassius auratus). Chemosphere, 213, 323-332.
31.Li, J., Wen, Y., Zhou, Q., Xingjie, Z., Li, X., Yang, S., & Lin, T. (2008). Influence of vegetation and substrate on the removal and transformation of dissolved organic matter in horizontal subsurface flow constructed wetlands. Bioresource Technology, 99(11), 4990-4996.
32.Luederitz, V., Eckert, E., Lange-Weber, M., Lange, A., & Gersberg, R. M. (2001). Nutrient removal efficiency and resource economics of vertical flow and horizontal flow constructed wetlands. Ecological Engineering, 18(2), 157-171.
33.Markic, A., Gaertner, J.C., Gaertner-Mazouni, N., & Koelmans, A. A. (2020). Plastic ingestion by marine fish in the wild. Critical Reviews in Environmental Science and Technology, 50(7), 657-697.
34.Martín-Lara, M. A., Godoy, V., Quesada, L., Lozano, E. J., & Calero, M. (2021). Environmental status of marine plastic pollution in Spain. Marine Pollution Bulletin, 170, 112677.
35.Matamoros, V., Nguyen, L. X., Arias, C. A., Salvadó, V., & Brix, H. (2012). Evaluation of aquatic plants for removing polar microcontaminants: A microcosm experiment. Chemosphere, 88(10), 1257-1264.
36.Merga, L. B., Redondo-Hasselerharm, P. E., Van den Brink, P. J., & Koelmans, A. A. (2020). Distribution of microplastic and small macroplastic particles across four fish species and sediment in an African lake. Science of The Total Environment, 741, 140527.
37.Mustafa, H. M., & Hayder, G. (2021). Recent studies on applications of aquatic weed plants in phytoremediation of wastewater: A review article. Ain Shams Engineering Journal, 12(1), 355-365.
38.Saeed, T., & Sun, G. (2012). A review on nitrogen and organics removal mechanisms in subsurface flow constructed wetlands: Dependency on environmental parameters, operating conditions and supporting media. Journal of Environmental Management, 112, 429-448.
39.Setälä, O., Fleming-Lehtinen, V., & Lehtiniemi, M. (2014). Ingestion and transfer of microplastics in the planktonic food web. Environmental Pollution, 185, 77-83.
40.Simsek, H., Kasi, M., Ohm, J.-B., Blonigen, M., & Khan, E. (2013). Bioavailable and biodegradable dissolved organic nitrogen in activated sludge and trickling filter wastewater treatment plants. Water Research, 47(9), 3201-3210.
41.Tanner, C. C. (1996). Plants for constructed wetland treatment systems — A comparison of the growth and nutrient uptake of eight emergent species. Ecological Engineering, 7(1), 59-83.
42.Moshiri, G.A. (1993). Constructed Wetlands for Water Quality Improvement (1st ed.). CRC Press.
43.Thompson, R. C., Olsen, Y., Mitchell, R. P., Davis, A., Rowland, S. J., John, A. W., McGonigle, D., & Russell, A. E. (2004). Lost at sea: where is all the plastic? Science, 304(5672), 838.
44.Emmerik van, T., & Schwarz, A. (2020). Plastic debris in rivers, WIREs Water, 7(1), e1398.
45.Jaap van Rijn, J., Tal, Y., & Schreier, H. J. (2006). Denitrification in recirculating systems: Theory and applications. Aquacultural Engineering, 34(3), 364-376.
46.Vymazal, J. (2007). Removal of nutrients in various types of constructed wetlands. Science of The Total Environment, 380(1), 48-65.
47.Wang, Q., Hernández-Crespo, C., Du, B., Van Hulle, S. W. H., & Rousseau, D. P. L. (2021). Fate and removal of microplastics in unplanted lab-scale vertical flow constructed wetlands. Science of The Total Environment, 778, 146152.
48.Wang, Q., Shan, E., Zhang, B., Teng, J., Wu, D., Yang, X., Zhang, C., Zhang, W., Sun, X., & Zhao, J. (2020). RETRACTED: Microplastic pollution in intertidal sediments along the coastline of China. Environmental Pollution, 263, 114428.
49.Wood, A. (1995). Constructed wetlands in water pollution control: Fundamentals to their understanding. Water Science and Technology, 32(3), 21-29.
50.Wu, H., Zhang, J., Ngo, H. H., Guo, W., Hu, Z., Liang, S., Fan, J., & Liu, H. (2015). A review on the sustainability of constructed wetlands for wastewater treatment: Design and operation. Bioresource Technology, 175, 594-601.
51.Yao, W., Di, D., Wang, Z., Liao, Z., Huang, H., Mei, K., Dahlgren, R. A., Zhang, M., & Shang, X. (2019). Micro- and macroplastic accumulation in a newly formed Spartina alterniflora colonized estuarine saltmarsh in southeast China. Marine Pollution Bulletin, 149, 110636.
52.Zou, J., Guo, X., Han, Y., Liu, J., & Liang, H. (2012). Study of a Novel Vertical Flow Constructed Wetland System with Drop Aeration for Rural Wastewater Treatment. Water, Air, & Soil Pollution, 223(2), 889-900.
53.Stanford, G., Dzienia, S., & Pol, R. A. V. (1975). Effect of Temperature on Denitrification Rate in Soils1. Soil Science Society of America Journal, 39, 867-870.
54.Stanford, G., Vander Pol, R. A., & Dzienia, S. (1975). Denitrification Rates in Relation to Total and Extractable Soil Carbon. Soil Science Society of America Journal, 39(2), 284-289.
55.美國國家海洋暨大氣總署(National Oceanic and Atmospheric Administration),(2015),塑膠微粒名稱定義,下載時間:2022/05/20,下載網址:https://www.noaa.gov/
56.美國塑膠工業協會(Society of the Plastics Industry, US),(1988),塑膠辨識碼,下載網址:https://www.plasticsindustry.org/,下載時間:2022/05/20。
57.林務局自然保育網,(1971),國際拉姆撒公約,下載網址: https://conservation.forest.gov.tw/,下載時間:2022/05/20。
58.中華民國保麗龍回收再生協會,(2014),塑膠材質回收辨識碼,下載網址:http://www.ctepsra.org.tw/files/pdf/plastic_foam_identify_code.pdf,下載時間:2022/05/20。
59.內政部營建署城鄉發展分署,(2019),國家重要濕地保育網,下載網址:https://wetland-tw.tcd.gov.tw/tw/,下載時間:2022/05/20。
60.行政院環保署,署徽及標章 ,下載網址 :https://www.epa.gov.tw/,下載時間:2022/05/20。
61.行政院環保署,(2019),全球淨水質監測資訊網,下載網址:https://www.epa.gov.tw/, 下載時間:2022/05/20。
62.吳文輝,(2012),灣裡人工濕地處理社區生活污水之效益評估,環境資源管理系,碩士學位論文,嘉南藥理科技大學,台南市。
63.吳佩璇,(2008),以複合垂直流與水平潛流人工濕地去除湖水中營養鹽之研究,海洋環境及工程學系,碩士學位論文,國立中山大學,高雄市。
64.吳季蓓,(2013),建立垂直流式人工濕地系統中厭氧氨氧化脫氮程序之可行性分析,海洋環境及工程學系,碩士學位論文,國立中山大學,高雄市。
65.李茂松,(2009),受污染地下水之複合式生物脫硝系統開發,環境工程系所,碩士學位論文,國立交通大學,新竹市。
66.林育仲,(2021),台灣西南沿海沉積物塑膠微粒分布與組成,海洋環境工程系,碩士學位論文,國立高雄科技大學,高雄市。
67.林春吉,台灣水生植物,環境檢驗所,下載網址:http://library.taiwanschoolnet.org/cyberfair2005/luke/sections/senyang/zones/weeds/index.htm,下載時間:2022/05/20。
68.林郁靜,(2008),以實驗方法探討人工濕地之水質淨化效益,土木工程系,碩士學位論文,國立中央大學,桃園縣。
69.徐婉婷,(2021),複合式垂直流人工濕地對氮磷處理效果之研究,海洋環境及工程學系,碩士學位論文,國立中山大學,高雄市。
70.張民忠,(2011),人工濕地之水質淨化機制以多變量為例,營建工程與管理系,碩士學位論文,明新科技大學,新竹縣.
71.許原哲,(2006),以人工溼地處理醫院污水處理廠放流水之研究,環境工程與科學系,碩士學位論文,嘉南藥理科技大學,台南市。
72.郭念祖,(2011),以人工曝氣提高三段式表面流濕地之氮去除效益,環境工程學系,碩士學位論文,國立宜蘭大學,宜蘭縣。
73.郭韋成,(2017),仿自然生態方法淨化校園生活污水-以崑山科大為例 ,環境工程系,碩士學位論文,崑山科技大學,台南市。
74.陳有祺,(2005),濕地生態工程,滄海圖書資訊股份有限公司。
75.陳麗瑜,(2005),都會濕地公園水質淨化功能及規劃策略之研究,海洋環境及工程學系,碩士學位論文,國立中山大學,高雄市。
76.黃至瑄,(2020),垂直潛流式人工溼地飽和度對其污染物降解效能之影響,環境資源管理系,碩士學位論文,嘉南藥理大學,台南市。
77.廖倫偉,(2011),應用概似不確定性估計於溼地參數之不確定性分析,生物環境系統工程學系,碩士學位論文,國立臺灣大學,台北市。
78.管能,(2007),濕地保育與社基主義之困境,台灣濕地保護聯盟之洲仔濕地的保育,政治學所,國立中正大學,嘉義縣。
79.歐文生,(2005),生活污水應用人工濕地處理及再利用之研究,建築學系,博士學位論文,國立成功大學,台南市。
80.蔡凱元,(2004),以人工濕地處理垃圾滲出水可行性之研究,海洋環境及工程學系,碩士學位論文,國立中山大學,高雄市。
81.中華民國-內政部營建署,(2013),濕地保育法,下載網址: https://www.cpami.gov.tw,下載時間:2022/05/20。
82.魏德明,(2008),以人工溼地處理金屬加工業廢水處理廠出流水之研究,環境資源管理系,碩士學位論文,嘉南藥理科技大學,台南市。
83.環境檢驗所,(2020),水質分析準則,下載網址:https://www.epa.gov.tw /niea/A048BA729D1F7D58,下載時間:2022/05/20
84.余旻修,(2017),以曝氣礫石生物牆提升表面流動式人工溼地之污染處理效能,環境資源管理系,碩士學位論文,嘉南藥理大學,台南市。
85.陳旭暉,(2018),探討曝氣模式與生物礫石牆對表面流動式人工濕地污染去除效能之影響, 嘉南藥理大學,台南市。

電子全文 電子全文(網際網路公開日期:20270830)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊