跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.169) 您好!臺灣時間:2025/02/16 07:19
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:詹益松
論文名稱:以綠色化學抗垢劑對畜殖廢水管路抗垢之可行性研究
論文名稱(外文):Feasbity study of green chemical anti-scaing agents for the treatment of livestock wastewater
指導教授:萬孟瑋萬孟瑋引用關係
指導教授(外文):WAN,MENG-WEI
口試委員:萬孟瑋翁誌煌陳意銘
口試日期:2022-07-15
學位類別:碩士
校院名稱:嘉南藥理大學
系所名稱:環境工程與科學系
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2022
畢業學年度:110
語文別:中文
論文頁數:132
中文關鍵詞:綠色抗垢劑碳酸鈣磷酸銨鎂抗垢
外文關鍵詞:Green anti-scaling agentcalcium carbonateMagnesium ammonium phosphateAnti-fouling
相關次數:
  • 被引用被引用:0
  • 點閱點閱:193
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
畜殖廢水中含高有機質及氮等無機物,於各處理程序中極易形成管線結垢,造成耗能增加,堵塞管路,甚至引起爆管、空燒設備等嚴重後果。
為了處理管線內的結垢,維持管線、儲存設備的清潔,最常使用的方式為添加含有複磷酸鹽類的結垢抑制劑,以化學作用的方式清除管線中積存的生成物,但是含有氮、磷等化合物之結垢抑制劑溶入水中,雖能有效清除管線中的結垢物,但排放到河川會產生水體優氧化、破壞生態平衡,嚴重影響環境。此外,管線中殘留的化學結垢抑制劑亦可能為民眾帶來潛在性人體傷害。是故現水處理業者最常使用的方法為:汰舊換新的管線;但此一方法不僅增加業者額外的營運成本,也增加廢棄物之處理負擔。
本研究針對畜殖廢水運輸之管路結垢防治問題,以綠色科技技術解決其相關性問題,達到環境永續發展利用之目標,主要完成之研究成果如下:1. 畜殖廢水之水質檢驗及分析:離子層析分析顯示陽離子以銨根離子(NH4+)及鉀離子(K+)為主要之陽離子,但陰離子中主要為磷酸根離子(PO42-)、硝酸根離子(NO3-)、亞硝酸根離子(NO2-)與硫酸根離子(SO42-);2. 結垢沉積物之組成分析:依據SEM/EDS、XRD及FTIR分析,確定管線結垢沉積物之主要結晶鹽為磷酸銨鎂及碳酸鈣;3. 綠色除垢/防垢技術之實驗室研究模組建置:添加防垢劑Mexel 432與萬能污水靈於連續流動式循環系統中,具有減緩模擬水樣中生成結垢之潛勢:
本研究證實添加防垢劑能有效減少管線抗垢之作用,但考量原廢水水質狀況較為複雜,抗垢設備應能延緩管線結垢之時間,但長時間仍會有結晶物而生成結垢。因此,考量實場廢水水質之複雜度、且其操作維護及處理結果須具備之一致性及穩定性,建議最佳方案為建置綠色抗垢劑加藥設備。

Livestock wastewater contains inorganic substances such as high organic matter and nitrogen, which is very easy to form pipeline scaling in various processing procedures, resulting in increased energy consumption, blockage of pipelines, and even serious consequences such as burst pipes and empty burning equipment.
In order to deal with scaling in the pipeline, maintain the cleanliness of pipelines and storage equipment, the most commonly used way is to add scaling inhibitors containing polyphosphates, remove the accumulated products in the pipeline in a chemical way, but the scaling inhibitors containing nitrogen, phosphorus and other compounds are dissolved into the water, although they can effectively remove the scale in the pipeline, but discharged into the river will produce excellent oxidation of water, disrupt the ecological balance, and seriously affect the environment. In addition, residual chemical fouling inhibitors in the pipeline may also cause potential human harm to the public. Therefore, the most commonly used method by water treatment operators is: to replace the old with a new pipeline; However, this approach not only increases the operator's additional operating costs, but also increases the burden of waste disposal.
This study aims at the problem of scaling prevention and control of pipelines for livestock wastewater transportation, solves its correlation problems with green technology and technology, and achieves the goal of sustainable development and utilization of the environment, and the main completed research results are as follows: Water quality inspection and analysis of livestock wastewater: Ion chromatography analysis showed that the cations were mainly cations of ammonium (NH4+) and potassium ions (K+), but the anions were mainly phosphate ions (PO42-), nitrate ions (NO3-), nitrite ions (NO2-) and sulfate ions (SO42-); 2. Composition analysis of fouling deposits: According to SEM/EDS, XRD and FTIR analysis, the main crystalline salts of pipeline fouling deposits are magnesium ammonium phosphate and calcium carbonate; 3. Construction of laboratory research module for green descaling/anti-scaling technology: Mexel 432 and universal sewage are added in a continuous flow circulation system, which has the potential to slow down the formation of fouling in simulated water samples:
This study confirms that the addition of antiscale agent can effectively reduce the anti-scaling effect of the pipeline, but considering the complex water quality of the original wastewater, the anti-scaling equipment should be able to delay the time of pipeline scaling, but there will still be crystals and scaling for a long time. Therefore, considering the complexity of the water quality of the real wastewater, and the consistency and stability of its operation, maintenance and treatment results, it is recommended that the best solution is to build a green anti-scaling agent dosing equipment.

摘要 I
Abstrac II
誌謝 IV
目錄 V
表目錄 VIII
圖目錄 X
一、前言 1
1-1研究背景 1
1-2 研究目的 3
二、文獻回顧 4
2-1畜殖廢水處理系統簡介 4
2-2結晶原理 5
2-2-1結晶與沉澱之定義 5
2-2-2水體中結晶物之沉澱 5
2-3磷酸銨鎂結晶 8
2-3-1磷酸銨鎂結晶之原理與機制 8
2-3-2酸鹼值對磷酸銨鎂結晶之影響 8
2-4碳酸鈣結晶 10
2-4-1碳酸鈣結晶之原理與機制 11
2-4-2酸鹼值對碳酸鈣結晶之影響 12
2-4-3溫度對碳酸鈣結晶之影響 12
2-5化學處理抗垢技術 13
2-5-1抗垢劑的發展與類型 14
2-5-2 Mexel432之原理與機制 15
2-5-3萬能污水靈之原理與機制 17
三、實驗方法與材料 20
3-1研究架構 20
3-2研究模組 21
3-2-1續流式除垢/防垢模組 21
3-3實驗材料與設備 23
3-4實驗方法 23
3-4-1結垢物固體之元素鑑定及定性分析 24
3-4-2 Mexel 432 抗垢實驗 25
3-4-3 萬能污水靈抗垢實驗 25
3-4-4 化學混凝沉澱試驗之操作流程 26
四、結果與討論 28
4-1畜殖廢水管路之水質檢驗分析 28
4-2畜殖廢水管路之結垢物檢驗分析 33
4-2-1結垢物固體之元素鑑定及定性分析(進行烘乾前處理) 33
4-2-2結垢物固體之元素鑑定及定性分析(未進行烘乾前處理) 40
4-2-3磷酸銨鎂結晶之沉澱影響因子 48
4-3畜殖廢水添加Mexel 432之模組實驗 50
4-3-1每30mins監測之8小時續流式除垢/防垢實驗 50
4-3-2每60mins監測之24小時續流式除垢/防垢實驗 53
4-3-3每24hrs監測之20天續流式除垢/防垢實驗 57
4-3-4每24hrs監測之124天續流式除垢/防垢實驗 60
4-3-5 15天續流式除垢/防垢技術研究模組之陰陽離子變化 71
4-3-6 15天續流式除垢/防垢技術研究模組之元素變化 74
4-4畜殖廢水添加萬能污水靈之模組實驗 77
4-4-1 74天續流式除垢/防垢實驗 77
4-4-2不同濃度下對混凝效果的影響 81
4-4-3調整酸鹼值下對混凝效果的影響 83
4-5畜殖廢水添加氯化鐵之瓶杯試驗 90
4-5-1不同濃度下對混凝效果的影響 90
4-5-2添加助凝劑對混凝效果的影響 93
4-6畜殖廢水添加硫酸鋁之瓶杯試驗 97
4-6-1不同濃度下對混凝效果的影響 97
4-6-2添加助凝劑對混凝效果的影響 99
4-6-3調整酸鹼值對混凝效果的影響 102
4-7畜殖廢水添加聚氯化鋁之瓶杯試驗 105
4-7-1不同濃度助凝劑對混凝效果的影響 105
4-7-2不同濃度下對混凝效果的影響 108
4-7-3調整酸鹼值對混凝效果的影響 111
五、結論與建議 114
5-1結論 114
5-2建議 115
參考文獻 116


Ansari,S. Z. and Pandit,A.B. ,(2022). Inhibitory effect of novel green polymer (Aspartic-citric acid) on the process of nucleation during gypsum scale formation,Journal of Crystal Growth,581,126472.
Booker, N. A., A. J. Priestley and I. H. Fraser, (1999) .“Struvite formation inwastewater treatment plants:opportunities for nutrient recovery,”Environ Technol., 20, 777–782.
Chester, S.P., (2009). Innovations in the inhibition and cleaning of reverse osmosis membrane scaling and fouling, Desalination, Vol.238, 22-29.
Dirksen, J.A. and Ring, T.A., (1991). Fundamentals of crystallization: kinetic effects on particle size distribution and morphology, Chemical Engineering Science, 40(10), 2389-2427.
Gutjahr, A., Dabringhaus, H., Lacmann, R., (1996). Studies of the growth and dissolution kinetics of the CaCO3 polymorphs calcite and aragonite - The influence of divalent cation additives on the growth and dissolution rates, Journal of Crystal Growth, 158, 296-309.
Hamdona ,S.K.,Aassar,A.H. M. E, Ahmed,A. E. M. M. , Nasra,A.E. S.,Morsy,A.,(2021). Enhancing anti-scaling resistances of aromatic polyamide reverse osmosis membranes using a new natural materials inhibitor, Chemical Engineering and Processing - Process Intensification,164,108404.
Heywood, B. R. and Mann, S., (1994). Template‐directed nucleation and growth of inorganic materials, Advance Materials, 6, 9.
James, D. D. and S. A. Parsons, (2002) .“Struvite formation , control and recovery,”Wat. Res., 36, 3925–3940.
Klein, C., (1985), Manual of Mineralogy, 20th ed, John Wiley & Sons, New York, Ch. 10, 328, .
Snoeyink, V.L. and Jenkins, D., (1980). Water Chemistry, John Wiley & Sons, New York.
Xu, B.A., Giles, D.E., Ritchie, I.M., (1998). Reactions of lime with carbonate-containing solutions, Hydrometallurgy, 48(2), 205-224.
行政院環保署、水質保護網。
養豬廢水回收使用手冊,2006。
畜牧廢水處理設施操作維護宣導手冊,2017。
吳峻豪,“流體化床磷酸銨鎂結晶回收污水處理廠磷之研究”, 朝陽科技大學環境工程與管理系碩士論文,2013。
劉志忠,“流體化床結晶法去除水中磷酸鹽之研究”,國立中央大學環 154 境工程研究所碩士論文,1997。
李敏華,水質化學,復漢出版社,1989。
張鵬,“重金屬對磷酸銨鎂结晶過程及其產物 纯度的影響研究”, 燕山大學環境科學與工程碩士論文,2018。
紹致凱,碳酸鈣與碳酸鐵在不同基石上之孕核與成長,碩士論文,淡江大學機械工程學系,1992。
成曉敏,單寧酸的阻垢緩蝕機理與性能研究[D]. 中北大學,2012。
潘愛芳,馬潤勇,楊彥柳,油田注水開發防垢現狀及新技術研究.北京:石油 工業出版社,2009。
許家華,養豬廢水處理廠中結晶物質生成原因及防止措施研究,國立臺灣大學環境工程研究所,碩士論文,1997。


電子全文 電子全文(網際網路公開日期:20270729)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top