跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.175) 您好!臺灣時間:2024/12/10 16:47
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:吳書含
研究生(外文):WU, SHU-HAN
論文名稱:滅火劑對土壤環境中微生物活性及植物生長之影響
論文名稱(外文):Effects of fire extinguishing agents on microbial activities and plant growth in soil environment
指導教授:劉瑞美劉瑞美引用關係
指導教授(外文):LIOU,REY-MAY
口試委員:陳世雄郭楊正
口試委員(外文):CHEN, SHIH-HSIUNGKUO, YANG-CHENG
口試日期:2022-07-11
學位類別:碩士
校院名稱:嘉南藥理大學
系所名稱:環境工程與科學系
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2022
畢業學年度:110
語文別:中文
論文頁數:74
中文關鍵詞:滅火劑土壤環境生物毒性微生物活性植物生長
外文關鍵詞:fire extinguishing agentsoil environmentbiological toxicitymicrobial activityplant growth
相關次數:
  • 被引用被引用:0
  • 點閱點閱:214
  • 評分評分:
  • 下載下載:37
  • 收藏至我的研究室書目清單書目收藏:0
滅火劑廣泛用於滅火和控制火災,然而滅火劑使用過程中其化學成分可能經由各種途徑釋放進入土壤,進而影響土壤中微生物的數量與活性、植物生長等,評估滅火劑對土壤生態環境之影響,亦為評估滅火劑之環境風險的重要因素與指標。本研究比較4種滅火劑,包括:蓄壓式乾粉滅火器(Accumulated dry powder fire extinguisher,ADPF)、機械泡沫滅火器(Pressed dry powder fire extinguisher,MFF)、強化液滅火器(Enhanced liquid fire extinguisher,ELF)與二氧化碳滅火器(Carbon dioxide fire extinguisher,CDF),模擬火災現場噴灑至2種試驗土壤(台南市歸仁系Ku土壤、南投縣名間鄉大崎腳系CTg紅壤),評估滅火劑對土壤環境中微生物活性及植物生長之影響。主要成果分述如下:
1.ADPF滅火劑及其稀釋液對萵苣種子有較明顯的抑制作用,未稀釋ELF滅火劑對萵苣種子有較明顯的抑制作用,稀釋一定倍率後抑制作用大幅下降,MFF與CDF滅火劑之生物毒性較低;
2.分別添加ADPF與ELF滅火劑至Ku土壤與CTg紅壤管柱,初期淋洗液對萵苣種子發芽與生長有強烈抑制作用,添加MFF與CDF滅火劑至土壤管柱,僅初期淋洗液僅些微抑制萵苣種子生長;
3.於Ku土壤及CTg紅壤添加滅火劑進行恆溫(28°C)培養,添加MFF滅火劑至Ku土壤之初期微生物活性有抑制現象;添加ELF滅火劑對CTg紅壤之初期微生物活性有抑制現象,且初期之總真菌與總放線菌數略有下降;
4.添加不同滅火劑進行盆栽試驗並混合不同生物炭,對植物生長之效應不盡相同,其中添加ADPF及CDF滅火劑對青江菜具有抑制現象,尤以ADPF滅火劑之抑制現象最為顯著,添加生物炭則可緩衝CDF滅火劑之抑制作用。


Fire extinguishing agents are widely used to extinguish and control fires. However, their chemical components might release into the soil through various pathway during using fire extinguishing agents. Those agents would affect the microbial numbers, microbial activities and plant growth in soil. Evaluation the impact of fire extinguishing agents on the soil ecological environment is also an important indicator for evaluating the environmental risks of fire extinguishing agents. Four fire extinguishing agents (including accumulated dry powder fire extinguisher (ADPF), mechanical foam fire extinguisher (MFF), enhanced liquid fire extinguisher (ELF) and carbon dioxide fire extinguisher (CDF)) were sprayed to 2 test soils (Ku soil in Tainan City and CTg red soil in Nantou County), to simulate the fire scene and to evaluate the microbial activities and plant growth in soil. The main results were as following:
1.ADPF agent and its diluent inhibited could inhibit the growth of lettuce seeds on obviously. ELF agent had obvious inhibitory effect on lettuce seeds, the inhibitory effect was greatly reduced when diluted to a certain rate. The biological toxicity of MFF and CDF fire extinguishing agent were lower;
2.In this study, addition of ADPF and ELF agents to Ku and CTg soil columns would be compared. The eluent had a strong inhibitory effect on the germination and growth of lettuce seeds in the initial period. The initial eluent from soil column with addition of MFF and CDF agents inhibits seed growth of lettuce slightly;
3.Test soils with addition of fire extinguishing agents incubated at 28°C. The results indicated that inhibition of microbial activity in the initial period when MFF agent in Ku soil and ELF agent in CTg red soil. The total number of fungi and actinomycetes decreased slightly in the initial period;
4.In pot experiments, there were different effects on plant growth when adding various types of fire extinguishing agents and biochars. Adding ADPF and CDF fire extinguishing agents could inhibit the growth of Brassica chinensis L. CV. Ching-Geeng, especially ADPF fire extinguishing agent had the most significant inhibition. The addition of biochar could alleviate the inhibitory effect of plant growth by CDF fire extinguishing agent.

摘要 I
Abstract III
致謝 IV
目錄 V
表目錄 VIII
圖目錄 IX
第一章 前言 1
1-1 研究動機 1
1-2 研究目的 2
第二章 文獻回顧 3
2-1 火災 3
2-2 滅火器 4
2-3 滅火劑影響 5
2-4 生物炭 6
第三章 研究設備與方法 7
3-1. 研究架構 7
3-2 滅火劑之選擇與溶液配置 7
3-3 生物毒性試驗 13
3-4 管柱淋洗試驗 14
3-5 土壤樣品微生物活性測定 15
3-6 土壤總微生物試驗 17
3-7 試驗土壤作物栽培 19
3-8 分析方法 20
3-8-1 酸鹼值測定 20
3-8-2 電導度測定 20
3-8-3 有機質測定 21
第四章 結果與討論 23
4-1 滅火劑之植物毒性試驗 23
4-2 土壤管柱淋洗液之酸鹼值變化 26
4-3 土壤管柱淋洗液之 EC 值變化 28
4-4 土壤管柱淋洗液之總有機碳含量變化 30
4-5 土壤管柱淋洗液之生物毒性 33
4-6 土壤管柱淋洗液之萵苣種子生長之影響 35
4-7 滅火劑對土壤微生物活性之影響 39
4-8 滅火劑對土壤微生物數量之影響 43
4-9.滅火劑盆栽試驗對栽培作物之影響 47
4-9-1 土壤酸鹼值變化 47
4-9-2 土壤電導度變化 51
4-9-3 土壤有機質變化 55
4-9-4 土壤微生物活性 59
4-9-5 植體栽培之株高變化 63
4-9-6 植體栽培之葉片數變化 67
4-9-7 植體之鮮乾重 71
第五章 結論 73
參考文獻 75
蔡佳儒、吳耿東(民105)。「臺灣農業廢棄物製備生物炭之未來與展望」。循環經濟 46,24-28。
Adam, G., & Duncan, H. (2001). Development of a sensitive and rapid method for the measurement of total microbial activity using fluorescein diacetate (FDA) in a range of soils. Soil Biology and Biochemistry, 33, 943-951. doi: 10.1016/S0038-0717(00)00244-3
Atkinson, C. J., Fitzgerald, J. D., & Hipps, N. A. (2010). Potential mechanisms for achieving agricultural benefits from biochar application to temperate soils: a review. Plant and Soil, 337, 1-18. doi: 10.1007/s11104-010-0464-5
Ahrens, L., Norström, K., Viktor, T., Cousins, A. P., & Josefsson, S. (2015). Stockholm Arlanda Airport as a source of per- and polyfluoroalkyl substances to water, sediment and fish. Chemosphere, 129, 33-38. doi: 10.1016/j.chemosphere.2014.03.136
Adams, R., & Simmons, D. (1999). Ecological effects of fire fighting foams and retardants: a summary. Australian Forestry, 62(4), 307-314. doi: 10.1080/00049158.1999.10674797
Bräunig, J., Baduel, C., Barnes, C. M., & Mueller, J. F. (2019). Leaching and bioavailability of selected perfluoroalkyl acids (PFAAs) from soil contaminated by firefighting activities. Science of The Total Environment, 646, 471-479. doi: 10.1016/j.scitotenv.2018.07.231
Barzen-Hanson, K. A., & Field, J. A. (2015). Discovery and implications of C2 and C3 perfluoroalkyl sulfonates in aqueous film-forming foams and groundwater. Environmental Science & Technology Letters, 2(4), 95-99. doi: 10.1021/acs.estlett.5b00049
Baduel, C., Mueller, J. F., Rotander, A., Corfield, J., & Gomez-Ramos, M. J. (2017). Discovery of novel per- and polyfluoroalkyl substances(PFASs) at a fire fighting training ground and preliminary investigation of their fate and mobility. Chemosphere, 185, 1030-1038. doi: 10.1016/j.chemosphere. 2017.06.096
George, C. W., Blakely, A. D., & Johnson, G. M. (1976). Forest fire retardant research-a status report. USDA. Forest service research paper, Intermountain Forest and Range Experimental Station, general technical report INT-31. Ogden: UT.
Giménez, A., Pastor, E., Zárate, L., Plananas, E., & Arnaldos, J. (2004). Longterm forest fire retardants: a review of quality, effectiveness, application and environmental considerations. International Journal of Wildland Fire, 13(1), 1-15. doi: 10.1071/WF03001
Keiluweit, M., Nico, P. S., Johnson, M. G., & Kleber, M. (2010). Dynamic molecular structure of plant-derived black carbon (biochar). Environmental Science and Technology, 44(4), 1247-1253. doi: 10.1021/es9031419
Lau, C., Anitole, K., Hodes, C., Lai, D., Pfahleshutchens, A., & Seed, J. (2007). Perfluoroalkyl acids: a review of monitoring and toxicological findings. Toxicological Sciences, 99(2), 366-394. doi: 10.1093/toxsci/kfm128
Lehmann, J., Gaunt, J., & Rondon, M. (2006). Bio-char sequestration in terrestrial ecosystems – A Review. Mitigation and Adaptation Strategies for Global Change, 11, 403-427. doi: 10.1007/s11027-005-9006-5
Moody, C. A., & Field, J. A., (2000). Perfluorinated surfactants and the environmental implications of their use in fire-fighting foams. Environmental Science and Technology, 34(18), 3864-3870. doi: 10.1021/es991359u
Nwoba, E. G., & Moheimani, N. R. (2022). Microalgae-based circular economy approach to upcycle fire extinguisher powder waste. Resources, Conservation and Recycling, 180, 106210 doi: 10.1016/j.resconrec.2022. 106210
Oakes, K. D., Benskin, J. P., Martin, J. W., Ings, J. S., Heinrichs, J. Y., Dixon, D. G., & Servos, M. R. (2010). Biomonitoring of perfluorochemicals and toxicity to the downstream fish community of Etobicoke Creek following deployment of aqueous film-forming foam. Aquatic Toxicology, 98(2), 120-129. doi: 10.1016/j.aquatox.2010.02.005
Prevedouros, K., Cousins, I. T., Buck, R. C., & Korzeniowski, S. H. (2006). Sources, fate and transport of perfluorocarboxylates. Environmental Science & Technology, 40(1), 32-44 doi: 10.1021/es0512475
Roberts, K. G., Gloy, B. A., & Joseph, S. (2010). Life cycle assessment of biochar systems: estimating the energetic, economic, and climate change potential. Environmental Science and Technology, 44(2), 827-833. doi: 10.1021/es902266r
Van Zwieten, L., Kimber, S., Morris, S., Chan, K. Y., Downie, A., …Cowie, A. (2009). Effects of biochar from slow pyrolysis of papermill waste on agronomic performance and soil fertility. Plant and Soil, 327(1-2), 235-246. doi: 10.1007/s11104-009-0050-x
Xie, S., Wang, T., Liu, S., Jones, K. C., Sweetman, A. J., & Lu, Y. (2013). Industrial source identification and emission estimation of perfluorooctane sulfonate in China. Environ. Int., 52, 1-8. doi: 10.1016/j.envint.2012.11.004
Zareitalabad, P., Siemens, J., Hamer, M., & Amelung, W. (2013). Perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS) in surface waters, sediments, soils and wastewater — a review on concentrations and distribution coefficients. Chemosphere, 91(6), 725-732. doi: 10.1016/j.chemosphere.2013.02.024

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top