|
1.Herman A, Herman AP. Caffeine's mechanisms of action and its cosmetic use. Skin Pharmacol Physiol. 2013;26(1):8-14. 2.Stallings AF, Lupo MP. Practical uses of botanicals in skin care. J Clin Aesthet Dermatol. 2009;2(1):36-40. 3.Otberg N, Patzelt A, Rasulev U, et al. The role of hair follicles in the percutaneous absorption of caffeine. Br J Clin Pharmacol. Apr 2008;65(4):488-92. 4.Huang M-T, Xie J-G, Wang ZY, et al. Effects of tea, decaffeinated tea, and caffeine on UVB light-induced complete carcinogenesis in SKH-1 mice: Demonstration of caffeine as a biologically important constitutent of tea. Cancer research. 1997;57(13):2623-2629. 5.Lu Y-P, Lou Y-R, Xie J-G, et al. Topical applications of caffeine or (−)-epigallocatechin gallate (EGCG) inhibit carcinogenesis and selectively increase apoptosis in UVB-induced skin tumors in mice. Proceedings of the National Academy of Sciences. 2002;99(19):12455-12460. 6.Lu Y-P, Lou Y-R, Li XH, et al. Stimulatory effect of oral administration of green tea or caffeine on ultraviolet light-induced increases in epidermal wild-type p53, p21 (WAF1/CIP1), and apoptotic sunburn cells in SKH-1 mice. Cancer research. 2000;60(17):4785-4791. 7.Lu Y-P, Lou Y-R, Xie J-G, et al. Caffeine and caffeine sodium benzoate have a sunscreen effect, enhance UVB-induced apoptosis, and inhibit UVB-induced skin carcinogenesis in SKH-1 mice. Carcinogenesis. 2007;28(1):199-206. 8.Jaber JA, Schlenoff JB. Polyelectrolyte Multilayers with Reversible Thermal Responsivity. Macromolecules. 2005/02/01 2005;38(4):1300-1306. 9.Zhang K, Huang H, Yang G, Shaw J, Yip C, Wu XY. Characterization of Nanostructure of Stimuli-Responsive Polymeric Composite Membranes. Biomacromolecules. 07/01 2004;5:1248-55. 10.Wong JE, Díez-Pascual AM, Richtering W. Layer-by-Layer Assembly of Polyelectrolyte Multilayers on Thermoresponsive P(NiPAM-co-MAA) Microgel: Effect of Ionic Strength and Molecular Weight. Macromolecules. 2009/02/24 2009;42(4):1229-1238. 11.Mielke M, Ralf Z. Properties of Differently Charged Poly(N-isopropylacrylamide) Latex Dispersions in Alcohol–Water Mixtures. Berichte der Bunsengesellschaft für physikalische Chemie. 11/01 1998;102:1698-1704. 12.Daly E, Saunders BR. Temperature–dependent electrophoretic mobility and hydrodynamic radius measurements of poly(N-isopropylacrylamide) microgel particles: structural insights. 10.1039/B002678F. Physical Chemistry Chemical Physics. 2000;2(14):3187-3193. 13.Chen G, Hoffman AS. Temperature-induced phase transition behaviors of random vs. graft copolymers of N-isopropylacrylamide and acrylic acid. Macromolecular Rapid Communications. 1995;16(3):175-182. 14.Han HD, Choi MS, Hwang T, et al. Hyperthermia-induced antitumor activity of thermosensitive polymer modified temperature-sensitive liposomes. J Pharm Sci. Sep 2006;95(9):1909-17. 15.Bergbreiter DE, Case BL, Liu Y-S, Caraway JW. Poly(N-isopropylacrylamide) Soluble Polymer Supports in Catalysis and Synthesis. Macromolecules. 1998/09/01 1998;31(18):6053-6062. 16.Nolan CM, Serpe MJ, Lyon LA. Thermally Modulated Insulin Release from Microgel Thin Films. Biomacromolecules. 2004/09/01 2004;5(5):1940-1946. 17.Yoo MK, Sung YK, Lee YM, Cho CS. Effect of polyelectrolyte on the lower critical solution temperature of poly(N-isopropyl acrylamide) in the poly(NIPAAm-co-acrylic acid) hydrogel. Polymer. 2000/07/01/ 2000;41(15):5713-5719. 18.Ward MA, Georgiou TK. Thermoresponsive Polymers for Biomedical Applications. Polymers. 2011;3(3):1215-1242. 19.Yu Y-L, Xie R, Zhang M-J, et al. Monodisperse microspheres with poly(N-isopropylacrylamide) core and poly(2-hydroxyethyl methacrylate) shell. Journal of Colloid and Interface Science. 2010/06/15/ 2010;346(2):361-369. 20.Inoue T, Chen G, Nakamae K, Hoffman AS. Temperature sensitivity of a hydrogel network containing different LCST oligomers grafted to the hydrogel backbone. Polymer Gels and Networks. 1998/04/20/ 1998;5(6):561-575. 21.Li G, Guo L, Wen Q, Zhang T. Thermo- and pH-sensitive ionic-crosslinked hollow spheres from chitosan-based graft copolymer for 5-fluorouracil release. International Journal of Biological Macromolecules. 2013/04/01/ 2013;55:69-74. 22.吳宏毅. 半互穿型網狀結構體的聚N-異丙基丙烯醯胺/聚丙烯酸鈉吸濕材之製備及性質研究. 中原大學; 2006. 23.Pang X, Cui S. Single-Chain Mechanics of Poly(N,N-diethylacrylamide) and Poly(N-isopropylacrylamide): Comparative Study Reveals the Effect of Hydrogen Bond Donors. Langmuir. 2013/10/01 2013;29(39):12176-12182. 24.Tajima H, Yoshida Y, Abiko S, Yamagiwa K. Size adjustment of spherical temperature-sensitive hydrogel beads by liquid–liquid dispersion using a Kenics static mixer. Chemical Engineering Journal. 2010/01/15/ 2010;156(2):479-486. 25.Angelopoulos SA, Tsitsilianis C. Thermo-Reversible Hydrogels Based on Poly(N,N-diethylacrylamide)-block-poly(acrylic acid)-block-poly(N,N-diethylacrylamide) Double Hydrophilic Triblock Copolymer. Macromolecular Chemistry and Physics. 2006;207(23):2188-2194. 26.Andre X, Burkhardt M, Drechsler M, Lindner P, Gradzielski M, Müller AHE. Schizophrenic Micelles from a Poly(Acrylic Acid)-Block-Poly(N,N-Diethylacrylamide) Copolymer. Polymeric Materials Science and Engineering. 2007;96:560-561. 27.Tang Z, Akiyama Y, Yamato M, Okano T. Comb-type grafted poly(N-isopropylacrylamide) gel modified surfaces for rapid detachment of cell sheet. Biomaterials. 2010/10/01/ 2010;31(29):7435-7443. 28.Gil ES, Hudson SM. Stimuli-reponsive polymers and their bioconjugates. Progress in Polymer Science. 2004/12/01/ 2004;29(12):1173-1222. 29.Aoki T, Muramatsu M, Torii T, Sanui K, Ogata N. Thermosensitive phase transition of an optically active polymer in aqueous milieu. Macromolecules. 2001;34(10):3118-3119. 30.Pelton RH, Chibante P. Preparation of aqueous latices with N-isopropylacrylamide. Colloids and Surfaces. 1986/10/01/ 1986;20(3):247-256. 31.Kawaguchi H, Fujimoto K, Mizuhara Y. Hydrogel microspheres III. Temperature-dependent adsorption of proteins on poly-N-isopropylacrylamide hydrogel microspheres. Colloid and Polymer Science. 1992;270(1):53-57. 32.Okubo M, Ahmad H. Synthesis of temperature-sensitive submicron-size composite polymer particles. Colloid and Polymer Science. 1995;273(9):817-821. 33.Dong L-c, Hoffman AS. A novel approach for preparation of pH-sensitive hydrogels for enteric drug delivery. Journal of Controlled Release. 1991;15(2):141-152. 34.Lee C-F, Lin C-C, Chiu W-Y. Thermosensitive and control release behavior of poly (N-isopropylacrylamide-co-acrylic acid) latex particles. Journal of Polymer Science Part A: Polymer Chemistry. 2008;46(17):5734-5741. 35.Banet P, Griesmar P, Serfaty S, Vidal F, Jaouen V, Le Huerou JY. One-Shot Synthesis of a Poly(N-isopropylacrylamide)/Silica Hybrid Gel. The Journal of Physical Chemistry B. 2009/11/12 2009;113(45):14914-14919. 36.Berndt I, Pedersen JS, Richtering W. Temperature-sensitive core-shell microgel particles with dense shell. Angew Chem Int Ed Engl. Mar 3 2006;45(11):1737-41. 37.Berndt I, Richtering W. Doubly Temperature Sensitive Core−Shell Microgels. Macromolecules. 2003/11/01 2003;36(23):8780-8785. 38.Chen Y, Gautrot JE, Zhu XX. Synthesis and Characterization of Core−Shell Microspheres with Double Thermosensitivity. Langmuir. 2007/01/01 2007;23(3):1047-1051. 39.Zhang F, Wang C-C. Preparation of P(NIPAM-co-AA) Microcontainers Surface-Anchored with Magnetic Nanoparticles. Langmuir. 2009/07/21 2009;25(14):8255-8262. 40.Deng Y, Wang C, Shen X, et al. Preparation, Characterization, and Application of Multistimuli-Responsive Microspheres with Fluorescence-Labeled Magnetic Cores and Thermoresponsive Shells. Chemistry – A European Journal. 2005;11(20):6006-6013. 41.Pavlyuchenko VN, Sorochinskaya OV, Ivanchev SS, et al. Hollow‐particle latexes: Preparation and properties. Journal of Polymer Science Part A: Polymer Chemistry. 2001;39(9):1435-1449. 42.Okubo M, Katsuta Y, Matsumoto T. Studies on suspension and emulsion. LI. Peculiar morphology of composite polymer particles produced by seeded emulsion polymerization. Journal of Polymer Science: Polymer Letters Edition. 1982;20(1):45-51. 43.Yuan C-D, Miao A-H, Cao J-W, Xu Y-S, Cao T-Y. Preparation of monodispersed hollow polymer particles by seeded emulsion polymerization under low emulsifier conditions. Journal of Applied Polymer Science. 2005;98(4):1505-1510. 44.McDonald CJ, Devon MJ. Hollow latex particles: synthesis and applications. Advances in colloid and interface science. 2002;99(3):181-213. 45.Deng W, Wang J, Wang M, Kan C. Preparation of Bowl‐Like Polymer Particles via Multi‐Step Emulsion Polymerization and Alkali Post‐Treatment. Wiley Online Library; 2010:61-64. 46.Pan T-Y, Lee C-F, Chu C-H. Synthesis and characteristics of poly(methacrylic acid-co-N-isopropylacrylamide) thermosensitive composite hollow latex particles and their application as drug carriers. Journal of Polymer Science Part A: Polymer Chemistry. 2013;51(24):5203-5214. 47.Lee C-F, Hsu M-L, Chu C-H, Wu T-Y. Synthesis and characteristics of poly(methyl methacrylate-co-methacrylic acid)/poly(methacrylic acid-co-N-isopropylacrylamide) thermosensitive semi-hollow latex particles and their application to drug carriers. Journal of Polymer Science Part A: Polymer Chemistry. 2014;52(23):3441-3451.
|