跳到主要內容

臺灣博碩士論文加值系統

(44.192.247.184) 您好!臺灣時間:2023/01/30 12:26
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:羅宏丞
研究生(外文):LO, HUNG-CHENG
論文名稱:控制釋放中空奈米乳膠粒子之合成 及化粧品應用研究
論文名稱(外文):Synthesis of Control-Released Hollow Nano Latex Particlesand Applications on Cosmetics
指導教授:李佳芬李佳芬引用關係
指導教授(外文):LEE, CHIA-FEN
口試委員:張德生王紀
口試委員(外文):CHANG, TE-SHENGWANG, CHI
口試日期:2022-06-09
學位類別:碩士
校院名稱:嘉南藥理大學
系所名稱:藥學系
學門:醫藥衛生學門
學類:藥學學類
論文種類:學術論文
論文出版年:2022
畢業學年度:110
語文別:英文
論文頁數:86
中文關鍵詞:中空乳膠粒子氮-異丙基丙烯醯胺藥物控制釋放CC 霜
外文關鍵詞:hollow latex particlesnitrogen-isopropyl acrylamidecontrol-releaseCC cream.
IG URL:https://butyshop.com
Facebook:https://www.facebook.com/butyroger
相關次數:
  • 被引用被引用:0
  • 點閱點閱:42
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究首先製備出溫感性的空心結構 poly(NAM-MAL)乳膠顆粒, 並將以上所製備的中空乳膠顆粒作為載體,將模擬藥物載入包覆於溫 感性高分子載體中,並將此具有藥物釋放控制功能的溫感活性奈米膠 囊顆粒添加到實際的化粧保養品配方中,並進行各項性質的研究。
實驗主要分三個部份,第一部分先製備具溫感應性的中空乳膠顆 粒,使用 MMG、MAL、NAM 等單體為原料,成功製備中空乳膠顆粒。 研究結果顯示,所製備的中空乳膠顆粒其粒徑及性質穩定,即使將所 製備的中空乳膠顆粒於常溫環境中保存 90 天,中空乳膠顆粒的外觀及 粒徑依然非常穩定無變化。
第二部份研究是利用所製備的空心乳膠顆粒,將模擬藥物包覆於 其空心內殼中,以達到釋放控制的緩釋及長效性能,並利用穿透式電 子顯微鏡(TEM)觀察載藥後的空心乳膠顆粒形態及結構。
最後第三部分,將包覆模擬藥物的溫感中空乳膠顆粒載體添加於 同時具有保養及彩粧功能的 CC 霜中,並分析其各項物化特性。
In this study, a temperature-sensitive hollow structure poly(NAM-MAL) latex particles was prepared. Using the hollow latex particles prepared above as a carrier to load the simulated drug into the temperature-sensitive hollow carrier capsules. These temperature-sensitive active nano capsules with the function of control-release were added to actual cosmetic formulations and properties were studied.
The experiment is mainly included three parts. In the first part, the hol- low latex particles with temperature sensitivity were prepared. The mono- mers of MMG, MAL and NAM were used as raw materials. The hollow latex particles were successfully prepared. The research results showed that the particle size and properties of the prepared hollow latex particles were stable. Even if the prepared hollow latex particles were stored at room temperature for 90 days, the appearance and particle size of the hollow latex particles were still very stable and unchanged.
The second part of the research was to use the prepared hollow latex particles to encapsulate the simulated drug in its hollow inner shell to achieve controlled and long-term release performance. The morphology of hollow latex particles was observed by transmission electron microscopy (TEM).
Finally, in the third part, the temperature-sensitive hollow latex particle carrier coated with the simulated drug was added to the CC cream with both skin-care and make-up functions. Its physicochemical properties were ana- lyzed.
Acknowledgement I
中文摘要 II
ABSTRACT III
TABLES of CONTENTS IV
LIST OF FIGURES VI
LIST OF TABLES VIII
Chapter 1 Introduction 1
1.1 Study Background 1
1.2 Study Motivation and Purpose 2
1.3 The efficacies of caffeine in cosmetics 3
1.4 CC Cream: A multifunctional product 6
Chapter 2 Literature Review 7
2.1 Temperature Sensitive Latex Coating Material 7
2.2 Core-shell temperature-sensitive hydrogel 11
2.3 Preparation of hollow latex particles 12
Chapter 3 Experimental Methodology 15
3.1 Experimental Reagents 15
3.2 Analysis Instruments 17
3.3 Abbreviations and acronyms 19
3.4 Processes and Framework 20
3.4.1 Analysis of Morphology and Structure 21
3.4.2 Formulations and preparations of CC Creams 22
3.4.3 Formulations and preparations of CC Creams with nano caffeine capsules 23
3.4.4 Moisture retention and trapping water efficacy 24
3.4.5 Air permeability of CC creams with nano caffeine capsules 25
3.4.6 Analysis of hue and chroma stability 26
3.4.7 Skin adhesion test 30
3.4.8 Transference test 31
3.4.9 Emulsion and color stabilities test 32
Chapter 4 Results and Discussion 33
4.1 Synthesis and morphological observation of solid, core-shell and hollow latex particles 33
4.1.1 Morphological observation of poly(MMG-MAL) solid latex particles 33
4.1.2 Morphological observation of poly(MMG-MAL) / poly(NAM-MAL) core-shell latex particles 35
4.1.3 Morphological observation of poly(NAM-MAL) hollow latex particles 36
4.2 Observation of drug-loading of hollow latex particles 41
4.3 Moisture retention and trapping water evaluation of CC creams 43
4.4 Air permeability evaluation of CC creams with nano caffeine capsules 48
4.5 Analysis of hue and chroma stability 54
4.6 Skin adhesion test 57
4.7 Transference test 59
4.8 Emulsion and color stabilities test 61
4.8.1 Centrifugal stability 61
4.8.2 Oven-baking stability 63
Chapter 5 Conclusion 67
REFERENCE 69
1.Herman A, Herman AP. Caffeine's mechanisms of action and its cosmetic use. Skin Pharmacol Physiol. 2013;26(1):8-14.
2.Stallings AF, Lupo MP. Practical uses of botanicals in skin care. J Clin Aesthet Dermatol. 2009;2(1):36-40.
3.Otberg N, Patzelt A, Rasulev U, et al. The role of hair follicles in the percutaneous absorption of caffeine. Br J Clin Pharmacol. Apr 2008;65(4):488-92.
4.Huang M-T, Xie J-G, Wang ZY, et al. Effects of tea, decaffeinated tea, and caffeine on UVB light-induced complete carcinogenesis in SKH-1 mice: Demonstration of caffeine as a biologically important constitutent of tea. Cancer research. 1997;57(13):2623-2629.
5.Lu Y-P, Lou Y-R, Xie J-G, et al. Topical applications of caffeine or (−)-epigallocatechin gallate (EGCG) inhibit carcinogenesis and selectively increase apoptosis in UVB-induced skin tumors in mice. Proceedings of the National Academy of Sciences. 2002;99(19):12455-12460.
6.Lu Y-P, Lou Y-R, Li XH, et al. Stimulatory effect of oral administration of green tea or caffeine on ultraviolet light-induced increases in epidermal wild-type p53, p21 (WAF1/CIP1), and apoptotic sunburn cells in SKH-1 mice. Cancer research. 2000;60(17):4785-4791.
7.Lu Y-P, Lou Y-R, Xie J-G, et al. Caffeine and caffeine sodium benzoate have a sunscreen effect, enhance UVB-induced apoptosis, and inhibit UVB-induced skin carcinogenesis in SKH-1 mice. Carcinogenesis. 2007;28(1):199-206.
8.Jaber JA, Schlenoff JB. Polyelectrolyte Multilayers with Reversible Thermal Responsivity. Macromolecules. 2005/02/01 2005;38(4):1300-1306.
9.Zhang K, Huang H, Yang G, Shaw J, Yip C, Wu XY. Characterization of Nanostructure of Stimuli-Responsive Polymeric Composite Membranes. Biomacromolecules. 07/01 2004;5:1248-55.
10.Wong JE, Díez-Pascual AM, Richtering W. Layer-by-Layer Assembly of Polyelectrolyte Multilayers on Thermoresponsive P(NiPAM-co-MAA) Microgel: Effect of Ionic Strength and Molecular Weight. Macromolecules. 2009/02/24 2009;42(4):1229-1238.
11.Mielke M, Ralf Z. Properties of Differently Charged Poly(N-isopropylacrylamide) Latex Dispersions in Alcohol–Water Mixtures. Berichte der Bunsengesellschaft für physikalische Chemie. 11/01 1998;102:1698-1704.
12.Daly E, Saunders BR. Temperature–dependent electrophoretic mobility and hydrodynamic radius measurements of poly(N-isopropylacrylamide) microgel particles: structural insights. 10.1039/B002678F. Physical Chemistry Chemical Physics. 2000;2(14):3187-3193.
13.Chen G, Hoffman AS. Temperature-induced phase transition behaviors of random vs. graft copolymers of N-isopropylacrylamide and acrylic acid. Macromolecular Rapid Communications. 1995;16(3):175-182.
14.Han HD, Choi MS, Hwang T, et al. Hyperthermia-induced antitumor activity of thermosensitive polymer modified temperature-sensitive liposomes. J Pharm Sci. Sep 2006;95(9):1909-17.
15.Bergbreiter DE, Case BL, Liu Y-S, Caraway JW. Poly(N-isopropylacrylamide) Soluble Polymer Supports in Catalysis and Synthesis. Macromolecules. 1998/09/01 1998;31(18):6053-6062.
16.Nolan CM, Serpe MJ, Lyon LA. Thermally Modulated Insulin Release from Microgel Thin Films. Biomacromolecules. 2004/09/01 2004;5(5):1940-1946.
17.Yoo MK, Sung YK, Lee YM, Cho CS. Effect of polyelectrolyte on the lower critical solution temperature of poly(N-isopropyl acrylamide) in the poly(NIPAAm-co-acrylic acid) hydrogel. Polymer. 2000/07/01/ 2000;41(15):5713-5719.
18.Ward MA, Georgiou TK. Thermoresponsive Polymers for Biomedical Applications. Polymers. 2011;3(3):1215-1242.
19.Yu Y-L, Xie R, Zhang M-J, et al. Monodisperse microspheres with poly(N-isopropylacrylamide) core and poly(2-hydroxyethyl methacrylate) shell. Journal of Colloid and Interface Science. 2010/06/15/ 2010;346(2):361-369.
20.Inoue T, Chen G, Nakamae K, Hoffman AS. Temperature sensitivity of a hydrogel network containing different LCST oligomers grafted to the hydrogel backbone. Polymer Gels and Networks. 1998/04/20/ 1998;5(6):561-575.
21.Li G, Guo L, Wen Q, Zhang T. Thermo- and pH-sensitive ionic-crosslinked hollow spheres from chitosan-based graft copolymer for 5-fluorouracil release. International Journal of Biological Macromolecules. 2013/04/01/ 2013;55:69-74.
22.吳宏毅. 半互穿型網狀結構體的聚N-異丙基丙烯醯胺/聚丙烯酸鈉吸濕材之製備及性質研究. 中原大學; 2006.
23.Pang X, Cui S. Single-Chain Mechanics of Poly(N,N-diethylacrylamide) and Poly(N-isopropylacrylamide): Comparative Study Reveals the Effect of Hydrogen Bond Donors. Langmuir. 2013/10/01 2013;29(39):12176-12182.
24.Tajima H, Yoshida Y, Abiko S, Yamagiwa K. Size adjustment of spherical temperature-sensitive hydrogel beads by liquid–liquid dispersion using a Kenics static mixer. Chemical Engineering Journal. 2010/01/15/ 2010;156(2):479-486.
25.Angelopoulos SA, Tsitsilianis C. Thermo-Reversible Hydrogels Based on Poly(N,N-diethylacrylamide)-block-poly(acrylic acid)-block-poly(N,N-diethylacrylamide) Double Hydrophilic Triblock Copolymer. Macromolecular Chemistry and Physics. 2006;207(23):2188-2194.
26.Andre X, Burkhardt M, Drechsler M, Lindner P, Gradzielski M, Müller AHE. Schizophrenic Micelles from a Poly(Acrylic Acid)-Block-Poly(N,N-Diethylacrylamide) Copolymer. Polymeric Materials Science and Engineering. 2007;96:560-561.
27.Tang Z, Akiyama Y, Yamato M, Okano T. Comb-type grafted poly(N-isopropylacrylamide) gel modified surfaces for rapid detachment of cell sheet. Biomaterials. 2010/10/01/ 2010;31(29):7435-7443.
28.Gil ES, Hudson SM. Stimuli-reponsive polymers and their bioconjugates. Progress in Polymer Science. 2004/12/01/ 2004;29(12):1173-1222.
29.Aoki T, Muramatsu M, Torii T, Sanui K, Ogata N. Thermosensitive phase transition of an optically active polymer in aqueous milieu. Macromolecules. 2001;34(10):3118-3119.
30.Pelton RH, Chibante P. Preparation of aqueous latices with N-isopropylacrylamide. Colloids and Surfaces. 1986/10/01/ 1986;20(3):247-256.
31.Kawaguchi H, Fujimoto K, Mizuhara Y. Hydrogel microspheres III. Temperature-dependent adsorption of proteins on poly-N-isopropylacrylamide hydrogel microspheres. Colloid and Polymer Science. 1992;270(1):53-57.
32.Okubo M, Ahmad H. Synthesis of temperature-sensitive submicron-size composite polymer particles. Colloid and Polymer Science. 1995;273(9):817-821.
33.Dong L-c, Hoffman AS. A novel approach for preparation of pH-sensitive hydrogels for enteric drug delivery. Journal of Controlled Release. 1991;15(2):141-152.
34.Lee C-F, Lin C-C, Chiu W-Y. Thermosensitive and control release behavior of poly (N-isopropylacrylamide-co-acrylic acid) latex particles. Journal of Polymer Science Part A: Polymer Chemistry. 2008;46(17):5734-5741.
35.Banet P, Griesmar P, Serfaty S, Vidal F, Jaouen V, Le Huerou JY. One-Shot Synthesis of a Poly(N-isopropylacrylamide)/Silica Hybrid Gel. The Journal of Physical Chemistry B. 2009/11/12 2009;113(45):14914-14919.
36.Berndt I, Pedersen JS, Richtering W. Temperature-sensitive core-shell microgel particles with dense shell. Angew Chem Int Ed Engl. Mar 3 2006;45(11):1737-41.
37.Berndt I, Richtering W. Doubly Temperature Sensitive Core−Shell Microgels. Macromolecules. 2003/11/01 2003;36(23):8780-8785.
38.Chen Y, Gautrot JE, Zhu XX. Synthesis and Characterization of Core−Shell Microspheres with Double Thermosensitivity. Langmuir. 2007/01/01 2007;23(3):1047-1051.
39.Zhang F, Wang C-C. Preparation of P(NIPAM-co-AA) Microcontainers Surface-Anchored with Magnetic Nanoparticles. Langmuir. 2009/07/21 2009;25(14):8255-8262.
40.Deng Y, Wang C, Shen X, et al. Preparation, Characterization, and Application of Multistimuli-Responsive Microspheres with Fluorescence-Labeled Magnetic Cores and Thermoresponsive Shells. Chemistry – A European Journal. 2005;11(20):6006-6013.
41.Pavlyuchenko VN, Sorochinskaya OV, Ivanchev SS, et al. Hollow‐particle latexes: Preparation and properties. Journal of Polymer Science Part A: Polymer Chemistry. 2001;39(9):1435-1449.
42.Okubo M, Katsuta Y, Matsumoto T. Studies on suspension and emulsion. LI. Peculiar morphology of composite polymer particles produced by seeded emulsion polymerization. Journal of Polymer Science: Polymer Letters Edition. 1982;20(1):45-51.
43.Yuan C-D, Miao A-H, Cao J-W, Xu Y-S, Cao T-Y. Preparation of monodispersed hollow polymer particles by seeded emulsion polymerization under low emulsifier conditions. Journal of Applied Polymer Science. 2005;98(4):1505-1510.
44.McDonald CJ, Devon MJ. Hollow latex particles: synthesis and applications. Advances in colloid and interface science. 2002;99(3):181-213.
45.Deng W, Wang J, Wang M, Kan C. Preparation of Bowl‐Like Polymer Particles via Multi‐Step Emulsion Polymerization and Alkali Post‐Treatment. Wiley Online Library; 2010:61-64.
46.Pan T-Y, Lee C-F, Chu C-H. Synthesis and characteristics of poly(methacrylic acid-co-N-isopropylacrylamide) thermosensitive composite hollow latex particles and their application as drug carriers. Journal of Polymer Science Part A: Polymer Chemistry. 2013;51(24):5203-5214.
47.Lee C-F, Hsu M-L, Chu C-H, Wu T-Y. Synthesis and characteristics of poly(methyl methacrylate-co-methacrylic acid)/poly(methacrylic acid-co-N-isopropylacrylamide) thermosensitive semi-hollow latex particles and their application to drug carriers. Journal of Polymer Science Part A: Polymer Chemistry. 2014;52(23):3441-3451.
電子全文 電子全文(網際網路公開日期:20270610)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top