|
1.Lam, D.W., D.J.C.O.i.E. LeRoith, Diabetes, and Obesity, The worldwide diabetes epidemic. 2012. 19(2): p. 93-96. 2.Sun, H., et al., IDF Diabetes Atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. 2022. 183: p. 109119. 3.Daneman, D.J.T.L., Type 1 diabetes. 2006. 367(9513): p. 847-858. 4.Chatterjee, S., K. Khunti, and M.J.J.T.l. Davies, Type 2 diabetes. 2017. 389(10085): p. 2239-2251. 5.Leong, K.S., et al., Obesity and diabetes. 1999. 13(2): p. 221-237. 6.Buchanan, T.A. and A.H.J.T.J.o.c.i. Xiang, Gestational diabetes mellitus. 2005. 115(3): p. 485-491. 7.Wei, W., et al., Oxidative stress, diabetes, and diabetic complications. 2009. 33(5): p. 370-377. 8.Livingstone, S.J., et al., Estimated life expectancy in a Scottish cohort with type 1 diabetes, 2008-2010. 2015. 313(1): p. 37-44. 9.R Miranda-Massari, J., et al., Metabolic correction in the management of diabetic peripheral neuropathy: improving clinical results beyond symptom control. 2011. 6(4): p. 260-273. 10.Ramos-Rodriguez, J.J., et al., Differential central pathology and cognitive impairment in pre-diabetic and diabetic mice. 2013. 38(11): p. 2462-2475. 11.Matheus, A.S.d.M., et al., Impact of diabetes on cardiovascular disease: an update. 2013. 2013. 12.Selvaraju, V., et al., Diabetes, oxidative stress, molecular mechanism, and cardiovascular disease–an overview. 2012. 22(5): p. 330-335. 13.Lechner, J., O.E. O'Leary, and A.W.J.V.r. Stitt, The pathology associated with diabetic retinopathy. 2017. 139: p. 7-14. 14.Stitt, A.W., et al., The progress in understanding and treatment of diabetic retinopathy. 2016. 51: p. 156-186. 15.Hazlehurst, J.M., et al., Non-alcoholic fatty liver disease and diabetes. 2016. 65(8): p. 1096-1108. 16.Nogueira, P.C.K. and I.d.P.J.J.d.P. Paz, Signs and symptoms of developmental abnormalities of the genitourinary tract. 2016. 92: p. 57-63. 17.MacIsaac, R.J., E.I. Ekinci, and G.J.A.j.o.k.d. Jerums, Markers of and risk factors for the development and progression of diabetic kidney disease. 2014. 63(2): p. S39-S62. 18.Pálsson, R. and U.D.J.A.i.c.k.d. Patel, Cardiovascular complications of diabetic kidney disease. 2014. 21(3): p. 273-280. 19.Viberti, G., J. Yip-Messent, and A.J.D.C. Morocutti, Diabetic nephropathy: future avenue. 1992. 15(9): p. 1216-1225. 20.Harjutsalo, V. and P.-H.J.A.i.c.k.d. Groop, Epidemiology and risk factors for diabetic kidney disease. 2014. 21(3): p. 260-266. 21.Nazar, C.M.J.J.J.o.n., Diabetic nephropathy; principles of diagnosis and treatment of diabetic kidney disease. 2014. 3(1): p. 15. 22.Tryggvason, K.J.J.o.t.A.S.o.N., Unraveling the mechanisms of glomerular ultrafiltration: nephrin, a key component of the slit diaphragm. 1999. 10(11): p. 2440-2445. 23.Kim, Y., et al., Differential expression of basement membrane collagen chains in diabetic nephropathy. 1991. 138(2): p. 413. 24.Persson, F. and P.J.K.i.s. Rossing, Diagnosis of diabetic kidney disease: state of the art and future perspective. 2018. 8(1): p. 2-7. 25.De la Cuesta Benjumea, C.J.I.y.e.e.e., El cuidado del otro: desafíos y posibilidades. 2007. 25(1): p. 106-112. 26.HWANG, S.J., J.C. TSAI, and H.C.J.N. CHEN, Epidemiology, impact and preventive care of chronic kidney disease in Taiwan. 2010. 15: p. 3-9. 27.Lin, S.-F., et al., Quality of life and cognitive assessment in healthy older Asian people with early and moderate chronic kidney disease: The NAHSIT 2013–2016 and validation study. 2022. 17(3): p. e0264915. 28.Hwang, S.-J., 2020 Annual Report on Kidney Disease in Taiwan. 2020, National Health Research Institutes. p. E1-E12, S1-S82 (February 2022). 29.Hsu, C.-C., S.-T. Tu, and W.H.-H.J.J.o.t.F.M.A. Sheu, 2019 Diabetes Atlas: Achievements and challenges in diabetes care in Taiwan. 2019. 118: p. S130-S134. 30.Cove-Smith, A. and B.M.J.N.E.N. Hendry, The regulation of mesangial cell proliferation. 2008. 108(4): p. e74-e79. 31.Fioretto, P. and M. Mauer. Histopathology of diabetic nephropathy. in Seminars in nephrology. 2007. Elsevier. 32.Vleming, L., et al., The glomerular deposition of PAS positive material correlates with renal function in human kidney diseases. 1997. 47(3): p. 158-167. 33.Legouis, D., et al., Renal gluconeogenesis: an underestimated role of the kidney in systemic glucose metabolism. 2020. 34.John, S.J.D., M.S.C. Research, and Reviews, Complication in diabetic nephropathy. 2016. 10(4): p. 247-249. 35.Mogensen, C., C. Christensen, and E.J.D. Vittinghus, The stages in diabetic renal disease: with emphasis on the stage of incipient diabetic nephropathy. 1983. 32(Supplement_2): p. 64-78. 36.Hakim, F.A., A.J.M.s.m.i.m.j.o.e. Pflueger, and c. research, Role of oxidative stress in diabetic kidney disease. 2010. 16(2): p. RA37-48. 37.Jandeleit-Dahm, K., et al., Role of hyperlipidemia in progressive renal disease: focus on diabetic nephropathy. 1999. 56: p. S31-S36. 38.Prentki, M., et al., Malonyl-CoA signaling, lipid partitioning, and glucolipotoxicity: role in β-cell adaptation and failure in the etiology of diabetes. 2002. 51(suppl_3): p. S405-S413. 39.Cerf, M.E.J.M., Cardiac glucolipotoxicity and cardiovascular outcomes. 2018. 54(5): p. 70. 40.Guo, J., et al., Liraglutide reduces hepatic glucolipotoxicity‑induced liver cell apoptosis through NRF2 signaling in Zucker diabetic fatty rats. 2018. 17(6): p. 8316-8324. 41.Yamabe, N., et al., Evaluation of loganin, iridoid glycoside from Corni Fructus, on hepatic and renal glucolipotoxicity and inflammation in type 2 diabetic db/db mice. 2010. 648(1-3): p. 179-187. 42.Abdul-Hadi, M.H., et al., Oxidative stress injury and glucolipotoxicity in type 2 diabetes mellitus: The potential role of metformin and sitagliptin. 2020. 4(2): p. 166. 43.Indo, H.P., et al., A mitochondrial superoxide theory for oxidative stress diseases and aging. 2015. 56(1): p. 1-7. 44.Chatterjee, S., Oxidative stress, inflammation, and disease, in Oxidative stress and biomaterials. 2016, Elsevier. p. 35-58. 45.Coughlan, M.T. and K.J.K.i. Sharma, Challenging the dogma of mitochondrial reactive oxygen species overproduction in diabetic kidney disease. 2016. 90(2): p. 272-279. 46.Schiffer, T.A. and M.J.F.i.p. Friederich-Persson, Mitochondrial reactive oxygen species and kidney hypoxia in the development of diabetic nephropathy. 2017. 8: p. 211. 47.Ferrucci, L. and E.J.N.R.C. Fabbri, Inflammageing: chronic inflammation in ageing, cardiovascular disease, and frailty. 2018. 15(9): p. 505-522. 48.Nennig, S., J.J.A. Schank, and Alcoholism, The role of NFkB in drug addiction: beyond inflammation. 2017. 52(2): p. 172-179. 49.Miyamoto, S., et al., Tumor necrosis factor alpha-induced phosphorylation of I kappa B alpha is a signal for its degradation but not dissociation from NF-kappa B. 1994. 91(26): p. 12740-12744. 50.Greco, R., et al., IkappaB-alpha expression following transient focal cerebral ischemia is modulated by nitric oxide. 2011. 1372: p. 145-151. 51.Yamamoto, Y., et al., IκB kinase α (IKKα) regulation of IKKβ kinase activity. 2000. 20(10): p. 3655-3666. 52.Lawson, C. and S.J.P.r. Wolf, ICAM-1 signaling in endothelial cells. 2009. 61(1): p. 22-32. 53.Hubbard, A.K., R.J.F.r.b. Rothlein, and medicine, Intercellular adhesion molecule-1 (ICAM-1) expression and cell signaling cascades. 2000. 28(9): p. 1379-1386. 54.Yadav, A., V. Saini, and S.J.C.c.a. Arora, MCP-1: chemoattractant with a role beyond immunity: a review. 2010. 411(21-22): p. 1570-1579. 55.Panee, J.J.C., Monocyte Chemoattractant Protein 1 (MCP-1) in obesity and diabetes. 2012. 60(1): p. 1-12. 56.Uchida, K.J.M. and Cells, A lipid-derived endogenous inducer of COX-2: a bridge between inflammation and oxidative stress. 2008. 25(3). 57.Moita, E., et al., Integrated analysis of COX-2 and iNOS derived inflammatory mediators in LPS-stimulated RAW macrophages pre-exposed to Echium plantagineum L. bee pollen extract. 2013. 8(3): p. e59131. 58.Van Rooij, E.J.C.r., The art of microRNA research. 2011. 108(2): p. 219-234. 59.Davis-Dusenbery, B.N. and A.J.T.j.o.b. Hata, Mechanisms of control of microRNA biogenesis. 2010. 148(4): p. 381-392. 60.Nejad, C., H.J. Stunden, and M.P.J.T.F.j. Gantier, A guide to miRNAs in inflammation and innate immune responses. 2018. 285(20): p. 3695-3716. 61.Chang, J.-Y., et al., Development of a miRNA biochip platform. 2014. 6(4): p. 154-158. 62.Cai, Y., et al., A brief review on the mechanisms of miRNA regulation. 2009. 7(4): p. 147-154. 63.Swarbrick, S., et al., Systematic review of miRNA as biomarkers in Alzheimer’s disease. 2019. 56(9): p. 6156-6167. 64.Gjorgjieva, M., et al., miRNAs and NAFLD: from pathophysiology to therapy. 2019. 68(11): p. 2065-2079. 65.Lu, T.X., M.E.J.J.o.a. Rothenberg, and c. immunology, MicroRNA. 2018. 141(4): p. 1202-1207. 66.Conserva, F., et al., Urinary miRNA-27b-3p and miRNA-1228-3p correlate with the progression of kidney fibrosis in diabetic nephropathy. 2019. 9(1): p. 1-11. 67.Sonoda, H., et al., miRNA profiling of urinary exosomes to assess the progression of acute kidney injury. 2019. 9(1): p. 1-11. 68.Patel, V., et al., miR-17∼ 92 miRNA cluster promotes kidney cyst growth in polycystic kidney disease. 2013. 110(26): p. 10765-10770. 69.Dewanjee, S. and N.J.B.p. Bhattacharjee, MicroRNA: a new generation therapeutic target in diabetic nephropathy. 2018. 155: p. 32-47. 70.Wetzel, W.C. and S.R.J.E.L. Whitehead, The many dimensions of phytochemical diversity: linking theory to practice. 2020. 23(1): p. 16-32. 71.Lagoa, R., et al., Advances in phytochemical delivery systems for improved anticancer activity. 2020. 38: p. 107382. 72.Tang, G.-Y., et al., Phytochemical composition and antioxidant capacity of 30 Chinese teas. 2019. 8(6): p. 180. 73.Yadav, R. and M.J.J.o.p. Agarwala, Phytochemical analysis of some medicinal plants. 2011. 3(12). 74.Rodríguez-Gómez, R., et al., Determination of three main chlorogenic acids in water extracts of coffee leaves by liquid chromatography coupled to an electrochemical detector. 2018. 7(10): p. 143. 75.Robbins, R.J.J.J.o.a. and f. chemistry, Phenolic acids in foods: an overview of analytical methodology. 2003. 51(10): p. 2866-2887. 76.Li, Z., et al., Omentin-1 prevents cartilage matrix destruction by regulating matrix metalloproteinases. Biomedicine & Pharmacotherapy, 2017. 92: p. 265-269. 77.Sato, Y., et al., In vitro and in vivo antioxidant properties of chlorogenic acid and caffeic acid. International Journal of Pharmaceutics, 2011. 403(1): p. 136-138. 78.Marques, V. and A. Farah, Chlorogenic acids and related compounds in medicinal plants and infusions. Food Chemistry, 2009. 113(4): p. 1370-1376. 79.Cho, A.-S., et al., Chlorogenic acid exhibits anti-obesity property and improves lipid metabolism in high-fat diet-induced-obese mice. Food and Chemical Toxicology, 2010. 48(3): p. 937-943. 80.Park, S.Y., et al., Neochlorogenic acid inhibits against LPS-activated inflammatory responses through up-regulation of Nrf2/HO-1 and involving AMPK pathway. 2018. 62: p. 1-10. 81.Gao, X.-h., et al., Anti-inflammatory effects of neochlorogenic acid extract from mulberry leaf (Morus alba L.) against LPS-stimulated inflammatory response through mediating the AMPK/Nrf2 signaling pathway in A549 cells. 2020. 25(6): p. 1385. 82.Sharma, K., P. McCue, and S.R.J.A.J.o.P.-R.P. Dunn, Diabetic kidney disease in the db/db mouse. 2003. 284(6): p. F1138-F1144. 83.Poitout, V. and R.P.J.E.r. Robertson, Glucolipotoxicity: fuel excess and β-cell dysfunction. 2008. 29(3): p. 351-366. 84.Liu, Y., et al., Resistance exercise intensity is correlated with attenuation of HbA1c and insulin in patients with type 2 diabetes: a systematic review and meta-analysis. 2019. 16(1): p. 140. 85.Quispe, R., et al., Triglycerides to high-density lipoprotein–cholesterol ratio, glycemic control and cardiovascular risk in obese patients with type 2 diabetes. 2016. 23(2): p. 150-156. 86.Sohrabi, Y., D. Schwarz, and H.J.T.i.M.M. Reinecke, LDL-C augments whereas HDL-C prevents inflammatory innate immune memory. 2022. 28(1): p. 1-4. 87.Li, J., et al., Podocyte biology in diabetic nephropathy. 2007. 72: p. S36-S42. 88.Tung, C.W., et al., Glomerular mesangial cell and podocyte injuries in diabetic nephropathy. 2018. 23: p. 32-37. 89.Haneda, M., et al., Overview of glucose signaling in mesangial cells in diabetic nephropathy. 2003. 14(5): p. 1374-1382. 90.Alsaad, K. and A.J.J.o.c.p. Herzenberg, Distinguishing diabetic nephropathy from other causes of glomerulosclerosis: an update. 2007. 60(1): p. 18-26. 91.Yiu, W.H., et al., Kallistatin protects against diabetic nephropathy in db/db mice by suppressing AGE-RAGE-induced oxidative stress. 2016. 89(2): p. 386-398. 92.Elmarakby, A.A. and J.C.J.C.t. Sullivan, Relationship between oxidative stress and inflammatory cytokines in diabetic nephropathy. 2012. 30(1): p. 49-59. 93.Cvetković, T., et al., Oxidative stress parameters as possible urine markers in patients with diabetic nephropathy. 2009. 23(5): p. 337-342. 94.Mezzano, S., et al., NF-κB activation and overexpression of regulated genes in human diabetic nephropathy. 2004. 19(10): p. 2505-2512. 95.López‐Ongil, S., et al., Role of reactive oxygen species in the signalling cascade of cyclosporine A‐mediated up‐regulation of eNOS in vascular endothelial cells. 1998. 124(3): p. 447-454. 96.Henderson, J.R., et al., The development and in vitro characterisation of an intracellular nanosensor responsive to reactive oxygen species. 2009. 24(12): p. 3608-3614. 97.Brawek, B., et al., Reactive oxygen species (ROS) in the human neocortex: Role of aging and cognition. 2010. 81(4-5): p. 484-490. 98.Li, S., et al., Inhibiting Rab27a in renal tubular epithelial cells attenuates the inflammation of diabetic kidney disease through the miR-26a-5p/CHAC1/NF-kB pathway. 2020. 261: p. 118347. 99.Simpson, K., et al., MicroRNAs in diabetic nephropathy: from biomarkers to therapy. 2016. 16(3): p. 1-7. 100.Gross, J.L., et al., Diabetic nephropathy: diagnosis, prevention, and treatment. 2005. 28(1): p. 164-176. 101.Punithavathi, V.R., et al., Antihyperglycaemic, antilipid peroxidative and antioxidant effects of gallic acid on streptozotocin induced diabetic Wistar rats. 2011. 650(1): p. 465-471. 102.Muthukumaran, J., et al., Syringic acid, a novel natural phenolic acid, normalizes hyperglycemia with special reference to glycoprotein components in experimental diabetic rats. 2013. 2(4): p. 304-309. 103.Khan, S., et al., Fatty acid transport protein-2 regulates glycemic control and diabetic kidney disease progression. 2020. 5(15). 104.Bobulescu, I.A.J.C.o.i.n. and hypertension, Renal lipid metabolism and lipotoxicity. 2010. 19(4): p. 393. 105.Yamamoto, T., et al., High-fat diet–induced lysosomal dysfunction and impaired autophagic flux contribute to lipotoxicity in the kidney. 2017. 28(5): p. 1534-1551. 106.Schena, F.P. and L.J.J.o.t.A.s.o.n. Gesualdo, Pathogenetic mechanisms of diabetic nephropathy. 2005. 16(3 suppl 1): p. S30-S33. 107.Jia, Y., et al., Dapagliflozin aggravates renal injury via promoting gluconeogenesis in db/db mice. 2018. 45(5): p. 1747-1758. 108.Huang, L., et al., Development of a chronic kidney disease model in C57BL/6 mice with relevance to human pathology. 2013. 3(1): p. 12-29. 109.Chen, H.-W., et al., Nelumbo nucifera leaves extract attenuate the pathological progression of diabetic nephropathy in high-fat diet-fed and streptozotocin-induced diabetic rats. 2019. 27(3): p. 736-748. 110.Li, L., et al., Chlorogenic acids in cardiovascular disease: A review of dietary consumption, pharmacology, and pharmacokinetics. 2020. 68(24): p. 6464-6484. 111.Navarro-González, J.F., et al., Inflammatory molecules and pathways in the pathogenesis of diabetic nephropathy. 2011. 7(6): p. 327-340. 112.Abboud, H.E.J.E.c.r., Mesangial cell biology. 2012. 318(9): p. 979-985. 113.Dalla Vestra, M., et al., Is podocyte injury relevant in diabetic nephropathy? Studies in patients with type 2 diabetes. 2003. 52(4): p. 1031-1035. 114.Dasari, D., et al., Canagliflozin and Dapagliflozin Attenuate Glucolipotoxicity-Induced Oxidative Stress and Apoptosis in Cardiomyocytes via Inhibition of Sodium-Glucose Cotransporter-1. 2022. 5(4): p. 216-225. 115.Turkmen, K.J.I.u. and nephrology, Inflammation, oxidative stress, apoptosis, and autophagy in diabetes mellitus and diabetic kidney disease: the Four Horsemen of the Apocalypse. 2017. 49(5): p. 837-844. 116.Wada, J. and H.J.C.s. Makino, Inflammation and the pathogenesis of diabetic nephropathy. 2013. 124(3): p. 139-152. 117.Jiang, X., et al., MiR-30a targets IL-1α and regulates islet functions as an inflammation buffer and response factor. 2017. 7(1): p. 1-15. 118.Xie, L., et al., Significance of a tumor microenvironment-mediated P65-miR-30a-5p-BCL2L11 amplification loop in multiple myeloma. 2022. 415(1): p. 113113. 119.Yani, Z., C.J.C.J.o.N. Meichu, Dialysis, and Transplantation, MicroRNA in protecting mitochondrial function and delaying acute renal injury. 2020. 29(6): p. 557. 120.Surendran, S., et al., Gene targets of mouse miR-709: regulation of distinct pools. 2016. 6(1): p. 1-10. 121.Guo, Y., et al., MicroRNA-709 mediates acute tubular injury through effects on mitochondrial function. 2018. 29(2): p. 449-461. 122.Brandenburger, T., et al., Noncoding RNAs in acute kidney injury. 2018. 94(5): p. 870-881.
|