跳到主要內容

臺灣博碩士論文加值系統

(44.200.171.156) 您好!臺灣時間:2023/03/22 02:48
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張育嘉
研究生(外文):CHANG, YU-CHIA
論文名稱:利用聚合物滲透網狀陶瓷技術製備之複合材料性質之評估
論文名稱(外文):Mechanical Properties of Composite Material by Polymer-Infiltrated-Ceramic-Network (PICN) Method
指導教授:許世光許世光引用關係
指導教授(外文):HSU, SHIH-KUANG
口試委員:吳世經何文福
口試委員(外文):WU, SHIH-CHINGHO, WEN-FU
口試日期:2022-07-21
學位類別:碩士
校院名稱:中臺科技大學
系所名稱:牙體技術暨材料系碩士班
學門:醫藥衛生學門
學類:牙醫學類
論文種類:學術論文
論文出版年:2022
畢業學年度:110
語文別:中文
論文頁數:77
中文關鍵詞:電腦輔助設計與製造雙網結構聚合物滲透陶瓷網狀技術機械性質
外文關鍵詞:CAD/CAMDual-network structurePolymer-infiltrated-ceramic-network (PICN)Mechanical properties
相關次數:
  • 被引用被引用:0
  • 點閱點閱:71
  • 評分評分:
  • 下載下載:4
  • 收藏至我的研究室書目清單書目收藏:0
近年來,電腦輔助設計 (Computer Aided Design, CAD) 與電腦輔助製造 (Computer Aided Manufacturing, CAM) 系統在牙科診所端的應用廣受醫師及患者的喜愛。透過 CAD/CAM 系統製作精密且邊緣完整性高的嵌體、覆嵌體可大幅降低傳統樹脂補綴復形後再度發生二次蛀牙的機率。其中,陶瓷/樹脂複合材料具優異的耐磨性以及具備與自然牙齒相近之機械性質等特性因而廣泛用於牙科贋復材料。牙科 CAD/CAM 複合材料之製備方式可分為兩類:分散填料和雙網結構。先前的研究顯示,與分散填料結構相比,雙網結構複合材料的機械性質更接近於自然牙齒牙釉質。
在本研究中,以三種不同孔徑大小的聚酯海綿複製多孔陶瓷支架,隨後利用聚合物滲透陶瓷網狀技術(Polymer Infiltrated Ceramic Network, PICN)製備具有雙網結構的複合材料,選擇釔安定氧化鋯(3 mol% Yttrium Tetragonal Zirconia Polycrystal, 3Y-TZP)和聚甲基丙烯酸甲酯(Polymethyl Methacrylate, PMMA)作為主要材料,並依序命名為大孔徑 PICN、中孔徑 PICN 及小孔徑 PICN。再以市售之 Vita Enamic 複合材料塊作為對照組,進而分析、評估複合材料的機械性質,製作出適用於牙科診所端 CAD/CAM系統的複合材料。
由 SEM 觀察結果顯示,發現 3Y-TZP 支架為相互連通的多孔結構,以利於聚合物滲透;隨後觀察3Y-TZP/PMMA 複合材料,發現具有均勻分布的雙網狀結構。由 X 光繞射分析 3Y-TZP 試片,均呈現四方晶相與單斜晶相結構。由重量百分比分析,三組 PICN 試片其陶瓷和聚合物重量百分比分別為 86.23 至 92.64 wt%和 7.36 至 13.77 wt%。由機械性質測試,四組試片其彎曲強度和硬度分別為 83 至 197 MPa 和 206 至 1086 Hv。由 顏色分析結果顯示,中孔徑PICN 與 3Y-TZP 陶瓷色差值最小且明度值較低。
綜合上述研究結果得知,中孔徑 PICN 的陶瓷和聚合物重量百分比與 Vita Enamic 最接近。三組 PICN 試片的彎曲強度與牙釉質極相似,維氏硬度皆高於牙釉質。中孔徑PICN 其明度值最低,較容易模仿自然牙外觀。
Recently, the application of CAD/CAM systems are gaining popularity in dental clinics. CAD/CAM system can be used to fabrication inlay and onlay with marginal fit and stability to replace traditional resin operative dentistry, which can reduces the secondary caries. Among, ceramics/polymers composites have been extensively used in dentistry as main restorative material because of their excellent wear resistant and superior mechanical properties are similar to those of natural teeth. The dental CAD/CAM composites can be classified into two groups: dispersed-filler and dual-network structure. Previously studies have been showed that the mechanical properties of the dual-network structural composites are closer to those of enamel, compared with those of the dispersed-filler structure.
In this study, porous ceramic scaffolds was fabricated by replicated with polyester sponges with three different pore sizes, and then yttrium stabilized zirconia (3Y-TZP) and polymethyl methacrylate (PMMA) were selected as the main materials of composites by polymer-infiltrated ceramic network method (PICN) and coded as Large porous size of PICN, Medium porous size of PICN and Small porous size of PICN. A commercially available Vita Enamic block was used as a control, and then the mechanical properties of the composite was evaluated, manufactured composite blocks suitable for CAD/CAM at dental clinic applications.
The SEM observation show that the porous structure and morphology of 3Y-TZP scaffolds displayed perfectly interconnected pores that provide PMMA easily infiltration. And observation of the 3Y-TZP/PMMA composite show that homogeneously distributed dual-network structure. From XRD analysis of 3Y-TZP specimen, showing both tetragonal and monoclinic crystalline structures. The percent by weight calculation, ceramic and polymer weight percentages of the three groups of PICN specimens ranged from 86.23 to 92.64 wt% and 7.36 to 13.77 wt% respectively. The flexural strength and hardness of the four groups ranged from 83 to 197 MPa and 206 to 1086 Hv, respectively. The colour analysis show that the Medium porous size of PICN and 3Y-TZP ceramics have the lowest colour difference and lower value.
From above results indicate that the weight percentages of ceramics and polymers in the Medium porous size of PICN is similar to Vita Enamic. The flexural strength of all PICN specimens are much similar to enamel. The Vickers hardness of all PICN specimens are higher than enamel. The Medium porous size of PICN has the lowest value making it easier to mimic the natural tooth appearance.
目錄
中文摘要.......................................................................v
Abstract.....................................................................vii
目錄..........................................................................ix
圖目錄.......................................................................xii
表目錄.......................................................................xiv
第一章 緒論....................................................................1
1-1 前言.......................................................................1
1-2 研究目的...................................................................3
第二章 文獻回顧................................................................4
2-1 電腦輔助設計/電腦輔助製造 (CAD/CAM)..........................................4
2-1-1 牙科 CAD/CAM 系統概述.....................................................4
2-1-2 牙科 CAD/CAM 系統歷史與發展...............................................7
2-1-3 牙科 CAD/CAM 組成........................................................9
2-1-4 牙科 CAD/CAM 生產類型....................................................14
2-2 牙科CAD/CAM 使用材料分類...................................................17
2-3 聚合物滲透網狀陶瓷(Polymer Infiltrated Ceramic Network, PICN)技術........ 25
第三章 材料與方法.............................................................27
3-1 實驗材料..................................................................27
3-2 實驗流程圖.................................................................28
3-3 試片製備..................................................................29
3-1-1 製備多孔氧化鋯陶瓷試片....................................................29
3-1-2 聚合物滲透網狀陶瓷.......................................................29
3-4 實驗分析..................................................................31
3-4-1 結構分析................................................................31
3-4-2 物理性質分析.............................................................34
3-4-3 機械性質分析.............................................................35
3-4-4 顏色分析................................................................37
第四章 結果與討論.............................................................38
4-1 結構分析..................................................................38
4-1-1 海綿試片內部結構觀察與孔隙率分析..........................................38
4-1-2 3Y-TZP 陶瓷試片內部結構觀察與孔隙率分析...................................40
4-1-3 PICN試片內部結構觀與孔隙率分析............................................42
4-1-4 XRD (X-ray diffraction) 相分析..........................................44
4-2 物理性質分析...............................................................45
4-2-1 3Y-TZP陶瓷支架體積收縮率測量..............................................45
4-2-2 3Y-TZP陶瓷重量百分比測量.................................................47
4-3 機械性質評估...............................................................48
4-3-1 三點彎曲強度.............................................................48
4-3-2 維氏硬度................................................................51
4-4 顏色分析..................................................................54
第五章 結論...................................................................57
參考文獻......................................................................58
作者自述......................................................................63
研究成果......................................................................64

圖目錄
圖 2-1 牙科 CAD/CAM 系統直接法與間接法工作流程圖 .................................6
圖 2-2 Mormann 與 Dr. Brandestini 開發 CEREC 系統 ..............................8
圖 2-3 牙科 CAD/CAM 系統的組成 ................................................10
圖 2-4 同軸法示意圖 ...........................................................10
圖 2-5 (a)雷射聚光投影法與 (b) 圖案投影法示意圖 .................................10
圖 2-6 加工軸示意圖 ...........................................................13
圖 2-7 棒狀材料 ...............................................................16
圖 2-8 圓盤狀材料..............................................................16
圖 2-9 積層製造製作金屬贋復物 ..................................................18
圖 2-10 減法製造製作金屬贋復物 .................................................18
圖 2-11 鈦金屬支台齒 ..........................................................18
圖 2-12 (a) 分散填料結構與 (b) 雙網結構.........................................24
圖 2-13 (a) 分散填料結構與 (b) 雙網結構製作方法 ................................24
圖 2-14 Vita Enamic 塊材與結構示意圖 ..........................................26
圖 3-1 三種不同孔徑大小海綿示意圖 ..............................................27
圖 3-2 實驗流程圖..............................................................28
圖 3-3 聚合物滲透多孔陶瓷支架示意圖.............................................30
圖 3-4 海綿複製法製備多孔陶瓷支架示意圖 .........................................30
圖 4-1 海綿結構之 SEM 圖 ......................................................39
圖 4-2 3Y-TZP 陶瓷結構之SEM 圖 ................................................41
圖 4-3 複合材料結構之 SEM 圖 ..................................................43
圖 4-4 以 1500°C、燒結 2 小時形成之陶瓷試片的 XRD 分析圖譜,(a)自製 3Y-TZP (b) 3Y-TZP ..........................................................................44
圖 4-5 海綿與聚合物的支架寬度 ..................................................46
圖 4-6 複合材料之彎曲強度 .....................................................50
圖 4-7 複合材料之維氏硬度 .....................................................53
圖 4-8 3Y-TZP 陶瓷與複合材料之 L*a*b* 值分布圖 ..............................55
圖 4-9 自製複合材料與 3Y-TZP 陶瓷之色差值 ......................................56

表目錄
表 2-1 積層加工之技術與材料應用 ................................................13
表 4-1 三種孔徑大小的海綿其孔徑大小、孔隙率與支架寬度.............................39
表 4-2 3Y-TZP 陶瓷試片之孔隙率與孔隙寬度 .......................................41
表 4-3 複合材料之孔隙率 .......................................................43
表 4-4 海綿複製法製備三種不同孔徑 3Y-TZP 陶瓷支架之尺寸變化與收縮率 ..............46
表 4-5 複合材料之陶瓷與聚合物重量百分比 .........................................47
表 4-6 牙本質與牙釉質之彎曲強度 ................................................50
表 4-7 牙本質與牙釉質之維氏硬度 ................................................53
表 4-8 3Y-TZP 陶瓷與複合材料之 L*a*b* 值 ......................................55
[1] Li, W. and J. Sun. Effects of Ceramic Density and Sintering Temperature on the Mechanical Properties of a Novel Polymer-Infiltrated Ceramic-Network Zirconia Dental Restorative (Filling) Material. Medical science monitor: international medical journal of experimental and clinical research 2018; 24: 3068.
[2] Ahrberg, D., et al. Evaluation of fit and efficiency of CAD/CAM fabricated all-ceramic restorations based on direct and indirect digitalization: a double-blinded, randomized clinical trial. Clinical oral investigations 2016; 20: 291-300.
[3] Sailer, I., et al. Randomized controlled within-subject evaluation of digital and conventional workflows for the fabrication of lithium disilicate single crowns. Part II: CAD-CAM versus conventional laboratory procedures. The Journal of prosthetic dentistry 2017; 118: 43-48.
[4] Davidowitz, G. and P. G. Kotick. The use of CAD/CAM in dentistry. Dental Clinics 2011; 55: 559-570.
[5] Javaid, M. and A. Haleem. Current status and applications of additive manufacturing in dentistry: A literature-based review. Journal of oral biology and craniofacial research 2019; 9: 179-185.
[6] Bae, E.-J., et al. A comparative study of additive and subtractive manufacturing for dental restorations. The Journal of prosthetic dentistry 2017; 118: 187-193.
[7] Kim, D.-Y., et al. Evaluation of marginal and internal gap of three-unit metal framework according to subtractive manufacturing and additive manufacturing of CAD/CAM systems. The journal of advanced prosthodontics 2017; 9: 463-469.
[8] Kang, S.-Y., et al. Evaluation of marginal discrepancy of pressable ceramic veneer fabricated using CAD/CAM system: Additive and subtractive manufacturing. The journal of advanced prosthodontics 2018; 10: 347-353.
[9] Lambert, H., et al. Dental biomaterials for chairside CAD/CAM: State of the art. The journal of advanced prosthodontics 2017; 9: 486-495.
[10] Kohorst, P., et al. Different CAD/CAM-processing routes for zirconia restorations: influence on fitting accuracy. Clinical oral investigations 2011; 15: 527-536.
[11] Sulaiman, T. A. Materials in digital dentistry—A review. Journal of Esthetic and Restorative Dentistry 2020; 32: 171-181.
[12] Bajraktarova-Valjakova, E., et al. Contemporary dental ceramic materials, a review: chemical composition, physical and mechanical properties, indications for use. Open access Macedonian journal of medical sciences 2018; 6: 1742.
[13] Rinke, S., et al. Fabrication of zirconia-reinforced lithium silicate ceramic restorations using a complete digital workflow. Case reports in dentistry 2015; 2015:
[14] Beuer, F., J. Schweiger and D. Edelhoff. Digital dentistry: an overview of recent developments for CAD/CAM generated restorations. British dental journal 2008; 204: 505-511.
[15] Stawarczyk, B., et al. Three generations of zirconia: From veneered to monolithic. Part I. Quintessence international 2017; 48:
[16] Subbarao, E. Zirconia-an overview. Advances in ceramics 1981; 1: 1-24.
[17] Kim, M.-J., et al. Effects of the sintering conditions of dental zirconia ceramics on the grain size and translucency. The journal of advanced prosthodontics 2013; 5: 161-166.
[18] Gautam, R., et al. Biocompatibility of polymethylmethacrylate resins used in dentistry. Journal of Biomedical Materials Research Part B: Applied Biomaterials 2012; 100: 1444-1450.
[19] Zafar, M. S. Prosthodontic applications of polymethyl methacrylate (PMMA): An update. Polymers 2020; 12: 2299.
[20] Ruse, N. and M. Sadoun. Resin-composite blocks for dental CAD/CAM applications. Journal of dental research 2014; 93: 1232-1234.
[21] Lauvahutanon, S., et al. Mechanical properties of composite resin blocks for CAD/CAM. Dental materials journal 2014; 33: 705-710.
[22] Ikeda, H., Y. Nagamatsu and H. Shimizu. Preparation of silica–poly (methyl methacrylate) composite with a nanoscale dual-network structure and hardness comparable to human enamel. Dental Materials 2019; 35: 893-899.
[23] Okada, K., et al. A novel technique for preparing dental CAD/CAM composite resin blocks using the filler press and monomer infiltration method. Dental Materials Journal 2014; 33: 203-209.
[24] He, L.-H. and M. Swain. A novel polymer infiltrated ceramic dental material. Dental materials 2011; 27: 527-534.
[25] Coldea, A., M. V. Swain and N. Thiel. Mechanical properties of polymer-infiltrated-ceramic-network materials. Dental Materials 2013; 29: 419-426.
[26] El Zhawi, H., et al. Polymer infiltrated ceramic network structures for resistance to fatigue fracture and wear. Dental Materials 2016; 32: 1352-1361.
[27] Swain, M., et al. Interpenetrating network ceramic-resin composite dental restorative materials. Dental Materials 2016; 32: 34-42.
[28] Ikeda, R., et al. The effect of porosity and mechanical property of a synthetic polymer scaffold on repair of osteochondral defects. International orthopaedics 2009; 33: 821-828.
[29] Patel, S. B., et al. The effect of surface finishing and storage solutions on the color stability of resin-based composites. The Journal of the American Dental Association 2004; 135: 587-594.
[30] Rohr, N., et al. Crystal structure of zirconia affects osteoblast behavior. Dental Materials 2020; 36: 905-913.
[31] Smith, D. S., et al. Neck formation and role of particle-particle contact area in the thermal conductivity of green and partially sintered alumina ceramics. Journal of the European Ceramic Society 2022; 42: 1618-1625.
[32] Gladys, S., et al. Comparative physico-mechanical characterization of new hybrid restorative materials with conventional glass-ionomer and resin composite restorative materials. Journal of Dental Research 1997; 76: 883-894.
[33] Zandinejad, A., M. Atai and A. Pahlevan. The effect of ceramic and porous fillers on the mechanical properties of experimental dental composites. Dental Materials 2006; 22: 382-387.
[34] Matsumoto, H. The fracture toughness of composite resins. J J Dent Mater 1988; 7: 756-768.
[35] Tanimoto, Y., et al. Experimental and computational approach for evaluating the mechanical characteristics of dental composite resins with various filler sizes. Acta Biomaterialia 2006; 2: 633-639.
[36] Plotino, G., et al. Flexural properties of endodontic posts and human root dentin. Dental materials 2007; 23: 1129-1135.
[37] Sakaguchi, R. L. and J. M. Powers. Craig's restorative dental materials-e-book. Journal 2012;
[38] Lombardini, M., et al. Influence of polymerization time and depth of cure of resin composites determined by Vickers hardness. Dental research journal 2012; 9: 735.
[39] Zhang, Y.-R., et al. Review of research on the mechanical properties of the human tooth. International journal of oral science 2014; 6: 61-69.
[40] Sripetchdanond, J. and C. Leevailoj. Wear of human enamel opposing monolithic zirconia, glass ceramic, and composite resin: an in vitro study. The Journal of prosthetic dentistry 2014; 112: 1141-1150.
[41] Lee, J.-H., et al. Effects of ultrasonic scaling on the optical properties and surface characteristics of highly translucent CAD/CAM ceramic restorative materials: An in vitro study. Ceramics International 2019; 45: 14594-14601.
[42] Kim, H.-K. and S.-H. Kim. Effect of hydrothermal aging on the optical properties of precolored dental monolithic zirconia ceramics. The Journal of prosthetic dentistry 2019; 121: 676-682.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top