跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.87) 您好!臺灣時間:2025/01/13 04:28
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:方沛仁
研究生(外文):FANG,PEI-REN
論文名稱:利用OSLD探討腹部電腦斷層檢查時之空間劑量變化
論文名稱(外文):Using OSLD to study spatial dose changes during abdominal computed tomography
指導教授:林政勳林政勳引用關係
指導教授(外文):LIN,CHENG-HSUN
口試委員:陳健懿彭炳儒
口試委員(外文):CHEN, CHIEN-YIPENG, BING-RU
口試日期:2022-07-02
學位類別:碩士
校院名稱:中臺科技大學
系所名稱:醫學影像暨放射科學系暨研究所
學門:醫藥衛生學門
學類:醫學技術及檢驗學類
論文種類:學術論文
論文出版年:2022
畢業學年度:110
語文別:中文
論文頁數:122
中文關鍵詞:腹部電腦斷層光激發光劑量計空間矩陣劑量測量
外文關鍵詞:Abdominal CTOSLDSpace matrixDose measurement
相關次數:
  • 被引用被引用:0
  • 點閱點閱:169
  • 評分評分:
  • 下載下載:18
  • 收藏至我的研究室書目清單書目收藏:0
研究目的
隨著醫療輻射曝露比例持續增加,曝露劑量越來越受重視,而腹部為電腦斷層檢查中比例佔最多,故利用光激發光劑量計針對腹部的電腦斷層檢查時,量測周遭之劑量,並分析醫護人員所站之位置。
材料與方法
本研究使用Toshiba之64切螺旋電腦斷層掃描儀進行掃描,條件設管電壓120 kVp、管電流為自動調整,測量範圍以電腦斷層檢查台為中心點,分成4區塊;佈置長為550公分,寬為350公分之空間劑量測量,每隔50公分設置OSLD 測量點,本次設計共有3個高度,分別為85、140、150公分;另外在假體表面設立3個表面入射劑量點,分別為肝臟、乳腺以及性腺。
結果
本次最高劑量為140公分處,檢查台最靠近機架之左側位置,劑量為0.1940 ± 0.0023 mGy,最低劑量為0.0067 ± 0.0002 mGy,且於機架2公尺時,可下降至最高劑量9 %,其入射表面劑量乳腺、肝臟以及性腺所接受的劑量分別為1.3220 ± 0.1211、13.0830 ± 0.8426、13.4411 ± 1.0588 mGy,另平均背景劑量為0.0078 ± 0.0026 mGy 。
結論
經由量測空間劑量得知,離地高度140公分處及機架前側,所接受劑量最高,且左側區域劑量高於右側區域劑量;劑量分佈呈現距離平方反比定律,若醫護人員需執行介入性放射診斷,除了基本輻射防護設備,選擇機架後側及左右兩側之方位,可降低輻射劑量。

Purpose
As the proportion of medical radiation exposure continues to increase, more and more attention is paid to the exposure dose. The abdomen is the largest proportion of computed tomography, therefore, the OSLD is used for abdominal computed tomography examinations., the surrounding dose is measured and the position of the medical staff is analyzed.
Materials and methods
Scanning was performed using a Toshiba 64-slice spiral computed tomography scanner, with a tube voltage of 120 kVp, the tube current is automatically adjusted, and the measurement range is divided into 4 blocks with the computer tomography table as the center point. The space dose measurement is 550 cm and 350 cm wide. OSLD measurement points are set every 50 cm. There are three heights in this design, 85 cm, 140 cm, and 150 cm respectively. In addition, three surface incident dose points were set up on the surface of the phantom, namely liver, breast and gonad.
Result
The highest dose this time is 140 cm, the examination table is closest to the left side of the gantry, the dose is 0.1940 ± 0.0023 mGy, the lowest dose is 0.0067 ± 0.0002 mGy, when the distance from the gantry is 2 meters, it can be reduced to 9% of the highest dose. The incident surface doses received by breast, liver and gonad were 1.3220 ± 0.1211, 13.0830 ± 0.8426, 13.4411 ± 1.0588 mGy, respectively, and the mean background dose was 0.0078 ± 0.0026 mGy.
Conclusion
Through the measurement of spatial dose, it is known that the dose received at the height of 140 cm above the ground and the front side of the rack is the highest, and the dose in the left area is higher than that in the right area. The dose distribution shows the inverse square law of distance. If medical staff need to perform intervention sexual radiation diagnosis, in addition to basic radiation protection equipment, the radiation dose can be reduced by choosing the orientation of the rear and left and right sides of the gantry.

目錄
第一章 前言 1
1.1 研究背景 1
1.2 研究動機 5
1.3 研究目的 6
第二章 文獻回顧 7
2.1 輻射生物效應 7
2.2 OSLD 8
2.3 空氣克馬 11
2.4 醫護人員之輻射劑量 13
2.5 輻射曝露風險評估 14
2.6 本研究室空間矩陣系列研究 19
第三章 材料與方法 21
3.1 研究架構 21
3.2 電腦斷層掃描儀 23
3.3 胸腹部假體 24
3.4 測量輻射儀器 25
3.4.1 OSLD 25
3.4.2 microSTARii™ 26
3.4.3 光激發光劑量計迴火設備 28
3.4.4 固態型游離腔 30
3.5 輔助空間佈點之工具 33
3.6 光子劑量轉換 35
3.7 實驗方式 36
3.7.1 光激發光劑量計之篩選 36
3.7.2 空間佈點方式 39
3.7.3 器官劑量測量 43
3.7.4 背景輻射劑量測量 44
3.7.5 第一區域 45
3.7.6 第二區域 49
3.7.7 第三區域 53
3.7.8 第四區域 57
第四章 結果 61
4.1 光激發光劑量計之篩選 61
4.2 消光率 64
4.3 背景劑量量測 65
4.4 迴火後劑量 66
4.5 器官表面入射劑量 66
4.6 機架與檢查台劑量分佈 66
4.7 150公分處之劑量分佈 69
4.8 140公分處之劑量分佈 73
4.9 85公分處之劑量分佈 77
第五章 討論 81
5.1 OSLD篩選 81
5.2 空氣克馬之量測 81
5.3 空間劑量區域之差異性 82
5.4 檢查室空間曝露 83
5.5 有效劑量 85
5.6 表面入射曝露劑量 86
5.7 劑量量測之差異 86
第六章 結論 88
第七章 未來展望 89
文獻參考 90

圖目錄
圖1-1 NCRP第160號報告診斷方式圓餅圖(NCRP, 2006) 4
圖1-2 NCRP第160號報告電腦斷層部位檢查圓餅圖(NCRP, 2006) 4
圖2-1 FAC收集不同長度下之空氣克馬,圖A為L1長度,圖B為L2長度 12
圖2-2不同之能量,造成中子不同之輻射加權因數,此為連續函數(ICRP, 2007) 16
圖3-1研究架構圖 22
圖3-2Toshiba Aquilion 64示意圖 23
圖3-3胸腹部擬人假體 24
圖3-4光激發光劑量計示意圖,A圖為打開狀態,B圖為關閉狀態 26
圖3-5microSTARii™ 計讀儀 27
圖3-6光激發光劑量計袖珍型迴火爐 29
圖3-7光激發光劑量計袖珍型迴火爐卡匣 29
圖3-8 Accu-Gold+主機 31
圖3-9 Accu-Gold+主機校正標示 31
圖3-10 AGMS-D+感測器 32
圖3-11 Accu-Gold Windows畫面 32
圖3-12使用旗桿作為空間佈點的支架 34
圖3-13全新未拆封之OSLD,並且有專屬編號 37
圖3-14 OSLD篩選之擺放方式 37
圖3-15篩選之全功能固態型游離腔擺放方式 38
圖3-16.OSLD空間佈點圖,每點皆有3層高度,紫色為第一區域,共有54點,黃色為第二區域,共有72點,藍色為第三區域,共有81點,綠色為第四區域,共有57點 40
圖3-17A圖為橫向佈點示意圖,B圖為縱向佈點示意圖,藍色線代表離地150公分,紅色線代表離地140公分,而綠色線代表離地85公分 41
圖3-18電腦斷層之設定條件 42
圖3-19測量人體器官之入射表面劑量 43
圖3- 20使用OSLD量測背景劑量值 44
圖3-21第一區域佈點平面示意圖 46
圖3-22第一區域實際佈點情形 47
圖3-23第二區域佈點平面示意圖 50
圖3-24第二區域實際佈點情形 51
圖3-25第三區域佈點平面示意圖 54
圖3-26第三區域實際佈點情形 55
圖3-27第四區域佈點平面示意圖 58
圖3-28第四區域實際佈點情形 59
圖4-1將5顆OSLD讀取4次,將結果平均後進行分析,發現消光率與讀取次數呈線性關係,R2為0.986 64
圖4-2將6顆OSLD置於控制台檢測背景劑量,共量測5次 65
圖4-3圖中為150顆OSLD進行迴火後之數據, 66
圖4-4圖中距離0為檢查台位置,檢查空間左側距離為負值,右側則距離為正值,檢查台最末測之劑量分佈與背景劑量相當,A圖為機架前側位置平均劑量分佈,B圖機架後側位置平均劑量分佈,C圖檢查台最末側位置平均劑量分佈 67
圖4-5檢查台兩側之劑量分佈,距離0公尺處為機架前側,距離-0.5公尺處為機架後側,A圖為檢查台雙側位置平均劑量分佈,B圖以檢查台為中心,檢查台左側平均劑量分佈,C圖以檢查台為中心右側平均劑量分佈 68
圖4-6高度150公分處立體空間劑量分佈圖,平面X軸距離0為機架位置,而距離4為檢查台最末測,Y軸距離0為檢查台位置,距離-1為檢查室左側位置,而距離1為假查台右側位置 72
圖4-7高度140公分處立體空間劑量分佈圖,平面X軸距離0為機架位置,而距離4為檢查台最末測,Y軸距離0為檢查台位置,距離-1為檢查室左側位置,而距離1為假查台右側位置 76
圖4-8高度85公分處立體空間劑量分佈圖,平面X軸距離0為機架位置,而距離4為檢查台最末測,Y軸距離0為檢查台位置,距離-1為檢查室左側位置,而距離1為假查台右側位置 80

表目錄
表2-1 OSLD與TLD比較圖 10
表2-2 ICRP 60號報告與ICRP 103號報告輻射加權因數之差異(ICRP, 2007) 15
表2-3 ICRP 60號報告與ICRP 103號報告組織加權因數之差異(Catuzzo et al., 2010) 17
表2-4 ICRP 60號報告與ICRP 103號輻射危害係數報告之差異(ICRP, 2007) 18
表2-5歷年研究室空間矩陣之研究 20
表3-1 microStar 80 Vp轉換表 35
表3-2第一區域之編號 48
表3-3第二區域之編號 52
表3-4第三區域之編號 56
表3-5第四區域之編號 60
表4-1 1至75顆之OSLD百分誤差 62
表4-2 76至150顆之OSLD百分誤差 63
表4-3 150公分處佈點之編號對照表 70
表4-4 150公分處讀取劑量數值 71
表4-5 140公分處佈點之編號對照表 74
表4-6 140公分處讀取劑量數值 75
表4-7 85公分處佈點之編號對照表 78
表4-8 85公分處讀取劑量數值 79
Al-Senan, R.M., Hatab, M.R., 2011. Characteristics of an OSLD in the diagnostic energy range: Characteristics of OSLDs in diagnostic energy range. Med. Phys. 38, 4396-4405. https://doi.org/10.1118/1.3602456
Alonso, T.C., Mourão Filho, A.P., Da Silva, T.A., 2018. Measurements of air kerma index in computed tomography: A comparison among methodologies. Appl Radiat Isot. 138, 10-13. https://doi.org/10.1016/j.apradiso.2017.10.008
Catuzzo, P., Aimonetto, S., Zenone, F., Fanelli, G., Marchisio, P., Meloni, T., Pasquino, M., Tofani, S., 2010. Population exposure to ionising radiation from CT examinations in Aosta Valley between 2001 and 2008. BJR. 83, 1042-1051. https://doi.org/10.1259/bjr/66718758
Chida, K., Kaga, Y., Haga, Y., Kataoka, N., Kumasaka, E., Meguro, T., Zuguchi, M., 2013. Occupational Dose in Interventional Radiology Procedures. American Journal of Roentgenology. 200, 138-141. https://doi.org/10.2214/AJR.11.8455
Clement, C., Rühm, W., Harrison, J., Applegate, K., Cool, D., Larsson, C.-M., Cousins, C., Lochard, J., Bouffler, S., Cho, K., Kai, M., Laurier, D., Liu, S., Romanov, S., 2021. Keeping the ICRP recommendations fit for purpose. J. Radiol. Prot. 41, 1390-1409. https://doi.org/10.1088/1361-6498/ac1611
Elsholtz, F.H.J., Vahldiek, J.L., Wyschkon, S., Bucourt, M.D., Koletzko, G., Hamm, B., Niehues, S.M., 2020. Radiation exposure of radiologists during different types of CT-guided interventions: an evaluation using dosimeters placed above and under lead protection. Acta Radiol. 61, 110-116. https://doi.org/10.1177/0284185119852734
El-Taher, A., 2013. A Study on Transfer Factors of Radionuclides from Soil to plant. Life Science Journal. 10, 532-539.
Giansante, L., Santos, J.C., Umisedo, N.K., Terini, R.A., Costa, P.R., 2018. Characterization of OSL dosimeters for use in dose assessment in Computed Tomography procedures. Phys. Med. 47, 16-22. https://doi.org/10.1016/j.ejmp.2018.02.009
Golikov, V., Druzhinina, P., 2020. Technical Note: Patient‐weight dependence of the effective dose conversion coefficients for diagnostic x‐ray imaging procedures. Med. Phys. 47, 5366–5372. https://doi.org/10.1002/mp.14446
Hakanen, A., 2012. Simulated and measured dose response characteristics of detectors used for CT dosimetry. Phys. Med. Biol. 57, N319-N328. https://doi.org/10.1088/0031-9155/57/16/N319
Hao, F., Zhou, W., Gao, Y., 2021. Recent advances in nuclear radiation protective clothing materials. mat express. 11, 1255-1268. https://doi.org/10.1166/mex.2021.1922
Heusch, P., Kröpil, P., Buchbender, C., Aissa, J., Lanzman, R.S., Heusner, T.A., Ewen, K., Antoch, G., Fürst, G., 2014. Radiation exposure of the radiologist’s eye lens during CT-guided interventions. Acta Radiol. 55, 86-90. https://doi.org/10.1177/0284185113493222
Huang, T.-T., Chu, C.-H., Wang, S.-W., Lin, Y.-C., 2020. Establishment of diagnostic X-ray air kerma standard in Taiwan. Radiation Physics and Chemistry. 171, 108748. ttps://doi.org/10.1016/j.radphyschem.2020.108748
ICRP, 2007. The 2007 Recommendations of the international commission on radiological protection. international commission of radiological protection. ICRP Publication 103 Ann. ICRP 37. Pergamon, Oxford.
IAEA, 2007. Dosimetry in diagnostic radiology: an international code of practice, Technical reports series 457. International Atomic Energy Agency, Vienna.
Jamal, N.H.M., Sayed, I.S., Syed, W.S., 2020. Estimation of organ absorbed dose in pediatric chest X-ray examination: A phantom study. Radiat. Phys. Chem. 166, 108472. https://doi.org/10.1016/j.radphyschem.2019.108472
Jibiri, N.N., Olowookere, C.J., 2016. Patient dose audit of the most frequent radiographic examinations and the proposed local diagnostic reference levels in southwestern Nigeria: Imperative for dose optimisation. J. Radiat. Res. Appl. Sci. 9, 274-281. https://doi.org/10.1016/j.jrras.2016.01.003
Jursinic, P.A., 2009. Changes in optically stimulated luminescent dosimeter (OSLD) dosimetric characteristics with accumulated dose: Changes in optically stimulated luminescent dosimeter characteristics. Med. Phys. 37, 132-140. https://doi.org/10.1118/1.3267489
Jursinic, P.A., 2007. Characterization of optically stimulated luminescent dosimeters, OSLDs, for clinical dosimetric measurements: Optically stimulated luminescent dosimeters for clinical dosimetric measurements. Med. Phys. 34, 4594-4604. https://doi.org/10.1118/1.2804555
Kalender, W.A., 2014. Dose in x-ray computed tomography. Phys. Med. Biol. 59, R129-R150. https://doi.org/10.1088/0031-9155/59/3/R129
Kalender, W.A., Schmidt, B., Zankl, M., Schmidt, M., 1999. A PC program for estimating organ dose and effective dose values in computed tomography. Eur. Radiol.. 9, 555-562. https://doi.org/10.1007/s003300050709
Kostyleva, Yu.G., Mysev, I.P., 2008. The scope for measuring the effective dose of external irradiation and the use of operational quantities. Meas Tech. 51, 532–540. https://doi.org/10.1007/s11018-008-9074-5
Kry, S.F., Alvarez, P., Cygler, J.E., DeWerd, L.A., Howell, R.M., Meeks, S., O’Daniel, J., Reft, C., Sawakuchi, G., Yukihara, E.G., Mihailidis, D., 2020. AAPM TG 191: Clinical use of luminescent dosimeters: TLDs and OSLDs. Med. Physics. 47. https://doi.org/10.1002/mp.13839
Leng, S., Atwell, T.D., Yu, L., Mandrekar, J., Lewis, B.D., Woodrum, D.A., McCollough, C.H., 2011. Radiation dose reduction for ct-guided renal tumor cryoablation. AJR Am J Roentgenol. 196, W586-W591. https://doi.org/10.2214/AJR.10.5144
Little, M.P., Wakeford, R., Tawn, E.J., Bouffler, S.D., Berrington de Gonzalez, A., 2009. Risks associated with low doses and low dose rates of ionizing radiation: Why Linearity may be (almost) the best we can do. Radiology. 251, 6-12. https://doi.org/10.1148/radiol.2511081686
NCRP, 2009. Ionizing radiation exposure of the population of the united states. NCRP Report 160, National Council on Radiation rotection and Measurements. Bethesda.
NCRP, 2019. Medical radiation exposure of patients in the united states. NCRP Repor 184, National Council on Radiation rotection and Measurements. Bethesda.
McCollough, C.H., Primak, A.N., Braun, N., Kofler, J., Yu, L., Christner, J., 2009. Strategies for reducing radiation dose in CT. Radiol. Clin. North Am. 47, 27-40. https://doi.org/10.1016/j.rcl.2008.10.006
Miyajima R., Fujibuchi T., Miyachi Y., Tateishi S., Uno Y., Amakawa K., Ohura H., Orita S., 2018. Effective techniques to reduce radiation exposure to medical staff during assist of x-ray computed tomography examination. Jpn J Radiol. 74, 326–334. https://doi.org/10.6009/jjrt.2018_JSRT_74.4.326
Nagamoto, K., Moritake, T., Nakagami, K., Morota, K., Matsuzaki, S., Nihei, S., Kamochi, M., Kunugita, N., 2021. Occupational radiation dose to the lens of the eye of medical staff who assist in diagnostic CT scans. Heliyon 7, e06063. https://doi.org/10.1016/j.heliyon.2021.e06063
Olko, P., 2010. Advantages and disadvantages of luminescence dosimetry. Radiat. Meas. 45, 506-511. https://doi.org/10.1016/j.radmeas.2010.01.016
Osanai, M., Sato, H., Sato, K., Kudo, K., Hosoda, M., Hosokawa, S., Kitajima, M., Tsushima, M., Fujita, A., Hosokawa, Y., Saito, Y., 2021. Occupational radiation dose, especially for eye lens: Hp(3), in medical staff members involved in computed tomography examinations. Appl. Sci. 11, 4448. https://doi.org/10.3390/app11104448
Osei, E.K., Darko, J., 2013. A survey of organ equivalent and effective doses from diagnostic radiology procedures. ISRN Radiology 2013, 1-9. https://doi.org/10.5402/2013/204346
Oster, L., Horowitz, Y.S., Issa, N., 1999. Optical absorption and thermoluminescence studies in irradiated dosimetric LiF:Mg,Ti (TLD-100). Radiat Prot Dosimetry. 84, 17-20. https://doi.org/10.1093/oxfordjournals.rpd.a032711
Otto, T., 2019. Conversion coefficients from kerma to ambient dose and personal dose for X-ray spectra. J. Inst. 14, P11011–P11011. https://doi.org/10.1088/1748-0221/14/11/P11011
Ozasa, K., Cullings, H.M., Ohishi, W., Hida, A., Grant, E.J., 2019. Epidemiological studies of atomic bomb radiation at the Radiation Effects Research Foundation. Int. J. Radiat. Biol. 95, 879-891. https://doi.org/10.1080/09553002.2019.1569778
Park, B.K., Morrison, P.R., Tatli, S., Govindarajulu, U., Tuncali, K., Judy, P., Shyn, P.B., Silverman, S.G., 2012. Estimated effective dose of CT-guided percutaneous cryoablation of liver tumors. Eur J Radiol. 81, 1702–1706. https://doi.org/10.1016/j.ejrad.2011.04.067
Principi, S., Guardiola, C., Duch, M.A., Ginjaume, M., 2016. Air kerma to Hp (3) conversion coefficients for IEC 61267 RQR X-ray radiation qualities: application to dose monitoring of the lens of the eye in medical diagnostics. Radiat Prot Dosimetry. 170, 45-48. https://doi.org/10.1093/rpd/ncv435
Radcal to Launch Next Models of Accu-gold and sensors for radiography [WWW Document], 2013. Imaging Technology News. URL http://www.itnonline.com/content/radcal-launch-next-models-accu-gold-and-sensors-radiography (accessed 5.21.22).
Radcal [WWW Document], 2016. Radcal | Radiation measurement devices. URL https://radcal.com/accu-gold-plus/ (accessed 5.21.22).
Saeedi-Moghadam, M., Tayebi, M., Chegeni, N., Sina, S., Kolayi, T., 2021. Efficiency of non-lead and lead thyroid shields in radiation protection of CT examinations. Radiat. Phys. Chem. 180, 109265. https://doi.org/10.1016/j.radphyschem.2020.109265
Sharma, S.D., Sharma, R., Mulchandani, U., Chabey, A., Chourasia, G., Mayya, Y.S., 2013. Measurement of entrance skin dose for diagnostic x-ray radiographic examinations and establishment of local diagnostic reference levels, in: Long, M. (Ed.), World Congress on Medical Physics and Biomedical Engineering May 26-31, 2012, Beijing, China, IFMBE Proceedings. Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 860–863. https://doi.org/10.1007/978-3-642-29305-4_226
Shore, R.E., 2014. Radiation impacts on human health: Certain, fuzzy, and unknown. Health Physics. 106, 196-205. https://doi.org/10.1097/HP.0000000000000021
Smith-Bindman, R., Lipson, J., Marcus, R., Kim, K.-P., Mahesh, M., Gould, R., 2009. Radiation dose associated with common computed tomography examinations and the associated lifetime attributable risk of cancer. Arch. intern. med. 169, 9.
Tanabe, R., Araki, F., 2021. Real-time estimation of surface dose based on incident air kerma in diagnostic radiology. Phys. Med. 89, 176-181. https://doi.org/10.1016/j.ejmp.2021.07.031
Thistlethwaite, J., Johnson, D., Valentino, D.J., 2013. microSTARii™ - A new system for medical dosimetry: 12.
Treier, R., Landis, R., Theiler, Th., Stritt, N., Trueb, Ph.R., Baechler, S., 2016. Calculation of the maximum allowed ambient dose rate outside CT rooms to quantitatively assess the structural shielding performance. Radiat Prot Dosimetry. 174, 226-235. https://doi.org/10.1093/rpd/ncw131
Verdun, F.R., Aroua, A., Baechler, S., Schmidt, S., Trueb, P.R., Bochud, F.O., 2010. Criteria for establishing shielding of multi-detector computed tomography (MDCT) rooms. Radiat Prot Dosimetry. 139, 403-409. https://doi.org/10.1093/rpd/ncq100
W. S. McKeever, S., Moscovitch, M., 2003. Topics under Debate - On the advantages and disadvantages of optically stimulated luminescence dosimetry and thermoluminescence dosimetry. Radiat Prot Dosimetry 104, 263-270. https://doi.org/10.1093/oxfordjournals.rpd.a006191
Walter, S.S., Maurer, M., Storz, C., Weiss, J., Archid, R., Bamberg, F., Kim, J.H., Nikolaou, K., Othman, A.E., 2019. Effects of Radiation Dose Reduction on diagnostic accuracy of abdominal ct in young adults with suspected acute diverticulitis: A retrospective intraindividual analysis. Acad Radiol. 26, 782-790. https://doi.org/10.1016/j.acra.2018.08.007
Willemink, M.J., Noël, P.B., 2019. The evolution of image reconstruction for CT-from filtered back projection to artificial intelligence. Eur Radiol. 29, 2185–2195. https://doi.org/10.1007/s00330-018-5810-7
Williamson, M., 2006. Radiological protection for medical exposure to ionizing radiation. Health Physics. 90, 597. https://doi.org/10.1097/01.HP.0000215835.35137.9c
Wunderle, K., Gill, A., 2015. Radiation-related injuries and their management: an update. Semin intervent Radiol. 32, 156-162. https://doi.org/10.1055/s-0035-1549446
Yahnke, C.J.2009, microstar calibration conversion factors for dots 4.
Yusuf, M., Alothmany, N., Abdulrahman Kinsara, A., 2017. Organ dose measurement using optically stimulated luminescence detector (OSLD) during CT examination. Radiat. Phys. Chem. 139, 83-89. https://doi.org/10.1016/j.radphyschem.2017.05.006
白宗庭(Tsung-Ting Pai), 王昱筌(Yu-Chuan Wang), 林招膨(Jao-Perng Lin), 賴律翰(Lu-Han Lai), 丁健益(Chien-Yi Ting), 2018. 應用光激發光劑量計於640切電腦斷層頭部檢查陪檢者輻射劑量之評估. 台灣應用輻射與同位素雜誌 14, 1549–1555.
朱雪碧(Hseuh-Pi Chu), 陳國輝(Kuo-Hui Chen), 黃德發(Der-Fa Huang), 劉峯志(Feng-Zhi Liu), 2019. 64切CT輻射劑量空間分佈研究. 中華放射線技術學雜誌 43, 1–8.
吳昌諭, 2021. 利用空間矩陣法來探討ERCP透視攝影立體劑量分佈. 醫學影像暨放射科學系暨研究所. 中臺科技大學, 台中市.
高紫綾(Tzu-Ling Kao), 葉善宏(Shann-Horng Yeh), 2012. 光激發光劑量計與氟化鋰熱發光劑量計輻射偵測特性之研究比較. 台灣應用輻射與同位素雜誌 8, 411–418. https://doi.org/10.29832/TJARI.201212.0002
黃德發, 2017. 以空間矩陣TLD佈點模式計量X光室經胸部攝影之空間劑量研究. 醫學影像暨放射科學系暨研究所. 中臺科技大學, 台中市.
湯明宗(Ming-Tsung Tang), 白宗庭(Tsung-Ting Pai), 林招膨(Jao-Perng Lin), 陳宜清(Yi-Ching Chen), 林昱逢(Yu-Feng Lin), 賴律翰(Lu-Han Lai), 2017. 光激發光劑量計應用於移動式X光機輻射劑量之評估. 台灣應用輻射與同位素雜誌 13, 1533–1540.
黎海幸仙, 2017. 以壓克力假體及半導體計量器測64切電腦斷層儀器之散射輻射. 醫學影像暨放射科學系暨研究所. 中臺科技大學, 台中市.
蕭郁潔, 2019. 以空間矩陣法探討透視攝影空間輻射劑量分佈. 醫學影像暨放射科學系暨研究所. 中臺科技大學, 台中市.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top