|
Al-Senan, R.M., Hatab, M.R., 2011. Characteristics of an OSLD in the diagnostic energy range: Characteristics of OSLDs in diagnostic energy range. Med. Phys. 38, 4396-4405. https://doi.org/10.1118/1.3602456 Alonso, T.C., Mourão Filho, A.P., Da Silva, T.A., 2018. Measurements of air kerma index in computed tomography: A comparison among methodologies. Appl Radiat Isot. 138, 10-13. https://doi.org/10.1016/j.apradiso.2017.10.008 Catuzzo, P., Aimonetto, S., Zenone, F., Fanelli, G., Marchisio, P., Meloni, T., Pasquino, M., Tofani, S., 2010. Population exposure to ionising radiation from CT examinations in Aosta Valley between 2001 and 2008. BJR. 83, 1042-1051. https://doi.org/10.1259/bjr/66718758 Chida, K., Kaga, Y., Haga, Y., Kataoka, N., Kumasaka, E., Meguro, T., Zuguchi, M., 2013. Occupational Dose in Interventional Radiology Procedures. American Journal of Roentgenology. 200, 138-141. https://doi.org/10.2214/AJR.11.8455 Clement, C., Rühm, W., Harrison, J., Applegate, K., Cool, D., Larsson, C.-M., Cousins, C., Lochard, J., Bouffler, S., Cho, K., Kai, M., Laurier, D., Liu, S., Romanov, S., 2021. Keeping the ICRP recommendations fit for purpose. J. Radiol. Prot. 41, 1390-1409. https://doi.org/10.1088/1361-6498/ac1611 Elsholtz, F.H.J., Vahldiek, J.L., Wyschkon, S., Bucourt, M.D., Koletzko, G., Hamm, B., Niehues, S.M., 2020. Radiation exposure of radiologists during different types of CT-guided interventions: an evaluation using dosimeters placed above and under lead protection. Acta Radiol. 61, 110-116. https://doi.org/10.1177/0284185119852734 El-Taher, A., 2013. A Study on Transfer Factors of Radionuclides from Soil to plant. Life Science Journal. 10, 532-539. Giansante, L., Santos, J.C., Umisedo, N.K., Terini, R.A., Costa, P.R., 2018. Characterization of OSL dosimeters for use in dose assessment in Computed Tomography procedures. Phys. Med. 47, 16-22. https://doi.org/10.1016/j.ejmp.2018.02.009 Golikov, V., Druzhinina, P., 2020. Technical Note: Patient‐weight dependence of the effective dose conversion coefficients for diagnostic x‐ray imaging procedures. Med. Phys. 47, 5366–5372. https://doi.org/10.1002/mp.14446 Hakanen, A., 2012. Simulated and measured dose response characteristics of detectors used for CT dosimetry. Phys. Med. Biol. 57, N319-N328. https://doi.org/10.1088/0031-9155/57/16/N319 Hao, F., Zhou, W., Gao, Y., 2021. Recent advances in nuclear radiation protective clothing materials. mat express. 11, 1255-1268. https://doi.org/10.1166/mex.2021.1922 Heusch, P., Kröpil, P., Buchbender, C., Aissa, J., Lanzman, R.S., Heusner, T.A., Ewen, K., Antoch, G., Fürst, G., 2014. Radiation exposure of the radiologist’s eye lens during CT-guided interventions. Acta Radiol. 55, 86-90. https://doi.org/10.1177/0284185113493222 Huang, T.-T., Chu, C.-H., Wang, S.-W., Lin, Y.-C., 2020. Establishment of diagnostic X-ray air kerma standard in Taiwan. Radiation Physics and Chemistry. 171, 108748. ttps://doi.org/10.1016/j.radphyschem.2020.108748 ICRP, 2007. The 2007 Recommendations of the international commission on radiological protection. international commission of radiological protection. ICRP Publication 103 Ann. ICRP 37. Pergamon, Oxford. IAEA, 2007. Dosimetry in diagnostic radiology: an international code of practice, Technical reports series 457. International Atomic Energy Agency, Vienna. Jamal, N.H.M., Sayed, I.S., Syed, W.S., 2020. Estimation of organ absorbed dose in pediatric chest X-ray examination: A phantom study. Radiat. Phys. Chem. 166, 108472. https://doi.org/10.1016/j.radphyschem.2019.108472 Jibiri, N.N., Olowookere, C.J., 2016. Patient dose audit of the most frequent radiographic examinations and the proposed local diagnostic reference levels in southwestern Nigeria: Imperative for dose optimisation. J. Radiat. Res. Appl. Sci. 9, 274-281. https://doi.org/10.1016/j.jrras.2016.01.003 Jursinic, P.A., 2009. Changes in optically stimulated luminescent dosimeter (OSLD) dosimetric characteristics with accumulated dose: Changes in optically stimulated luminescent dosimeter characteristics. Med. Phys. 37, 132-140. https://doi.org/10.1118/1.3267489 Jursinic, P.A., 2007. Characterization of optically stimulated luminescent dosimeters, OSLDs, for clinical dosimetric measurements: Optically stimulated luminescent dosimeters for clinical dosimetric measurements. Med. Phys. 34, 4594-4604. https://doi.org/10.1118/1.2804555 Kalender, W.A., 2014. Dose in x-ray computed tomography. Phys. Med. Biol. 59, R129-R150. https://doi.org/10.1088/0031-9155/59/3/R129 Kalender, W.A., Schmidt, B., Zankl, M., Schmidt, M., 1999. A PC program for estimating organ dose and effective dose values in computed tomography. Eur. Radiol.. 9, 555-562. https://doi.org/10.1007/s003300050709 Kostyleva, Yu.G., Mysev, I.P., 2008. The scope for measuring the effective dose of external irradiation and the use of operational quantities. Meas Tech. 51, 532–540. https://doi.org/10.1007/s11018-008-9074-5 Kry, S.F., Alvarez, P., Cygler, J.E., DeWerd, L.A., Howell, R.M., Meeks, S., O’Daniel, J., Reft, C., Sawakuchi, G., Yukihara, E.G., Mihailidis, D., 2020. AAPM TG 191: Clinical use of luminescent dosimeters: TLDs and OSLDs. Med. Physics. 47. https://doi.org/10.1002/mp.13839 Leng, S., Atwell, T.D., Yu, L., Mandrekar, J., Lewis, B.D., Woodrum, D.A., McCollough, C.H., 2011. Radiation dose reduction for ct-guided renal tumor cryoablation. AJR Am J Roentgenol. 196, W586-W591. https://doi.org/10.2214/AJR.10.5144 Little, M.P., Wakeford, R., Tawn, E.J., Bouffler, S.D., Berrington de Gonzalez, A., 2009. Risks associated with low doses and low dose rates of ionizing radiation: Why Linearity may be (almost) the best we can do. Radiology. 251, 6-12. https://doi.org/10.1148/radiol.2511081686 NCRP, 2009. Ionizing radiation exposure of the population of the united states. NCRP Report 160, National Council on Radiation rotection and Measurements. Bethesda. NCRP, 2019. Medical radiation exposure of patients in the united states. NCRP Repor 184, National Council on Radiation rotection and Measurements. Bethesda. McCollough, C.H., Primak, A.N., Braun, N., Kofler, J., Yu, L., Christner, J., 2009. Strategies for reducing radiation dose in CT. Radiol. Clin. North Am. 47, 27-40. https://doi.org/10.1016/j.rcl.2008.10.006 Miyajima R., Fujibuchi T., Miyachi Y., Tateishi S., Uno Y., Amakawa K., Ohura H., Orita S., 2018. Effective techniques to reduce radiation exposure to medical staff during assist of x-ray computed tomography examination. Jpn J Radiol. 74, 326–334. https://doi.org/10.6009/jjrt.2018_JSRT_74.4.326 Nagamoto, K., Moritake, T., Nakagami, K., Morota, K., Matsuzaki, S., Nihei, S., Kamochi, M., Kunugita, N., 2021. Occupational radiation dose to the lens of the eye of medical staff who assist in diagnostic CT scans. Heliyon 7, e06063. https://doi.org/10.1016/j.heliyon.2021.e06063 Olko, P., 2010. Advantages and disadvantages of luminescence dosimetry. Radiat. Meas. 45, 506-511. https://doi.org/10.1016/j.radmeas.2010.01.016 Osanai, M., Sato, H., Sato, K., Kudo, K., Hosoda, M., Hosokawa, S., Kitajima, M., Tsushima, M., Fujita, A., Hosokawa, Y., Saito, Y., 2021. Occupational radiation dose, especially for eye lens: Hp(3), in medical staff members involved in computed tomography examinations. Appl. Sci. 11, 4448. https://doi.org/10.3390/app11104448 Osei, E.K., Darko, J., 2013. A survey of organ equivalent and effective doses from diagnostic radiology procedures. ISRN Radiology 2013, 1-9. https://doi.org/10.5402/2013/204346 Oster, L., Horowitz, Y.S., Issa, N., 1999. Optical absorption and thermoluminescence studies in irradiated dosimetric LiF:Mg,Ti (TLD-100). Radiat Prot Dosimetry. 84, 17-20. https://doi.org/10.1093/oxfordjournals.rpd.a032711 Otto, T., 2019. Conversion coefficients from kerma to ambient dose and personal dose for X-ray spectra. J. Inst. 14, P11011–P11011. https://doi.org/10.1088/1748-0221/14/11/P11011 Ozasa, K., Cullings, H.M., Ohishi, W., Hida, A., Grant, E.J., 2019. Epidemiological studies of atomic bomb radiation at the Radiation Effects Research Foundation. Int. J. Radiat. Biol. 95, 879-891. https://doi.org/10.1080/09553002.2019.1569778 Park, B.K., Morrison, P.R., Tatli, S., Govindarajulu, U., Tuncali, K., Judy, P., Shyn, P.B., Silverman, S.G., 2012. Estimated effective dose of CT-guided percutaneous cryoablation of liver tumors. Eur J Radiol. 81, 1702–1706. https://doi.org/10.1016/j.ejrad.2011.04.067 Principi, S., Guardiola, C., Duch, M.A., Ginjaume, M., 2016. Air kerma to Hp (3) conversion coefficients for IEC 61267 RQR X-ray radiation qualities: application to dose monitoring of the lens of the eye in medical diagnostics. Radiat Prot Dosimetry. 170, 45-48. https://doi.org/10.1093/rpd/ncv435 Radcal to Launch Next Models of Accu-gold and sensors for radiography [WWW Document], 2013. Imaging Technology News. URL http://www.itnonline.com/content/radcal-launch-next-models-accu-gold-and-sensors-radiography (accessed 5.21.22). Radcal [WWW Document], 2016. Radcal | Radiation measurement devices. URL https://radcal.com/accu-gold-plus/ (accessed 5.21.22). Saeedi-Moghadam, M., Tayebi, M., Chegeni, N., Sina, S., Kolayi, T., 2021. Efficiency of non-lead and lead thyroid shields in radiation protection of CT examinations. Radiat. Phys. Chem. 180, 109265. https://doi.org/10.1016/j.radphyschem.2020.109265 Sharma, S.D., Sharma, R., Mulchandani, U., Chabey, A., Chourasia, G., Mayya, Y.S., 2013. Measurement of entrance skin dose for diagnostic x-ray radiographic examinations and establishment of local diagnostic reference levels, in: Long, M. (Ed.), World Congress on Medical Physics and Biomedical Engineering May 26-31, 2012, Beijing, China, IFMBE Proceedings. Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 860–863. https://doi.org/10.1007/978-3-642-29305-4_226 Shore, R.E., 2014. Radiation impacts on human health: Certain, fuzzy, and unknown. Health Physics. 106, 196-205. https://doi.org/10.1097/HP.0000000000000021 Smith-Bindman, R., Lipson, J., Marcus, R., Kim, K.-P., Mahesh, M., Gould, R., 2009. Radiation dose associated with common computed tomography examinations and the associated lifetime attributable risk of cancer. Arch. intern. med. 169, 9. Tanabe, R., Araki, F., 2021. Real-time estimation of surface dose based on incident air kerma in diagnostic radiology. Phys. Med. 89, 176-181. https://doi.org/10.1016/j.ejmp.2021.07.031 Thistlethwaite, J., Johnson, D., Valentino, D.J., 2013. microSTARii™ - A new system for medical dosimetry: 12. Treier, R., Landis, R., Theiler, Th., Stritt, N., Trueb, Ph.R., Baechler, S., 2016. Calculation of the maximum allowed ambient dose rate outside CT rooms to quantitatively assess the structural shielding performance. Radiat Prot Dosimetry. 174, 226-235. https://doi.org/10.1093/rpd/ncw131 Verdun, F.R., Aroua, A., Baechler, S., Schmidt, S., Trueb, P.R., Bochud, F.O., 2010. Criteria for establishing shielding of multi-detector computed tomography (MDCT) rooms. Radiat Prot Dosimetry. 139, 403-409. https://doi.org/10.1093/rpd/ncq100 W. S. McKeever, S., Moscovitch, M., 2003. Topics under Debate - On the advantages and disadvantages of optically stimulated luminescence dosimetry and thermoluminescence dosimetry. Radiat Prot Dosimetry 104, 263-270. https://doi.org/10.1093/oxfordjournals.rpd.a006191 Walter, S.S., Maurer, M., Storz, C., Weiss, J., Archid, R., Bamberg, F., Kim, J.H., Nikolaou, K., Othman, A.E., 2019. Effects of Radiation Dose Reduction on diagnostic accuracy of abdominal ct in young adults with suspected acute diverticulitis: A retrospective intraindividual analysis. Acad Radiol. 26, 782-790. https://doi.org/10.1016/j.acra.2018.08.007 Willemink, M.J., Noël, P.B., 2019. The evolution of image reconstruction for CT-from filtered back projection to artificial intelligence. Eur Radiol. 29, 2185–2195. https://doi.org/10.1007/s00330-018-5810-7 Williamson, M., 2006. Radiological protection for medical exposure to ionizing radiation. Health Physics. 90, 597. https://doi.org/10.1097/01.HP.0000215835.35137.9c Wunderle, K., Gill, A., 2015. Radiation-related injuries and their management: an update. Semin intervent Radiol. 32, 156-162. https://doi.org/10.1055/s-0035-1549446 Yahnke, C.J.2009, microstar calibration conversion factors for dots 4. Yusuf, M., Alothmany, N., Abdulrahman Kinsara, A., 2017. Organ dose measurement using optically stimulated luminescence detector (OSLD) during CT examination. Radiat. Phys. Chem. 139, 83-89. https://doi.org/10.1016/j.radphyschem.2017.05.006 白宗庭(Tsung-Ting Pai), 王昱筌(Yu-Chuan Wang), 林招膨(Jao-Perng Lin), 賴律翰(Lu-Han Lai), 丁健益(Chien-Yi Ting), 2018. 應用光激發光劑量計於640切電腦斷層頭部檢查陪檢者輻射劑量之評估. 台灣應用輻射與同位素雜誌 14, 1549–1555. 朱雪碧(Hseuh-Pi Chu), 陳國輝(Kuo-Hui Chen), 黃德發(Der-Fa Huang), 劉峯志(Feng-Zhi Liu), 2019. 64切CT輻射劑量空間分佈研究. 中華放射線技術學雜誌 43, 1–8. 吳昌諭, 2021. 利用空間矩陣法來探討ERCP透視攝影立體劑量分佈. 醫學影像暨放射科學系暨研究所. 中臺科技大學, 台中市. 高紫綾(Tzu-Ling Kao), 葉善宏(Shann-Horng Yeh), 2012. 光激發光劑量計與氟化鋰熱發光劑量計輻射偵測特性之研究比較. 台灣應用輻射與同位素雜誌 8, 411–418. https://doi.org/10.29832/TJARI.201212.0002 黃德發, 2017. 以空間矩陣TLD佈點模式計量X光室經胸部攝影之空間劑量研究. 醫學影像暨放射科學系暨研究所. 中臺科技大學, 台中市. 湯明宗(Ming-Tsung Tang), 白宗庭(Tsung-Ting Pai), 林招膨(Jao-Perng Lin), 陳宜清(Yi-Ching Chen), 林昱逢(Yu-Feng Lin), 賴律翰(Lu-Han Lai), 2017. 光激發光劑量計應用於移動式X光機輻射劑量之評估. 台灣應用輻射與同位素雜誌 13, 1533–1540. 黎海幸仙, 2017. 以壓克力假體及半導體計量器測64切電腦斷層儀器之散射輻射. 醫學影像暨放射科學系暨研究所. 中臺科技大學, 台中市. 蕭郁潔, 2019. 以空間矩陣法探討透視攝影空間輻射劑量分佈. 醫學影像暨放射科學系暨研究所. 中臺科技大學, 台中市.
|