|
1.Medical Device Manufacturers Market Size from: https://www.grandviewresearch.com/industry-analysis/us-medical-device-manufacturers-market. 2.Ogbonna, C. N.; Nwoba, E. G., Bio-based flocculants for sustainable harvesting of microalgae for biofuel production. A review. Renew. Sust. Energ. Rev. 2021, 139, 16. 3.Rashid, T.; Sher, F.; Hazafa, A.; Hashmi, R. Q.; Zafar, A.; Rasheed, T.; Hussain, S., Design and feasibility study of novel paraboloid graphite based microbial fuel cell for bioelectrogenesis and pharmaceutical wastewater treatment. J. Environ. Chem. Eng. 2021, 9 (1), 8. 4.Fahimirad, S.; Fahimirad, Z.; Sillanpaa, M., Efficient removal of water bacteria and viruses using electrospun nanofibers. Sci. Total Environ. 2021, 751, 18. 5.Ghosal, K.; Agatemor, C.; Spitalsky, Z.; Thomas, S.; Kny, E., Electrospinning tissue engineering and wound dressing scaffolds from polymer-titanium dioxide nanocomposites. Chemical Engineering Journal 2019, 358, 1262-1278. 6.Musah, S.; Mammoto, A.; Ferrante, T. C.; Jeanty, S. S. F.; Hirano-Kobayashi, M.; Mammoto, T.; Roberts, K.; Chung, S.; Novak, R.; Ingram, M.; Fatanat-Didar, T.; Koshy, S.; Weaver, J. C.; Church, G. M.; Ingber, D. E., Mature induced-pluripotent-stem-cell-derived human podocytes reconstitute kidney glomerular-capillary-wall function on a chip. Nat. Biomed. Eng 2017, 1 (5), 12. 7.Moretro, T.; Langsrud, S., Residential Bacteria on Surfaces in the Food Industry and Their Implications for Food Safety and Quality. Compr. Rev. Food. Sci. Food Saf. 2017, 16 (5), 1022-1041. 8.Chou, Y. N.; Venault, A.; Wang, Y. H.; Chinnathambi, A.; Higuchi, A.; Chang, Y., Surface zwitterionization on versatile hydrophobic interfaces via a combined copolymerization/self-assembling process. J. Mat. Chem. B 2018, 6 (30), 4909-4919. 9.Miller, D. J.; Dreyer, D. R.; Bielawski, C. W.; Paul, D. R.; Freeman, B. D., Surface Modification of Water Purification Membranes. Angew. Chem.-Int. Edit. 2017, 56 (17), 4662-4711. 10.Ahmad, A. L.; Abdulkarim, A. A.; Ooi, B. S.; Ismail, S., Recent development in additives modifications of polyethersulfone membrane for flux enhancement. Chemical Engineering Journal 2013, 223, 246-267. 11.Shi, H.; He, Y.; Pan, Y.; Di, H. H.; Zeng, G. Y.; Zhang, L.; Zhang, C. L., A modified mussel-inspired method to fabricate TiO2 decorated superhydrophilic PVDF membrane for oil/water separation. Journal of Membrane Science 2016, 506, 60-70. 12.Louie, J. S.; Pinnau, I.; Ciobanu, I.; Ishida, K. P.; Ng, A.; Reinhard, M., Effects of polyether-polyamide block copolymer coating on performance and fouling of reverse osmosis membranes. Journal of Membrane Science 2006, 280 (1-2), 762-770. 13.Kochkodan, V.; Hilal, N., A comprehensive review on surface modified polymer membranes for biofouling mitigation. Desalination 2015, 356, 187-207. 14.Huang, S. L.; Ras, R. H. A.; Tian, X. L., Antifouling membranes for oily wastewater treatment: Interplay between wetting and membrane fouling. Curr. Opin. Colloid Interface Sci. 2018, 36, 90-109. 15.Lien, C. C.; Yeh, L. C.; Venault, A.; Tsai, S. C.; Hsu, C. H.; Dizon, G. V.; Huang, Y. T.; Higuchi, A.; Chang, Y., Controlling the zwitterionization degree of alternate copolymers for minimizing biofouling on PVDF membranes. Journal of Membrane Science 2018, 565, 119-130. 16.Shi, Q.; Su, Y. L.; Zhao, W.; Li, C.; Hu, Y. H.; Jiang, Z. Y.; Zhu, S. P., Zwitterionic polyethersulfone ultrafiltration membrane with superior antifouling property. Journal of Membrane Science 2008, 319 (1-2), 271-278. 17.Zhu, Y. Z.; Wang, J. L.; Zhang, F.; Gao, S. J.; Wang, A. Q.; Fang, W. X.; Jin, J., Zwitterionic Nanohydrogel Grafted PVDF Membranes with Comprehensive Antifouling Property and Superior Cycle Stability for Oil-in-Water Emulsion Separation. Adv. Funct. Mater. 2018, 28 (40), 10. 18.Liu, C. H.; Lee, J.; Ma, J.; Elimelech, M., Antifouling Thin-Film Composite Membranes by Controlled Architecture of Zwitterionic Polymer Brush Layer. Environ. Sci. Technol. 2017, 51 (4), 2161-2169. 19.Li, Q.; Imbrogno, J.; Belfort, G.; Wang, X. L., Making polymeric membranes antifouling via "grafting from" polymerization of zwitterions. J. Appl. Polym. Sci. 2015, 132 (21), 14. 20.Ma, W.; Rahaman, M. S.; Therien-Aubin, H., Controlling biofouling of reverse osmosis membranes through surface modification via grafting patterned polymer brushes. J. Water Reuse Desalin. 2015, 5 (3), 326-334. 21.Zhang, Q. F.; Zhang, S. B.; Dai, L.; Chen, X. S., Novel zwitterionic poly(arylene ether sulfone)s as antifouling membrane material. Journal of Membrane Science 2010, 349 (1-2), 217-224. 22.Khongnakorn, W.; Bootluck, W.; Jutaporn, P., Surface modification of FO membrane by plasma-grafting polymerization to minimize protein fouling. J. Water Process. Eng. 2020, 38, 11. 23.Venault, A.; Liou, C. S.; Yeh, L. C.; Jhong, J. F.; Huang, J.; Chang, Y., Turning Expanded Poly(tetrafluoroethylene) Membranes into Potential Skin Wound Dressings by Grafting a Bioinert Epoxylated PEGMA Copolymer. ACS Biomater. Sci. Eng. 2017, 3 (12), 3338-3350. 24.Huang, C. J.; Chang, Y. C., In Situ Surface Tailoring with Zwitterionic Carboxybetaine Moieties on Self-Assembled Thin Film for Antifouling Biointerfaces. Materials 2014, 7 (1), 130-142. 25.Venault, A.; Chou, Y. N.; Wang, Y. H.; Hsu, C. H.; Chou, C. J.; Bouyer, D.; Lee, K. R.; Chang, Y., A combined polymerization and self-assembling process for the fouling mitigation of PVDF membranes. Journal of Membrane Science 2018, 547, 134-145. 26.Dizon, G. V.; Venault, A., Direct in-situ modification of PVDF membranes with a zwitterionic copolymer to form bi-continuous and fouling resistant membranes. Journal of Membrane Science 2018, 550, 45-58. 27.Venault, A.; Chang, Y., Designs of Zwitterionic Interfaces and Membranes. Langmuir 2019, 35 (5), 1714-1726. 28.Chapman, R. G.; Ostuni, E.; Takayama, S.; Holmlin, R. E.; Yan, L.; Whitesides, G. M., Surveying for surfaces that resist the adsorption of proteins. J. Am. Chem. Soc. 2000, 122 (34), 8303-8304. 29.Wu, J.; Lin, W. F.; Wang, Z.; Chen, S. F.; Chang, Y., Investigation of the Hydration of Nonfouling Material Poly(sulfobetaine methacrylate) by Low-Field Nuclear Magnetic Resonance. Langmuir 2012, 28 (19), 7436-7441. 30.Faghihnejad, A.; Zeng, H. B., Hydrophobic interactions between polymer surfaces: using polystyrene as a model system. Soft Matter 2012, 8 (9), 2746-2759. 31.Lin, N. J.; Yang, H. S.; Chang, Y.; Tung, K. L.; Chen, W. H.; Cheng, H. W.; Hsiao, S. W.; Aimar, P.; Yamamoto, K.; Lai, J. Y., Surface Self-Assembled PEGylation of Fluoro-Based PVDF Membranes via Hydrophobic-Driven Copolymer Anchoring for Ultra-Stable Biofouling Resistance. Langmuir 2013, 29 (32), 10183-10193. 32.Lin, W. H.; Lin, C. Y.; Tsai, C. C.; Yu, J. S.; Tsai, W. B., Spheroid Formation of Human Adipose-Derived Stem Cells on Environmentally Friendly BMA/SBMA/HEMA Copolymer-Coated Anti-Adhesive Surface. Bull. Chem. Soc. Jpn. 2018, 91 (9), 1457-1464. 33.Leduc , E. H.; Holt , S. J., HYDROXYPROPYL METHACRYLATE, A NEW WATER-MISCIBLE EMBEDDING MEDIUM FOR ELECTRON MICROSCOPY. Journal of Cell Biology 1965, 26 (1), 137-155. 34.Chou, Y. N.; Chang, Y.; Wen, T. C., Applying Thermosettable Zwitterionic Copolymers as General Fouling-Resistant and Thermal-Tolerant Biomaterial Interfaces. ACS Appl. Mater. Interfaces 2015, 7 (19), 10096-10107. 35.Hsu, C. H.; Venault, A.; Zheng, H. Z.; Lo, C. T.; Yang, C. C.; Chang, Y., Failure of sulfobetaine methacrylate as antifouling material for steam-sterilized membranes and a potential alternative. Journal of Membrane Science 2021, 620, 14. 36.Dizon, G. V.; Lee, Y. S.; Venault, A.; Maggay, I. V.; Chang, Y., Zwitterionic PMMA-r-PEGMA-r-PSBMA copolymers for the formation of anti-biofouling bicontinuous membranes by the VIPS process. Journal of Membrane Science 2021, 618, 15. 37.Apple, D. J.; Sims, J., Harold Ridley and the invention of the intraocular lens. Surv. Ophthalmol. 1996, 40 (4), 279-292. 38.Apple, D. J.; Trivedi, R. H., Sir Nicholas Harold Ridley, Kt, MD, FRCS, FRS - Contributions in addition to the Intraocular lens. Arch. Ophthalmol. 2002, 120 (9), 1198-1202. 39.Zhang, Z.; Chao, T.; Chen, S. F.; Jiang, S. Y., Superlow fouling sulfobetaine and carboxybetaine polymers on glass slides. Langmuir 2006, 22 (24), 10072-10077. 40.Sin, M. C.; Chen, S. H.; Chang, Y., Hemocompatibility of zwitterionic interfaces and membranes. Polym. J. 2014, 46 (8), 436-443. 41.Mrabet, B.; Nguyen, M. N.; Majbri, A.; Mahouche, S.; Turmine, M.; Bakhrouf, A.; Chehimi, M. M., Anti-fouling poly(2-hydoxyethyl methacrylate) surface coatings with specific bacteria recognition capabilities. Surf. Sci. 2009, 603 (16), 2422-2429. 42.Yoshikawa, C.; Goto, A.; Tsujii, Y.; Fukuda, T.; Kimura, T.; Yamamoto, K.; Kishida, A., Protein repellency of well-defined, concentrated poly(2-hydroxyethyl methacrylate) brushes by the size-exclusion effect. Macromolecules 2006, 39 (6), 2284-2290. 43.Ma, H. W.; Hyun, J. H.; Stiller, P.; Chilkoti, A., "Non-fouling" oligo(ethylene glycol)-functionalized polymer brushes synthesized by surface-initiated atom transfer radical polymerization. Adv. Mater. 2004, 16 (4), 338-+. 44.Zheng, J.; Li, L. Y.; Tsao, H. K.; Sheng, Y. J.; Chen, S. F.; Jiang, S. Y., Strong repulsive forces between protein and oligo (ethylene glycol) self-assembled monolayers: A molecular simulation study. Biophys. J. 2005, 89 (1), 158-166. 45.Ray, S. S.; Dangayach, R.; Kwon, Y. N., Surface engineering for anti-wetting and antibacterial membrane for enhanced and fouling resistant membrane distillation performance. Chemical Engineering Journal 2021, 405, 17. 46.Shen, M. C.; Martinson, L.; Wagner, M. S.; Castner, D. G.; Ratner, B. D.; Horbett, T. A., PEO-like plasma polymerized tetraglyme surface interactions with leukocytes and proteins: in vitro and in vivo studies. J. Biomater. Sci.-Polym. Ed. 2002, 13 (4), 367-390. 47.Luk, Y. Y.; Kato, M.; Mrksich, M., Self-assembled monolayers of alkanethiolates presenting mannitol groups are inert to protein adsorption and cell attachment. Langmuir 2000, 16 (24), 9604-9608. 48.Ostuni, E.; Chapman, R. G.; Holmlin, R. E.; Takayama, S.; Whitesides, G. M., A survey of structure-property relationships of surfaces that resist the adsorption of protein. Langmuir 2001, 17 (18), 5605-5620. 49.Caurie, M., Bound water: its definition, estimation and characteristics. Int. J. Food Sci. Technol. 2011, 46 (5), 930-934. 50.Cell membrane structure from: https://zhtw.eferrit.com/%E7%B4%B0%E8%83%9E%E8%86%9C%E5%8A%9F%E8%83%BD%E5%92%8C%E7%B5%90%E6%A7%8B/. 51.Kadoma, Y.; Nakabayashi, N.; Masuhara, E.; Yamauchi, J., Synthesis and Hemolysis Test of the Polymer Containing Phosphorylcholine Groups. KOBUNSHI RONBUNSHU 1978, 35 (7), 423-427. 52.Chang, Y.; Shu, S.-H.; Shih, Y.-J.; Chu, C.-W.; Ruaan, R.-C.; Chen, W.-Y., Hemocompatible Mixed-Charge Copolymer Brushes of Pseudozwitterionic Surfaces Resistant to Nonspecific Plasma Protein Fouling. Langmuir 2010, 26 (5), 3522-3530. 53.Chang, Y.; Chang, W. J.; Shih, Y. J.; Wei, T. C.; Hsiue, G. H., Zwitterionic sulfobetaine-grafted poly(vinylidene fluoride) membrane with highly effective blood compatibility via atmospheric plasma-induced surface copolymerization. ACS Appl Mater Interfaces 2011, 3 (4), 1228-37. 54.Ladd, J.; Zhang, Z.; Chen, S.; Hower, J. C.; Jiang, S., Zwitterionic Polymers Exhibiting High Resistance to Nonspecific Protein Adsorption from Human Serum and Plasma. Biomacromolecules 2008, 9 (5), 1357-1361. 55.Vaisocherová, H.; Yang, W.; Zhang, Z.; Cao, Z.; Cheng, G.; Piliarik, M.; Homola, J.; Jiang, S., Ultralow fouling and functionalizable surface chemistry based on a zwitterionic polymer enabling sensitive and specific protein detection in undiluted blood plasma. Anal Chem 2008, 80 (20), 7894-901. 56.Chiu, C. Y.; Chang, Y.; Liu, T. H.; Chou, Y. N.; Yen, T. J., Convergent charge interval spacing of zwitterionic 4-vinylpyridine carboxybetaine structures for superior blood-inert regulation in amphiphilic phases. J. Mat. Chem. B 2021, 9 (40), 8437-8450. 57.Arrhenius equation from: http://www.laohuajiance.com/h-nd-21.html. 58.Laidler, K. J., The development of the Arrhenius equation. Journal of Chemical Education 1984, 61 (6), 494. 59.Higuchi, A.; Shirano, K.; Harashima, M.; Yoon, B. O.; Hara, M.; Hattori, M.; Imamura, K., Chemically modified polysulfone hollow fibers with vinylpyrrolidone having improved blood compatibility. Biomaterials 2002, 23 (13), 2659-2666. 60.Marchant, R. E.; Johnson, S. D.; Schneider, B. H.; Agger, M. P.; Anderson, J. M., A hydrophilic plasma polymerized film composite with potential application as an interface for biomaterials. Journal of Biomedical Materials Research 1990, 24 (11), 1521-1537. 61.Wetzels, G. M. R.; Koole, L. H., Photoimmobilisation of poly(N-vinylpyrrolidinone) as a means to improve haemocompatibility of polyurethane biomaterials. Biomaterials 1999, 20 (20), 1879-1887. 62.Robinson, S.; Williams, P. A., Inhibition of Protein Adsorption onto Silica by Polyvinylpyrrolidone. Langmuir 2002, 18 (23), 8743-8748. 63.Davies, W. L.; Gloor Jr., W. T., Batch production of pharmaceutical granulations in a fluidized bed II: Effects of various binders and their concentrations on granulations and compressed tablets. Journal of Pharmaceutical Sciences 1972, 61 (4), 618-622. 64.Hoang, T.; Jorgensen, M. G.; Keim, R. G.; Pattison, A. M.; Slots, J., Povidone-iodine as a periodontal pocket disinfectant. Journal of Periodontal Research 2003, 38 (3), 311-317. 65.Reimer, K.; Vogt, P. M.; Broegmann, B.; Hauser, J.; Rossbach, O.; Kramer, A.; Rudolph, P.; Bosse, B.; Schreier, H.; Fleischer, W., An Innovative Topical Drug Formulation for Wound Healing and Infection Treatment: In vitro and in vivo Investigations of a Povidone-Iodine Liposome Hydrogel. Dermatology 2000, 201 (3), 235-241. 66.Telford, A. M.; James, M.; Meagher, L.; Neto, C., Thermally Cross-Linked PNVP Films As Antifouling Coatings for Biomedical Applications. ACS Appl. Mater. Interfaces 2010, 2 (8), 2399-2408. 67.Chou, Y.-N.; Chang, Y.; Wen, T.-C., Applying Thermosettable Zwitterionic Copolymers as General Fouling-Resistant and Thermal-Tolerant Biomaterial Interfaces. ACS Appl. Mater. Interfaces 2015, 7 (19), 10096-10107. 68.Yang, C. C.; Lo, C. T.; Luo, Y. L.; Venault, A.; Chang, Y., Thermally Stable Bioinert Zwitterionic Sulfobetaine Interfaces Tolerated in the Medical Sterilization Process. ACS Biomater. Sci. Eng. 2021, 7 (3), 1031-1045. 69.Chang, J.; Tao, Y.; Wang, B.; Guo, B. H.; Xu, H.; Jiang, Y. R.; Huang, Y. B., An in situ-forming zwitterionic hydrogel as vitreous substitute. J. Mat. Chem. B 2015, 3 (6), 1097-1105. 70.Liu, Q. S.; Li, W. C.; Singh, A.; Cheng, G.; Liu, L. Y., Two amino acid-based superlow fouling polymers: Poly(lysine methacrylamide) and poly(ornithine methacrylamide). Acta Biomater. 2014, 10 (7), 2956-2964. 71.Hirasawa, M.; Tsutsumi-Arai, C.; Takakusaki, K.; Oya, T.; Fueki, K.; Wakabayashi, N., Superhydrophilic co-polymer coatings on denture surfaces reduce Candida albicans adhesion-An in vitro study. Arch. Oral Biol. 2018, 87, 143-150. 72.Chen, S.-H.; Chang, Y.; Ishihara, K., Reduced Blood Cell Adhesion on Polypropylene Substrates through a Simple Surface Zwitterionization. Langmuir 2017, 33 (2), 611-621. 73.Venault, A.; Chen, S. J.; Lin, H. T.; Maggay, I.; Chang, Y., Bi-continuous positively-charged PVDF membranes formed by a dual-bath procedure with bacteria killing/release ability. Chemical Engineering Journal 2021, 417, 20. 74.Mukherjee, M.; De, S., Antibacterial polymeric membranes: a short review. Environmental Science: Water Research & Technology 2018, 4 (8), 1078-1104. 75.Maggay, I. V.; Suba, M.; Aini, H. N.; Wu, C. J.; Tang, S. H.; Aquino, R. B.; Chang, Y.; Venault, A., Thermostable antifouling zwitterionic vapor-induced phase separation membranes. Journal of Membrane Science 2021, 627, 15. 76.Tang, S.-H.; Venault, A.; Hsieh, C.; Dizon, G. V.; Lo, C.-T.; Chang, Y., A bio-inert and thermostable zwitterionic copolymer for the surface modification of PVDF membranes. Journal of Membrane Science 2020, 598, 117655. 77.Song, L. X.; Lam, Y. M., Selective betainization of PS-P4VP and solution properties. Langmuir 2006, 22 (1), 319-324. 78.Venault, A.; Lin, K.-H.; Tang, S.-H.; Dizon, G. V.; Hsu, C.-H.; Maggay, I. V. B.; Chang, Y., Zwitterionic electrospun PVDF fibrous membranes with a well-controlled hydration for diabetic wound recovery. Journal of Membrane Science 2020, 598, 117648. 79.Hsu, C.-H.; Venault, A.; Chang, Y., Facile zwitterionization of polyvinylidene fluoride microfiltration membranes for biofouling mitigation. Journal of Membrane Science 2022, 648, 120348. 80.Venault, A.; Lai, M. W.; Jhong, J. F.; Yeh, C. C.; Yeh, L. C.; Chang, Y., Superior Bioinert Capability of Zwitterionic Poly(4-vinylpyridine propylsulfobetaine) Withstanding Clinical Sterilization for Extended Medical Applications. ACS Appl. Mater. Interfaces 2018, 10 (21), 17771-17783. 81.Venault, A.; Liu, Y.-H.; Wu, J.-R.; Yang, H.-S.; Chang, Y.; Lai, J.-Y.; Aimar, P., Low-biofouling membranes prepared by liquid-induced phase separation of the PVDF/polystyrene-b-poly (ethylene glycol) methacrylate blend. Journal of Membrane Science 2014, 450, 340-350. 82.Wijmans, J. G.; Smolders, C. A., Preparation of Asymmetric Membranes by the Phase Inversion Process. In Synthetic Membranes: Science, Engineering and Applications, Bungay, P. M.; Lonsdale, H. K.; de Pinho, M. N., Eds. Springer Netherlands: Dordrecht, 1986; pp 39-56. 83.Wang, J.; Pan, G.; Li, Y.; Zhang, Y.; Shi, H.; Liu, X.; Yu, H.; Zhao, M.; Liu, Y.; Wu, C., Bicontinuous porous membranes with micro-nano composite structure using a facile atomization-assisted nonsolvent induced phase separation method. Frontiers of Chemical Science and Engineering 2022. 84.Song, W. L.; Li, Z. P.; Li, Y. Z.; You, H.; Qi, P. S.; Liu, F.; Loy, D. A., Facile sol-gel coating process for anti-biofouling modification of poly (vinylidene fluoride) microfiltration membrane based on novel zwitterionic organosilica. Journal of Membrane Science 2018, 550, 266-277. 85.Kuo, C. Y.; Lin, H. N.; Tsai, H. A.; Wang, D. M.; Lai, J. Y., Fabrication of a high hydrophobic PVDF membrane via nonsolvent induced phase separation. Desalination 2008, 233 (1-3), 40-47. 86.Venault, A.; Chin, Y.-T.; Maggay, I.; Yeh, C.-C.; Chang, Y., Poly(vinylidene fluoride)/poly(styrene-co-acrylic acid) nanofibers as potential materials for blood separation. Journal of Membrane Science 2022, 641, 119881. 87.Juang, R. S.; Lin, K. H., Flux recovery in the ultrafiltration of suspended solutions with ultrasound. Journal of Membrane Science 2004, 243 (1-2), 115-124. 88.Kim, J. O.; Somiya, I., Effective combination of microfiltration and intermittent ozonation for high permeation flux and VFAs recovery from coagulated raw sludge. Environ. Technol. 2001, 22 (1), 7-15. 89.Song, L. X.; Lam, Y. M., Nanopattern formation using a chemically modified PS-P4VP diblock copolymer. Nanotechnology 2007, 18 (7), 6. 90.Venault, A.; Hsu, C. H.; Ishihara, K.; Chang, Y., Zwitterionic bi-continuous membranes from a phosphobetaine copolymer/poly(vinylidene fluoride) blend via VIPS for biofouling mitigation. Journal of Membrane Science 2018, 550, 377-388. 91.Bormashenko, E., Progress in understanding wetting transitions on rough surfaces. Adv. Colloid Interface Sci. 2015, 222, 92-103. 92.O'Hanley, H.; Coyle, C.; Buongiorno, J.; McKrell, T.; Hu, L. W.; Rubner, M.; Cohen, R., Separate effects of surface roughness, wettability, and porosity on the boiling critical heat flux. Appl. Phys. Lett. 2013, 103 (2), 5. 93.Rupp, F.; Liang, L.; Geis-Gerstorfer, J.; Scheideler, L.; Huttig, F., Surface characteristics of dental implants: A review. Dent. Mater. 2018, 34 (1), 40-57. 94.Wang, D. H.; Sun, Q. Q.; Hokkanen, M. J.; Zhang, C. L.; Lin, F. Y.; Liu, Q.; Zhu, S. P.; Zhou, T. F.; Chang, Q.; He, B.; Zhou, Q.; Chen, L. Q.; Wang, Z. K.; Ras, R. H. A.; Deng, X., Design of robust superhydrophobic surfaces. Nature 2020, 582 (7810), 55-+. 95.Ismail, N. H.; Salleh, W. N. W.; Ismail, A. F.; Hasbullah, H.; Yusof, N.; Aziz, F.; Jaafar, J., Hydrophilic polymer-based membrane for oily wastewater treatment: A review. Sep. Purif. Technol. 2020, 233, 18. 96.Rahimpour, A.; Madaeni, S. S.; Jahanshahi, M.; Mansourpanah, Y.; Mortazavian, N., Development of high performance nano-porous polyethersulfone ultrafiltration membranes with hydrophilic surface and superior antifouling properties. Appl. Surf. Sci. 2009, 255 (22), 9166-9173. 97.Tripathi, B. P.; Dubey, N. C.; Choudhury, S.; Simon, F.; Stamm, M., Antifouling and antibiofouling pH responsive block copolymer based membranes by selective surface modification. J. Mat. Chem. B 2013, 1 (27), 3397-3409. 98.Chang, Y.; Ko, C. Y.; Shih, Y. J.; Quemener, D.; Deratani, A.; Wei, T. C.; Wang, D. M.; Lai, J. Y., Surface grafting control of PEGylated poly(vinylidene fluoride) antifouling membrane via surface-initiated radical graft copolymerization. Journal of Membrane Science 2009, 345 (1-2), 160-169. 99.Chiu, C.-Y.; Yen, T.-J.; Chang, Y., Intelligent sterilizable self-cleaning membranes triggered by sustainable counterion-induced bacteria killing/releasing procedure. Chemical Engineering Journal 2022, 440, 135798. 100.Lien, C.-C.; Chen, P.-J.; Venault, A.; Tang, S.-H.; Fu, Y.; Dizon, G. V.; Aimar, P.; Chang, Y., A zwitterionic interpenetrating network for improving the blood compatibility of polypropylene membranes applied to leukodepletion. Journal of Membrane Science 2019, 584, 148-160. 101.Beard, B. C.; Hare, J., Surface interaction of quaternary amines with hair. J. Surfactants Deterg. 2002, 5 (2), 145-150. 102.Shafi, H. Z.; Wang, M.; Gleason, K. K.; Khan, Z., Synthesis of surface-anchored stable zwitterionic films for inhibition of biofouling. Mater. Chem. Phys. 2020, 239, 12. 103.Machado, P. S. T.; Habert, A. C.; Borges, C. P., Membrane formation mechanism based on precipitation kinetics and membrane morphology: flat and hollow fiber polysulfone membranes. Journal of Membrane Science 1999, 155 (2), 171-183. 104.Lin, D. J.; Beltsios, K.; Young, T. H.; Jeng, Y. S.; Cheng, L. P., Strong effect of precursor preparation on the morphology of semicrystalline phase inversion poly(vinylidene fluoride) membranes. Journal of Membrane Science 2006, 274 (1-2), 64-72. 105.Li, C. L.; Wang, D. M.; Deratani, A.; Quemener, D.; Bouyer, D.; Lai, J. Y., Insight into the preparation of poly(vinylidene fluoride) membranes by vapor-induced phase separation. Journal of Membrane Science 2010, 361 (1-2), 154-166. 106.Tsai, H. A.; Ruaan, R. C.; Wang, D. M.; Lai, J. Y., Effect of temperature and span series surfactant on the structure of polysulfone membranes. J. Appl. Polym. Sci. 2002, 86 (1), 166-173. 107.Zhao, S.; Wang, Z.; Wei, X.; Tian, X. X.; Wang, J. X.; Yang, S. B.; Wang, S. C., Comparison study of the effect of PVP and PANI nanofibers additives on membrane formation mechanism, structure and performance. Journal of Membrane Science 2011, 385 (1-2), 110-122. 108.Djadoun, S.; Karasz, F. E.; Hamou, A. S. H., Blends of poly(isobutyl methacrylate) with poly(styrene-co-acrylic acid) and of poly(isobutyl methacrylate-co-acrylic acid) with poly(styrene-co-N,N-dimethyl aminoethyl methacrylate). Thermochim. Acta 1996, 283, 399-410. 109.Wang, X. Y.; Zhang, L.; Sun, D. H.; An, Q. F.; Chen, H. L., Formation mechanism and crystallization of poly(vinylidene fluoride) membrane via immersion precipitation method. Desalination 2009, 236 (1-3), 170-178. 110.Lin, Y. C.; Chao, C. M.; Wang, D. K.; Liu, K. M.; Tseng, H. H., Enhancing the antifouling properties of a PVDF membrane for protein separation by grafting branch-like zwitterions via a novel amphiphilic SMA-HEA linker. Journal of Membrane Science 2021, 624, 13.
|