跳到主要內容

臺灣博碩士論文加值系統

(44.212.94.18) 您好!臺灣時間:2023/12/10 15:57
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃坤揚
研究生(外文):HUANG, KUN-YANG
論文名稱:立體障礙醇胺 AEPD + 多元胺 TETA水溶液吸收二氧化碳之平衡溶解度量測研究
論文名稱(外文):The Solubility of Carbon Dioxide in Aqueous Sterically Hindered Amine 2-amino-2-ethyl-1,3-propanediol (AEPD) and Polyamine Triethylenetetramine (TETA) Solutions
指導教授:李夢輝李夢輝引用關係
指導教授(外文):LI, MENG-HUI
口試委員:陳立仁黎蕙蘭
口試委員(外文):CHEN, LI-JENLERON, RHODA BALASADAS
口試日期:2022-06-29
學位類別:碩士
校院名稱:中原大學
系所名稱:化學工程學系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2022
畢業學年度:110
語文別:中文
論文頁數:75
中文關鍵詞:氣液平衡溶解度二氧化碳吸收立體障礙醇胺多元胺
外文關鍵詞:Equilibrium Solubility of Carbon DioxideAqueous Amine SolutionsAEPDTETA
DOI:10.6840/cycu202201366
相關次數:
  • 被引用被引用:0
  • 點閱點閱:81
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
近年因溫室氣體的排放而引起極端氣候日益嚴重,溫室氣體的來源主要從工業和能源相關的燃燒排放,防治之道為在溫室氣體進入大氣之前就對其進行捕獲,為求更經濟有效的CO2吸收,吸收劑之吸收特性為關鍵,本研究為量測混合醇胺之CO2吸收劑,立體障礙醇胺2-氨基-2-乙基-1,3-丙二醇 (2-Amino-2-ethyl-1,3-propanediol) 與多元胺三乙烯四胺 (Triethylenetetramine) 之混合水溶液的氣液平衡數據。
實驗使用氣體再循環氣液平衡槽來量測氣液相平衡,氣相組成由氣相層析儀分析,液相組成由酸鹼滴定來推算二氧化碳的吸收量,實驗主要分成雙成份和三成份系統;雙成份系統濃度為5、10及15wt% AEPD + H2O 和三成份系統濃度為 (5、10、15 wt%) AEPD + (25、20、15 wt%) TETA + H2O,溫度控制在40、60與80 ºC,二氧化碳分壓則控制在範圍1 ~ 1000 kPa。
所得之氣液平衡數據結果經由Li and Shen (1993) 改良後的熱力學模型來表示,本研究結果可用來以 AEPD / TETA作為二氧化碳吸收設備之程序設計計算參考,以發展具經濟效益的捕捉二氧化碳吸收程序。

In recent years, extreme climates have become increasingly serious due to the emission of greenhouse gases. The sources of greenhouse gases are mainly from industrial and energy-related emissions. The objective of research is to capture greenhouse gases before they enter the atmosphere. The characteristics of the absorbent are the key to develop a more effective CO2 absorption. This study was to measure the solubility of CO2 absorbents. Vapor liquid equilibrium solubility data in mixed aqueous solutions of sterically hindered amine (2-Amino-2-ethyl-1,3-propanediol) and polyamines (Triethylenetetramine).
The experiment used gas recirculation vapor liquid equilibrium reactor to measure the phase equilibrium data, gas analysis was analyzed by gas chromatograph, and liquid analysis was determined by titration to calculate the absorption of CO2. The systems studied were: binary systems (5 wt %, 10 wt %, and 15 wt % AEPD) and ternary systems (5 wt % AEPD + 25 wt % TETA, 10 wt % AEPD + 20 wt % TETA, and 15 wt % AEPD + 15 wt % TETA). The systems were measured at 40, 60 and 80 ºC and partial of CO2 pressure were from 1 to 1000 kPa.
The measured solubility were represented by the thermodynamic model modified by Li and Shen (1993). The results of this study can be applied for the CO2 absorption process design using AEPD / TETA blended amines as the absorbent.

目錄

摘要 I
Abstract II
致謝 III
目錄 IV
表目錄 VII
圖目錄 IX
第1章 緒論 1
1-1 前言 1
1-2 氣體捕捉之技術介紹 2
1-2-1 物理吸收 2
1-2-2 物理吸附 2
1-2-3 化學吸收 2
1-2-4 低溫冷凝 3
1-2-5 氣體薄膜分離 3
1-2-5-1 多孔無機薄膜 3
1-2-5-2 高分子薄膜 3
1-3 吸收劑簡介 4
1-3-1 一級醇胺 4
1-3-2 二級醇胺 4
1-3-3 三級醇胺 5
1-3-4 立體障礙醇胺 5
1-4 醇胺反應 5
1-5 本實驗醇胺 7
1-6 研究動機 7
第2章 熱力學原理 9
2-1 熱力學模式文獻回顧 9
2-2 熱力學模式推導 11
2-2-1 化學平衡 11
2-2-2 氣液平衡 12
2-2-3 質量平衡 12
2-2-4 電荷平衡 13
第3章 實驗 18
3-1 實驗設備 18
3-2 實驗藥品 19
3-3 實驗步驟 22
3-4 液相分析 23
3-5 氣相分析 25
第4章 結果與討論 27
4-1 對照實驗 27
4-2 雙成份系統之氣液平衡量測 30
4-3 三成份系統之氣液平衡量測 45
第5章 結論 61
符號說明 63
參考文獻 65

表目錄
Table 2-1 Equilibrium constants and Henry’s law constant used in this study (Kent et al., 1976) 17
Table 3-1 The chemicals used in this study 21
Table 4-1 Solubility of CO2 in aqueous 2M MEA solution at 40°C 28
Table 4-2 Solubility of CO2 in aqueous AEPD solutions at 40°C 32
Table 4-3 Solubility of CO2 in aqueous AEPD solutions at 60°C 33
Table 4-4 Solubility of CO2 in aqueous AEPD solutions at 80°C 34
Table 4-5 Solubility of CO2 in aqueous AEPD + TETA solutions at 40°C 47
Table 4-6 Solubility of CO2 in aqueous AEPD + TETA solutions at 60°C 48
Table 4-7 Solubility of CO2 in aqueous AEPD + TETA solutions at 80°C 49

圖目錄
Figure 3-1 Experiment set up of VLE apparatus 26
Figure 4-1 Solubility of CO2 in aqueous 2M MEA at 313.2 K 29
Figure 4-2 Solubility of CO2 in aqueous AEPD solutions at 313.2 K 35
Figure 4-3 Solubility of CO2 in aqueous AEPD solutions at 333.2 K 36
Figure 4-4 Solubility of CO2 in aqueous AEPD solutions at 353.2 K 37
Figure 4-5 Comparison of CO2 solubility in 5 wt% AEPD solutions at different temperature 38
Figure 4-6 Comparison of CO2 solubility in 10 wt% AEPD solutions at different temperature 39
Figure 4-7 Comparison of CO2 solubility in 15 wt% AEPD solutions at different temperature 40
Figure 4-8 Comparison of calculated and measured partial pressure of CO2 in different AEPD concentration solutions at 313.2 K 41
Figure 4-9 Comparison of calculated and measured partial pressure of CO2 in different AEPD concentration solutions at 333.2 K 42
Figure 4-10 Comparison of calculated and measured partial pressure of CO2 in different AEPD concentration solutions at 353.2 K 43
Figure 4-11 Comparison of calculated and measured partial pressure of CO2 in all binary system data 44
Figure 4-12 Solubility of CO2 in different concentration solutions at 313.2 K 50
Figure 4-13 Solubility of CO2 in different concentration solutions at 333.2 K 51
Figure 4-14 Solubility of CO2 in different concentration solutions at 353.2 K 52
Figure 4-15 Solubility of CO2 at different temperature with same concentration solutions 53
Figure 4-16 Solubility of CO2 at different temperature with same concentration solutions 54
Figure 4-17 Solubility of CO2 at different temperature with same concentration solutions 55
Figure 4-18 Comparison of calculated and measured partial pressure of CO2 in different concentration of AEPD + TETA solutions at 313.2 K 56
Figure 4-19 Comparison of calculated and measured partial pressure of CO2 in different concentration of AEPD + TETA solutions at 333.2 K 57
Figure 4-20 Comparison of calculated and measured partial pressure of CO2 in different concentration of AEPD + TETA solutions at 353.2 K 58
Figure 4-21 Comparison of calculated and measured partial pressure of CO2 in all ternary system data 59
Figure 4-22 Comparison with other aqueous amines solutions at 313.2 K from literatures 60


Alvis, R. S., et al. (2012). "CO2 removal from syngas using piperazine-activated MDEA and potassium dimethyl glycinate." Nitrogen+ Syngas 2012.
Astaria, G., et al. (1983). Gas treating with chemical solvents, J. Wiley and Sons,New York, NY.
Blauwhoff, P. M. M., et al. (1984). "A study on the reaction between CO2 and alkanolamines in aqueous solutions." Chemical Engineering Science 39(2): 207-225.
Bougie, F., et al. (2012). "Sterically hindered amine-based absorbents for the removal of CO2 from gas streams." Journal of Chemical Engineering Data 57(3): 635-669.
Chakravarty, T., et al. (1985). "Reaction of acid gases with mixtures of amines." Chem. Eng. Prog. 81(4).
Chang, Y. C., et al. (2013). "Equilibrium solubility of carbon dioxide in aqueous solutions of (diethylenetriamine + piperazine)." Journal of Chemical Thermodynamics 64: 53-61.
Hu, W. and A. Chakma (1990). "Modeling of equilibrium solubility of CO2 and H2S in aqueous aminomethyl propanol (AMP) solutions." Chemical Engineering Communications 94: 53-61.
Hu, W. and A. Chakma (1990). "MODELLING OF EQUILIBRIUM SOLUBILITY OF CO2 AND H2S IN AQUEOUS AMINO METHYL PROPANOL (AMP) SOLUTIONS." Chemical Engineering Communications 94(1): 53-61.
Kent, R. and B. Eisenberg (1976). "Better data for amine treating." Hydrocarbon Process 55: 87-90.
Kohl, A. L. and R. Nielsen (1997). Gas Purification, Houston, Gulf Professional Publishing fifth edition.
Li, H., et al. (2009). "Impurity impacts on the purification process in oxy-fuel combustion based CO2 capture and storage system." Applied Energy 86(2): 202-213.
Li, M.-H. and K.-P. J. F. p. e. Shen (1993). "Calculation of equilibrium solubility of carbon dioxide in aqueous mixtures of monoethanolamine with methyldiethanolamine." Fluid phase equilibria 85: 129-140.
Liu, R. S., et al. (2021). "Advances in post‐combustion CO2 capture by physical adsorption: from materials innovation to separation practice." ChemSusChem 14(6): 1428-1471.
Park, J.-Y., et al. (2002). "Solubility of carbon dioxide in aqueous solutions of 2-amino-2-ethyl-1, 3-propanediol." Fluid phase equilibria 202(2): 359-366.
Regufe, M. J., et al. (2021). "Current developments of carbon capture storage and/or utilization–looking for net-zero emissions defined in the Paris agreement." Energies 14(9): 2406.
Sartori, G. and D. W. Savage (1983). "Sterically hindered amines for carbon dioxide removal from gases." Industrial & Engineering Chemistry Fundamentals 22(2): 239-249.
Sartori, G. and D. W. Savage (1983). "Sterically Hindered Amines for CO, Removal from Gases." Chemical Engineering Communications 22: 239-249.
Schäffer, A., et al. (2012). "Comparative study on differently concentrated aqueous solutions of MEA and TETA for CO2 capture from flue gases." Fuel 101: 148-153.
Shen, K. P., et al. (1992). "Solubility of carbon dioxide in aqueous mixtures of monoethanolamine with methyldiethanolamine." Journal of chemical Engineering Data 37(1): 96-100.
Teng, T. and A. J. T. C. J. o. C. E. Mather (1989). "Solubility of H2S, CO2 and their mixtures in an AMP solution." The Canadian Journal of Chemical Engineering 67(5): 846-850.
胡蒨傑 and 魏大欽 (2008). "21世紀的新森林 - 氣體分離薄膜." 《科學發展》(429): 32-37.
黃書賢, et al. (2010). "高分子薄膜在二氧化碳分離與捕捉之應用." 化工 57(4): 34-45.

電子全文 電子全文(網際網路公開日期:20270809)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊