跳到主要內容

臺灣博碩士論文加值系統

(44.220.249.141) 您好!臺灣時間:2023/12/11 20:51
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張恭岳
研究生(外文):CHANG, KUNG-YUEH
論文名稱:二氧化碳吸收劑立體障礙醇胺 (AEPD) / 多元胺 (DETA) 水溶液之反應動力學量測研究
論文名稱(外文):Reaction Kinetics of the Carbon Dioxide in the Aqueous sterically hindered amines (AEPD) / Polyamine (DETA) Solutions
指導教授:李夢輝李夢輝引用關係
指導教授(外文):LI, MENG-HUI
口試委員:陳立仁林祥泰
口試委員(外文):CHEN, LI-JENLIN, SHIANG-TAI
口試日期:2021-07-22
學位類別:碩士
校院名稱:中原大學
系所名稱:化學工程學系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2022
畢業學年度:110
語文別:中文
論文頁數:120
中文關鍵詞:二氧化碳立體障礙醇胺反應動力學
外文關鍵詞:Carbon DioxideSterically Hindered AminesReaction Kinetics
DOI:10.6840/cycu202201486
相關次數:
  • 被引用被引用:0
  • 點閱點閱:135
  • 評分評分:
  • 下載下載:8
  • 收藏至我的研究室書目清單書目收藏:0
本研究探討CO2與立體障礙醇胺2-amino-2-ethyl-1,3-propanediol (AEPD) /多元胺Diethylenetriamine (DETA) 水溶液的化學吸收反應動力學研究。本實驗使用濕壁柱量測CO2的化學吸收,也量測醇胺水溶液在不同溫度下的密度、黏度、亨利常數和擴散係數。雙成分系統是AEPD醇胺水溶液(5, 10, 15, 20, 25, 30 wt %);三成分混和醇胺水溶液系統為AEPD (25 wt %) + DETA (15 wt %) + H2O、AEPD (30 wt %) + DETA (10 wt %) + H2O及AEPD (35 wt %) + DETA (5 wt %) + H2O;量測壓力皆為常壓,密度的溫度範圍是20 ~ 70 C,黏度的溫度範圍是25 ~ 45 C,亨利常數與擴散係數的溫度範圍則是30、35和40 C。在研究中AEPD或DETA與CO2的化學反應方程式是以兩性離子反應機構模式,並且使用擬一級反應模式,由此兩者的量測數據用數值迴歸求得反應速率常數。在酸性氣體吸收的化工程序設計上,亨利常數、擴散係數與反應速率常數是設計程序必須參考的重要基礎數據,本研究可提供用(AEPD + DETA)水溶液吸收酸性氣體之反應器設計時所需的熱物性質及動力學數據計算的依據。
The objective of this study is to investigate reaction kinetics of the CO_2 into aqueous blended amine solution contains 2-amino-2-ethyl-1,3-propanediol (AEPD) / Diethylenetriamine (DETA). The wetted wall column is applied to measure the reactions kinetics of the CO_2 with the blend amine systems. The physical properties density, viscosity, Henry’s law constant and diffusivity of the systems were also be measured. The binary system is: AEPD(5, 10, 15, 20, 25, 30 wt %) + H_2 O , and the ternary system is AEPD(25 wt %) + DETA(15 wt %) + H_2 O, AEPD(30 wt %) + DETA(10 wt %) + H_2 O , AEPD(35 wt %) + DETA(5 wt %) + H_2 O. All measurements are at atmosphere pressure. Density of the systems is measured from 20 C to 70 C. Viscosity is measure from 25 C to 45 C. Henry’s law constant and diffusivity is measured from 30 C to 40 C. The reaction rate of constants is represented by a hybrid model which combines the pseudo-first order reaction mechanism and the zwitterion mechanism. The results of this research can be used to design the CO_2 absorption process of CO_2 using aqueous absorbent (AEPD + DETA).
摘要 I
Abstract II
致謝 III
目錄 IV
表目錄 VIII
圖目錄 X
第1章 緒論 1
1-1 前言 1
1-2 醇胺的應用 2
1-3 AEPD與DETA的熱物性質 3
1-3.1 2-Amino-2-ethyl-1,3-propanediol 3
1-3.2 Diethylenetriamine 4
1-4 混合醇胺之相關文獻探討 5
1-4.1 AEPD + H2O系統 5
1-4.2 DETA + H2O系統 5
1-5 研究動機 6
第2章 二氧化碳與醇胺的反應機構 9
2-1 反應動力學模式 9
2-1.1 CO2與水的反應 9
2-1.2 CO2與一、二級醇胺的反應 10
2-1.3 CO2與三級醇胺的反應 12
2-1.4 CO2與立體障礙醇胺的反應 12
2-1.5 CO2與AEPD的反應 13
2-1.6 CO2與DETA的反應 13
2-2 CO2與醇胺溶液的吸收模式探討 14
2-2.1 物理吸收模式 14
2-2.2 N2O類比理論 16
2-2.3 化學吸收模式 18
2-2.4 快速擬一級(Fast pseudo-first order)反應模式 23
2-3 研究中使用的反應動力學模式 28
2-4 物理性質數據之迴歸模式 29
2-4.1 密度計算之迴歸模式 30
2-4.2 黏度計算之迴歸模式 31
2-4.3 亨利常數計算之迴歸模式 32
2-4.4 擴散係數計算之迴歸模式 34
第3章 實驗 36
3-1 實驗化學品 36
3-2 密度量測 36
3-3 黏度量測 37
3-4 亨利常數量測 38
3-5 擴散係數量測 40
3-6 二氧化碳吸收量測 42
3-6.1 量測原理與吸收負載測定 42
3-6.2 擬一級吸收模式反應速率常數計算 43
第4章 結果與討論 46
4-1 雙成分系統AEPD + H2O 46
4-1.1 密度與黏度的量測結果 46
4-1.2 亨利常數的量測結果 58
4-1.3 擴散係數的量測結果 64
4-2 三成分系統AEPD + DETA + H2O 70
4-2.1 密度與黏度的量測結果 70
4-2.2 亨利常數的量測結果 79
4-2.3 擴散係數的量測結果 83
4-2.4 化學吸收的量測結果 87
第5章 結論 100
符號說明 102
參考文獻 106

表目錄
Table 4-1 Density and viscosity of AEPD + H2O solutions 48
Table 4-2 Parameters for density equation of pure AEPD, DETA and H2O 54
Table 4-3 Parameters for density equation of AEPD + H2O 54
Table 4-4 Parameters for viscosity equation of AEPD + H2O 55
Table 4-5 Estimated solubility of CO2 in AEPD + H2O using N2O analogy 61
Table 4-6 Parameters for Henry’s constant equation 62
Table 4-7 Estimated diffusivity of CO2 in AEPD + H2O using N2O analogy 67
Table 4-8 Parameters for diffusivity equation 68
Table 4-9 Density and viscosity of AEPD + DETA + H2O solutions 71
Table 4-10 Parameters of equation for the density AEPD + DETA + H2O 75
Table 4-11 Parameters of equation for the viscosity AEPD + DETA + H2O 76
Table 4-12 Estimated solubility of CO2 in AEPD + DETA + H2O using N2O analogy 80
Table 4-13 Parameters for Henry’s constant equation 81
Table 4-14 Estimated diffusivity of CO2 in AEPD + DETA + H2O using N2O analogy 84
Table 4-15 Parameters for diffusivity equation 85
Table 4-16 Kinetics data of CO2 in aqueous AEPD + DETA solutions 91
Table 4-17 Kinetics data of CO2 absorptionin aqueous AEPD + DETA solutions 92
Table 4-18 Diffusivity of amine in solutions used to calculate instantaneous enhancement factor for CO2 in aqueous AEPD + DETA solutions 93
Table 4-19 Compare results in aqueous AEPD + DETA solutions 94
Table 4-20 Kinetic constants of aqueous AEPD + DETA solutions 95
Table 4-21 Kinetic parameters of aqueous AEPD + DETA solutions 96

圖目錄
Figure 1-1 2-Amino-2-ethyl-1,3-propanediol (AEPD) 4
Figure 1-2 Diethylenetriamine (DETA) 4
Figure 2-1 Enhancement factor for second order reaction plotted against Hatta number (Drew et al., 1981) 25
Figure 2-2 Liquid-phase concentration profiles for mass transfer with chemical reaction film theory (Drew et al., 1981) 26
Figure 2-3 Enhancement factor for second order reaction plotted against Hatta number (Krevelen & Hoftijzer, 1948) 27
Figure 3-1 Schematic drawing of physical gas absorption apparatus 44
Figure 3-2 Schematic drawing of wetted-wall column apparatus 45
Figure 4-1 Density of aqueous AEPD solutions at 30 - 70 oC 56
Figure 4-2 Viscosity of aqueous AEPD solutions at 25 - 45 oC 57
Figure 4-3 Solubility of N2O in H2O as a function of temperature 60
Figure 4-4 Solubility of N2O in aqueous AEPD solutions 63
Figure 4-5 Diffusivity of CO2 in H2O as a function of temperature 66
Figure 4-6 Diffusivity of N2O in aqueous AEPD solutions 69
Figure 4-7 Density of aqueous AEPD + DETA solution at 20 to 70 oC 77
Figure 4-8 Viscosity of aqueous AEPD + DETA solutions at 25 to 45 oC 78
Figure 4-9 Solubility of N2O in aqueous AEPD + DETA solutions 82
Figure 4-10 Diffusivity of N2O in aqueous AEPD + DETA solutions 86
Figure 4-11 Pseudo-first-order apparent reaction rate constant for the reaction of CO2 with AEPD + DETA + H2O solutions 97
Figure 4-12 The calculated k2,AEPD as function of temperature 98
Figure 4-13 The calculated k2,DETAkAEPD/k-1 as function of temperature 99


Abu-Arabi, M. K., Al-Jarrah, A. M., El-Eideh, M., & Tamimi, A. (2001). Physical Solubility and Diffusivity of CO2 in Aqueous Diethanolamine Solutions. J. Chem. Eng. Data, 46, 516-521.
Al-Ghawas, H. A., Hagewlesche, D. P., Ruiz-Ibanez, G., & Sandall, O. C. (1989). Physicochemical properties important for carbon dioxide absorption in aqueous methyldiethanolamine. J. Chem. Eng. Data, 34, 385-391.
Alper, E., & Bouhamra, W. (1994). Reaction-Kinetics of Carbonyl Sulfide with Aqueous Ethylenediamine and Diethylenetriamine. Gas Separation & Purification, 8(4), 237-240.
Alvarezfuster, C., Midoux, N., Laurent, A., & Charpentier, J. C. (1981). Chemical-Kinetics of the Reaction of CO2 with Amines in Pseudo M-Nth Order Conditions in Polar and Viscous Organic Solutions. Chem. Eng. Sci., 36(9), 1513-1518.
Astarita, G., Savage, D. W., & Bisio, A. (1983). Gas Treating with Chemical Solvents. New York: John Wiley.
Barth, D., C. Tondre, G. Lappai and J. J. Delpuech (1981). Kinetic study of carbon dioxide reaction with tertiary amines in aqueous solutions. J. Phys. Chem., 85(24), 3660-3667.
Blauwhoff, P. M. M., Versteeg, G. F., & Van swaaij, W. P. M. (1983). A Study on the Reaction between CO2 and Alkanolamines in Aqueous-Solutions. Chem. Eng. Sci., 38(9), 1411-1429.
Bougie, F., & Iliuta, M. C. (2009). Kinetics of absorption of carbon dioxide into aqueous solutions of 2-amino-2-hydroxymethyl-1,3-propanediol. Chem. Eng. Sci., 64(1), 153-162.
Caglar, A. E., Balsalobre-Lorente, D., & Akin, C. S. (2021). Analysing the ecological footprint in EU-5 countries under a scenario of carbon neutrality: Evidence from newly developed sharp and smooth structural breaks in unit root testing. J. Environ. Manage., 295, 113155.
Caplow, M. (1968). Kinetics of Carbamate Formation and Breakdown. J. Am. Chem. Soc., 6795-6803.
Chang, L.-C., Lin, T.-I., & Li, M.-H. (2005). Mutual Diffusion Coefficients of Some Aqueous Alkanolamines Solutions. J. Chem. Eng. Data, 50(1), 77-84.
Clarke, J. K. A. (1964). Kinetics of Absorption of Cardon Dioxide in Monoethanolamine Solutions at Short Contact Times. Ind. & Eng. Chem. Fundam., 3, 239-245.
Conti, J., Holtberg, P., Diefenderfer, J., LaRose, A., Turnure, J. T., & Westfall, L. (2016). International energy outlook 2016 with projections to 2040: USDOE Energy Information Administration (EIA), Washington, D.C., United States.
Danckwerts, P. V. (1951). Significance of liquid-film coefficients in gas absorption. Ind. Eng. Chem., 43.
Danckwerts, P. V. (1970). Gas-liquid reactions. New York,: McGraw-Hill Book Co.
Danckwerts, P. V. (1979). The reaction of CO2 with ethanolamines. Chem. Eng. Sci., 34(4), 443-446.
Davidson, J. F. (1957). The Determination of Diffusion Coefficient for Sparingly Soluble Gases in Liquids. Trans. Instn. Chem. Engrs., 35(3), 260-266.
Drew, T. B., Cokelet, G. R., Hoopes, J. W., & Vermeulen, T. (1981). Advances in Chemical Engineering. 11.
Duatepe, F. P. G., & Alper, E. (2017). Reaction Kinetics of Carbon Dioxide with Nonaqueous Solutions of Sterically Hindered Amines. Journal of the Turkish Chemical Society Section B: Chemical Engineering, 1(1), 91-102.
Duda, J., & Vrentas, J. (1968). Laminar liquid jet diffusion studies. AIChE Journal, 14(2), 286-294.
Glasscock, D. A., Critchfield, J. E., & Rochelle, G. T. (1991). CO2 Absorption Desorption in Mixtures of Methyldiethanolamine with Monoethanolamine or Diethanolamine. Chem. Eng. Sci., 46(11), 2829-2845.
Griffiths, S., & Sovacool, B. K. (2020). Rethinking the future low-carbon city: Carbon neutrality, green design, and sustainability tensions in the making of Masdar City. Energy Res. Soc. Sci., 62, 101368.
Hagewiesche, D. P., Ashour, S. S., Al-Ghawas, H. A., & Sandall, O. C. (1995). Absorption of carbon dioxide into aqueous blends of monoethanolamine and n-methyldiethanolamine. Chem. Eng. Sci., 50, 1071-1079.
Haimour, N. M. (1990). Solubility of nitrous oxide in aqueous solutions of diethanolamine at different temperatures. J. Chem. Eng. Data, 35, 177-178.
Hartono, A., Juliussen, O., & Svendsen, H. F. (2008). Solubility of N2O in Aqueous Solution of Diethylenetriamine. J. Chem. Eng. Data, 53(11), 2696-2700.
Hartono, A., Silvab, E. F. D., & Svendsen, H. F. (2009). Kinetics of carbon dioxide absorption in aqueous solution of diethylenetriamine (DETA). Chem. Eng. Sci., 64(14), 3205-3213.
Hartono, A., & Svendsen, H. F. (2009). Density, viscosity, and excess properties of aqueous solution of diethylenetriamine (DETA). J. Chem. Thermodyn. , 41(9), 973-979.
Hartono, A., & Svendsen, H. F. (2009). Kinetics reaction of primary and secondary amine group in aqueous solution of diethylenetriamine (DETA) with carbon dioxide. Energy Procedia, 1(1), 853-859.
Higbie, & Ralph. (1935). The rate of absorption of a pure gas into still liquid during short periods of exposure. New York.
Hsu, C.-H., & Li, M.-H. (1997a). Densities of Aqueous Blended Amines. J. Chem. Eng. Data, 42, 502-507.
Hsu, C.-H., & Li, M.-H. (1997b). Viscosities of Aqueous Blended Amines. J. Chem. Eng. Data, 42, 714-720.
Kohl, A. L., & Nielsen, R. (1997). Gas purification: Elsevier.
Krevelen, D. W. V., & Hoftijzer, P. J. (1948). Kinetics of gas‐liquid reactions part I. General theory. 67(7), 563-586.
Laddha, S. S., & Danckwerts, P. V. (1981). Reaction of CO2 with Ethanolamines - Kinetics from Gas-Absorption. Chem. Eng. Sci., 36(3), 479-482.
Li, M.-H., & Lai, M.-D. (1995). Solubility and Diffusivity of N2O and CO2 in (Monoethanolamine + N-Methyldiethanolamine + Water) and in (Monoethanolamine + 2-Amino-2-methyl-1-propanol + Water). J. Chem. Eng. Data, 40, 486-492.
Li, M.-H., & Lee, W.-C. (1996). Solubility and Diffusivity of N2O and CO2 in (Diethanolamine + N-Methyldiethanolamine + Water) and in (Diethanolamine + 2-Amino-2-methyl-1-propanol + Water). J. Chem. Eng. Data, 41, 551-556.
Mandal, B. P., Kundu, M., & Bandyopadhyay, S. S. (2005). Physical Solubility and Diffusivity of N2O and CO2 into Aqueous Solutions of (2-Amino-2-methyl-1-propanol + Monoethanolamine) and (N-Methyldiethanolamine + Monoethanolamine). J. Chem. Eng. Data, 50, 352-358.
Munder, B., Lidal, H., & Sandall, O. C. (2000). Effect of Carbon Dioxide Loading on the Solubility of Nitrous Oxide in Aqueous Solutions of 2-(tert-Butylamino)ethanol. J. Chem. Eng. Data, 45, 1195-1200.
United Nation (Producer). (2021). For a livable climate: Net-zero commitments must be backed by credible action. Retrieved from https://www.un.org/en/climatechange/net-zero-coalition
Nernst, W. (1904). Theorie der Reaktionsgeschwindigkeit in heterogenen Systemen. Zeitschrift für physikalische Chemie, 47(1), 52-55.
Noman, H., & Sandall, O. C. (1984). Absorption of Carbon-Dioxide into Aqueous Methyldiethanolamine. Chem. Eng. Sci., 39(12), 1791-1796.
Park, J.-Y., Yoon, S. J., & Lee, H. (2002). Density, Viscosity, and Solubility of CO2 in Aqueous Solutions of 2-Amino-2-hydroxymethyl-1,3-propanediol. J. Chem. Eng. Data, 47(4), 970-973.
Pinsent, B. R. W., Pearson, L., & Roughton, F. J. W. (1956). The kinetics of combination of carbon dioxide with hydroxide ions. Transactions of the Faraday Society, 52.
Plkkaralnen, L. (1983). Densities and viscosities of binary solvent mixtures of N-methylacetamide with aliphatic alcohols. J. Chem. Eng. Data, 28, 381-383.
Prausnitz, J. M., Lichtenthaler, R. N., & Azevedo, E. G. d. (1986). Molecular thermodynamics of fluid-phase equilibria (2nd ed.). Englewood Cliffs, N.J.: Prentice-Hall.
Rinker, E. B., Ashour, S. S., & Sandall, O. C. (1995). Kinetics and Modeling of Carbon-Dioxide Absorption into Aqueous-Solutions of N-Methyldiethanolamine. Chem. Eng. Sci., 50(5), 755-768.
Rinker, E. B., Ashour, S. S., & Sandall, O. C. (1996). Kinetics and Modeling of Carbon Dioxide Absorption into Aqueous Solutions of Diethanolamine. Ind. Eng. Chem. Res., 35(4), 1107-1114.
Saha, A. K., & Bandyopadhyay, S. S. (1993). Solubility and diffusivity of nitrous oxide and carbon dioxide in aqueous solutions of 2-amino-2-methyl-1-propanol. J. Chem. Eng. Data, 38, 78-82.
Sunday, C., & Alper, E. (2012). Reaction kinetics of carbon dioxide with 2-amino-2-hydroxymethyl-1,3-propanediol in aqueous solution obtained from the stopped flow method. Turk J Chem, 36, 427-435.
Thomas, W. J., & Adams, M. J. (1965). Measurement of the diffusion coefficients of carbon dioxide and nitrous oxide in water and aqueous solutions of glycerol. Transactions of the Faraday Society, 61, 668-673.
Unver, A. A., & Himmelblau, D. M. (1964). Diffusion Coefficients of CO2, C2H4, C3H6 and C4H8 in Water from 6° to 65° C. J. Chem. Eng. Data, 9, 428-431.
Vaidya, P. D., & Jadhav, S. G. (2014). Absorption of carbon dioxide into sterically hindered amines: Kinetics analysis and the influence of promoters. The Canadian Journal of Chemical Engineering, 92(12), 2218-2227.
Veawab, A., tontiwachwuthikul, P., & chakma, A. (1999). Corrosion Behavior of Carbon Steel in the CO2 Absorption Process Using Aqueous Amine Solutions. Ind. Eng. Chem.
Versteeg, G. F., & Swaaij, W. P. M. V. (1988a). On the kinetics between CO2 and alkanolamines both in aqueous and non-aqueous solutions-i primary and secondary amines. Chem. Eng. Sci.,, 43, 573-585.
Versteeg, G. F., & Swaaij, W. P. M. V. (1988b). On the kinetics between CO2 and alkanolamines both in aqueous and non-aqueous solutions—II. Tertiary amines. Chem. Eng. Sci., 43(3), 587-591.
Versteeg, G. F., & Swaaij, W. P. M. V. (1988). Solubility and diffusivity of acid gases (carbon dioxide, nitrous oxide) in aqueous alkanolamine solutions. J. Chem. Eng. Data, 33, 29-34.
Wang, Y. W., Xu, S., Otto, F. D., & Mather, A. E. (1992). Solubility of N2O in Alkanolamines and in Mixed-Solvents. Chemical Engineering Journal and the Biochemical Engineering Journal, 48(1), 31-40.
Winning, M., Price, J., Ekins, P., Pye, S., Glynn, J., Watson, J., & McGlade, C. (2019). Nationally Determined Contributions under the Paris Agreement and the costs of delayed action. Climate Policy, 19(8), 947-958.
Xu, S., Otto, F. D., & Mather, A. E. (1991). Physical properties of aqueous AMP solutions. J. Chem. Eng. Data, 36, 71-75.
Yaghi, B. (2008). Solubility of nitrous oxide in amine aqueous solutions. J. Eng., 2(1), 1-14.
Yoon, S. J., Lee, H.-S., Lee, H., Baek, J.-I., Yoon, J.-H., & Eum, H.-M. (2002). Densities, viscosities, and surface tensions of aqueous 2-amino-2-ethyl-1,3-propanediol solutions. J. Chem. Eng. Data, 47(1), 30-32.
Yoon, S. J., Lee, H., Yoon, J.-H., Shim, J.-G., Lee, J. K., Min, B.-Y., & Eum, H.-M. (2002). Kinetics of absorption of carbon dioxide into aqueous 2-amino-2-ethyl-1,3-propanediol solutions. Ind. Eng. Chem. Res., 41(15), 3651-3656.
許展禎. (2015). The reaction kinetics study for the absorption of carbon dioxide into the aqueous amine (tertiary amine DEEA + polyamine DETA)solutions.
陳冠合. (2012). Kinetics of Absorption of Carbon Dioxide into Aqueous Solutions of Diethylenetriamine and Piperazine.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊